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Introduction  
Regression is the mother of all data analyses in the social sciences. It was invented more than 
100 years ago when Francis Galton (1886) quantified the pattern in the scores of parental height 
and child height (see Figure 1 with the original graph).  
 
 

 
Figure 1. Francis Galton’s (1886) graph with data on Parent height (X) and Child height (Y).  
 
In Figure 2 Galton’s data are shown in two XY scatter plots.  
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Figure 2 Scatter plots of the relationship between Parent height (X) and Child height (Y) (after 
Galton (1886). A. With a regression line. B. With a ceiling line. 
 
Galton drew lines though the middle of the data for describing the average trend between 
Parental height and Child height: the regression line (Figure 2A). For example with a Parent height 
of 175 cm, the estimated average Child height is about 170 cm. Galton could also have drawn a 
line on top of the data for describing the necessity of Parent height for Child height: the ceiling 
line (Figure 2B). For example, with a Parent height of 175 cm, the estimated maximum Child 
height is about 195 cm. But Galton didn’t draw a ceiling line, and the social sciences have adopted 
the average trend line as the basis for many data analysis approaches. Regression analysis has 
developed over the years and many variants exist. The main variant is Ordinary Least Squares 
(OLS) regression with which I compare NCA. 

Logic and theory 
OLS regression uses additive, average effect logic. The regression line (Figure 2A) predicts the 
average Y for a given X. Because the cases are scattered, for a given X also higher and lower values 
of Y than the average value of Y are possible. With one X (simple OLS regression), Y is predicted 
by the regression equation is Y = β0  + β1 X + ɛ(X) , where β0 is the intercept of the regression line, 
β1 is the slope of the regression line, and ɛ(X) is the error term representing the scatter around 
the regression line for a given X. The slope of the regression line (regression coefficient) is 
estimated by minimizing the squared vertical distances between the observed Y-values and the 
regression line (‘least squares’). The error term includes the effect of all other factors that can 
contribute to the outcome Y. For the parent-child data, the regression equation is Y = 57.5 + 0.64 
X + ɛ(X). OLS regression assumes that on average ɛ(X) = 0. Thus, when X (Parent height) is 175 cm, 
the estimated average Child height is about 170. In contrast NCA’s ceiling line is defined by Yc = 
-129 + 1.85 X. Thus, when X (Parent height) is 175 cm, the estimated maximum Child height is 
about 195 cm. Normally, in NCA the ceiling line is interpreted inversely (e.g., in the bottleneck 



table): Xc = (Yc + 129)/1.85 indicating, assuming a non-decreasing ceiling line, that a minimum 
level of X = Xc is necessary (but not sufficient) for a desired level of Y =Yc. When parents wish to 
have a child of 200 cm it is necessary (but not sufficient) that their Parent height is at least about 
177 cm. 
To allow for doing statistical tests with OLS, it is usually assumed that the error term for a given 
X is normally distributed (with average value 0): cases close to the regression line for the given X 
are more likely than cases far from the regression line. The normal distribution is unbounded, 
hence very high or very low values of Y are possible, though not likely. This implies that any high 
value of Y is possible. Even without the assumption of the normal distribution or the error term, 
a fundamental assumption of OLS is that the Y value is unbounded (Berry, 1993). Thus, very large 
child heights (e.g., 300 cm) are theoretically possible in OLS, but unlikely. This assumption 
contradicts NCA’s logic in which X and Y are presumed bounded. X puts a limit on Y and thus there 
is a border represented by the ceiling line. The limits can be empirically observed in the sample 
(e.g., the height of the observed tallest person in the sample is 205 cm) for defining NCA’s 
empirical scope or can be theoretically defined (e.g., the height of the ever observed tallest 
person is 272 cm) for defining the NCA’s theoretical scope.  
Additivity is another part of regression logic. It is assumed that the terms of the regression 
equation are added. Next to X, the error term is always added in the regression equation. Possibly 
also other X’s or combination of X’s are added in the regression equation (multiple regression, 
see below). This means that the terms that make up the equation can compensate for each other. 
For example, when X is low, Y can still be achieved when other factors (factors in the error term 
or other X’s) give a higher contribution to Y. The additive logic implies that for achieving a certain 
level of Y, no X is necessary. This additive logic contradicts NCA’s logic that X is necessary: Y cannot 
be achieved when the necessary factor does not have the right level, and this absence of X cannot 
be compensated by other factors. 
Results of a regression analysis are usually interpreted in terms of sufficiency. A common 
sufficiency-type of hypotheses is ‘X increases Y’ or ‘X has a positive effect on Y’. Such hypothesis 
can be tested with regression analysis. The hypothesis is considered to be supported if the 
regression coefficient is positive. Often, it is then suggested that X is sufficient to produce an 
increase of the outcome Y. The results also suggest that a given X is not necessary for producing 
the outcome Y because other factors in the regression model (other X’s and the error term) can 
compensate for the absence of a low level of X.  

Data analysis  
Mostly, regression models include more than one X. The black box of the error term is opened 
and other X’s are added to the regression equation, for example: Y = β0 + β1 X1 + β2 X2 + ɛ(X), 
where β1 and β2 are the regression coefficients (multiple regression). By adding more factors that 
contribute to Y into the equation, a larger part of the scatter is explained, hence resulting in more 
precise prediction of Y for given X’s. R2 is the amount of explained variance of a regression model 
and can have values between 0 and 1. By adding more factors, better predictions of the outcome 
can be achieved and higher values of R2.  
Another reason to add more factors is that not including factors that correlate with X and Y results 
in biased estimations of the regression coefficients (‘omitted variable bias’). Hence, the common 



standard of regression is not the simple OLS regression with one factor, but multiple regression 
with many factors. Also other regression-based approaches such as Structural Equation 
Modelling and Partial Least Squares include many factors. By adding more relevant factors, the 
prediction of Y becomes better and the risk of omitted variable bias is reduced. Adding factors in 
the equation is not just adding new factors (X). Some factors may be combined such as squaring 
a factor (X2) to represent a non-linear effect of X on Y, or taking the product of two factors (X1 * 
X2) to represent the interaction between these factors. Such combinations of factors is added as 
a separate terms into the regression equation. Box 1 shows an example of the prediction of an 
average outcome with 25 terms of single and combined factors in the regression equation. The 
25 terms in the model explain 27% of the variance (R2 = 0.27). Thus, the error term (representing 
the not included factors) represent the other 73% percent (unexplained variance). Single terms 
predict only a small part of the outcome. For example, ‘subsidiary initiative taking’ (term 18) is 
responsible for 2% to the explained variance. 
  



 
Box 1 Example of predicting an outcome with many additive factors in a 
regression model 
 
Bouquet and Birkinshaw’s (2008) study on multinational enterprises (MNE’s) to predict how 
subsidiary companies gain attention from their headquarters (Y) is one of the most cited 
papers in the Academy of Management Journal. They use a multiple regression model with 
25 terms (X’s and combination of X’s) and an ‘error’ term ɛ. With the regression model the 
average outcome (average attention) for a group of cases (or for the theoretical ‘the 
average case’) for given values of the terms can be estimated. The error term represents 
all unknown factors that have a positive or negative effect on the outcome but are not 
included in the model, assuming that the average effect of the error term is zero. 𝛽𝛽0 is a 
constant and the other 𝛽𝛽𝑖𝑖’s are the regression coefficients of the terms, indicating how 
strong the term is related to the outcome (when all other terms are constant). The 
regression model is: 
Attention = 𝛽𝛽0 + 𝛽𝛽1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎2

+ 𝛽𝛽4𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛽𝛽5𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝛽𝛽6𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 + 𝛽𝛽7 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+  𝛽𝛽8𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽9 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟
+ 𝛽𝛽10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽11𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+ 𝛽𝛽12 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝛽𝛽13ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝛽𝛽14ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒˗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛽𝛽15𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽16𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+ 𝛽𝛽17𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
+ 𝛽𝛽18𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽19𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
+ 𝛽𝛽20ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒˗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛽𝛽21𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽22𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽23𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝛽𝛽24𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝛽𝛽25𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ɛ 

 
Source:  
Bouquet, C., & Birkinshaw, J. (2008). Weight versus voice: How foreign subsidiaries gain attention from 
corporate headquarters. Academy of Management journal, 51(3), 577-601. 
 

The example shows that adding more factors makes the model more complex and less 
understandable and therefore less useful in practice. The contrast with NCA is large. NCA can 
have a model with only one factor that perfectly explains the absence of a certain level of an 
outcome when the factor is not present at the right level for that outcome. 
Whereas regression models must include factors that correlate with other factors and with the 
outcome to avoid biased estimation of the regression coefficient, NCA’s effect size for a necessary 
factor is not influenced by the absence or presence of other factors in the model. This is 



illustrated with and example about the effect of a sales persons personality on sales performance 
using data of 108 cases (sales representatives from a large USA food manufacturer) obtained with 
The Hogan Personality Inventory (HPI) personality assessment tool for predicting organizational 
performance (Hogan & Hogan, 2007). Details of the example are in Dul et al. (in press). The 
statistical descriptives of the data (mean, standard deviation, correlation) are shown in Figure 
3A. Ambition and Sociability are correlated with Y as well as each other. Hence, if one of them is 
omitted from the model the regression results may be biased.  

 
 M S.D. Y X1 X2 X3 

Y = Sales Performance 49.0 18.1     

X1 = Ambition 57.7 27.0 0.24    

X2 
= Sociability 53.1 28.5 0.28 0.35   

X3= Interpersonal sensitivity 54.0 33.5 0.06 0.19 0.03  

X4= Learning approach 49.5 29.8 -0.08 0.23 0.23 -0.02 
A. Descriptive statistics. 

 
MODEL 1 with 4 factors Regression coefficient (B) 

R2 = 0.13 
NCA effect size (d) 

CR-FDH 
X1 = Ambition 0.13 (p=0.059) 0.18 (p=0.047) 
X2 

= Sociability 0.16 (p=0.012) 0.19 (p=0.003) 
X3 = Interpersonal sensitivity 0.01 (p=0.883) 0.11 (p=0.371) 
X4 = Learning approach -0.11 (p=0.055) 0.14 (p=0.167) 

   
MODEL 2 with 3 factors 
(Sociability omitted) 

Regression coefficient (B) 
R2 = 0.08 

NCA effect size (d) 
CR-FDH 

X1 = Ambition 0.18 (p=0.006) 0.18 (p=0.047) 
X2 

= Sociability - - 
X3 = Interpersonal sensitivity 0.00 (p=0.952) 0.11 (p=0.371) 
X4 = Learning approach -0.09 (p=0.135) 0.14 (p=0.167) 

(N=108) 

B. Results of regression analysis (middle column) and results of NCA (right column). Model 1 is 
the full model and Model 2 has an omitted variable (Sociability). 

 
Figure 3 Example of the results of a regression analysis and NCA. Effect of four personality traits 
of sales persons on sales performance. A. Descriptive statistics. B. Results of regression analysis 
(middle column) and results of NCA (right column) for two different models. Model 1 is the full 
model and Model 2 has an omitted variable (Sociability). Data from Hogan & Hogan (2007). 
 
The omission of one variable is shown in Figure 3B, middle column. The full model (Model 1) 
includes all four personality factors. The regression results show that Ambition and Sociability 



have a positive average effects on Sales performance (regression coefficients 0.13 and 0.16 
respectively, and Learning approach has a negative average effect on Sales performance 
(regression coefficient -0.11).  Interpersonal sensitivity has virtually no average effect on Sales 
performance (regression coefficient 0.01).  The p-values for Ambition and Sociability are 
relatively low. In the model with 3 factors Sociability is omitted (Model 2). The regression results 
show that all three remaining regression coefficients have changed. The regression coefficient 
for Ambition has increased to 0.18, and the regression coefficients of the other two factors have 
minor differences (because these factors are less correlated with the omitted variable). Hence, 
in a regression model that is not correctly specified because a factor that correlates with factors 
that are included in the model and with the outcome are not included, the correlation 
coefficients of the included factors may be biased (omitted variable bias). 
The results of the NCA analysis does not change when a variable is omitted (Figure 3B, right 
column). All factors are necessary with an effect size of greater than 0.10. The results for the 
remaining three factors do not change when Sociability is excluded from the model. The example 
also shows that a factor that is important according to a regression analysis may also be necessary 
(Ambition, Sociability). But the example also show that a factor that is not important 
(Interpersonal sensitivity according to the average contribution to the outcome may still be 
necessary for the outcome. Even a factor this has a negative average effect on the outcome 
(Learning approach) may be necessary for the outcome.  

Combining NCA and regression 
This example illustrates that regression and NCA are fundamentally different and 
complementary. A regression analysis can be added to a NCA study to evaluate the average effect 
of the identified necessary condition on the outcome. However, the researcher must then include 
all relevant factors, also those that are not expected to be necessary, to avoid omitted variable 
bias, and must obtain measurement scores for these factors. 
When NCA is added to a regression study not much extra effort is required. If a theoretical 
argument is available for a factor being necessary, any factor that is included in a regression 
model (independent variables, moderators, mediators) can also be treated as a potential 
necessary condition that can be tested with NCA. This could be systematically done: 

• For all potential necessary conditions; 
• For those factors that provide a surprising result in the regression analysis (e.g. in terms 

of direction of the regression coefficient) to better understand the result;  
• For those factors that show no or a limited effect in the regression analysis (small 

regression coefficient) to check whether such ‘unimportant’ factors on average still may 
be necessary for a certain outcome; 

• For those factors that have a large effect in the regression analysis (large regression 
coefficient) to check whether an ‘important’ factor on average may also be necessary or 
not.  

When adding NCA to a regression analysis more insight about the effect of X on Y can be obtained. 

 



What is the same in NCA and regression? 
I showed that regression has several characteristics that are fundamentally different from the 
characteristics of NCA. Regression is about average trends, uses additive logic, assumes 
unbounded Y values, is prone to omitted variable bias, needs control variables, and is used for 
testing sufficiency-type of hypotheses, whereas NCA is about necessity logic, assumes limited X 
and Y, is immune for omitted variable bias, does not need control variables, and is used for testing 
necessity hypotheses. However, NCA and regression also share several characteristics. Both NCA 
and regression are variance-based approaches and use linear algebra (although NCA can also be 
applied with the set theory approach with Boolean algebra; see the supplement on NCA and 
QCA). Both methods need good (reliable and valid) data without measurement error, although 
NCA may be more prone to measurement error. For statistical generalization from sample to 
population both methods need to have a probability sample that is representative for the 
population, and having larger samples usually give more reliable estimations of the population 
parameters, although NCA can handle small sample sizes.  Additionally, for generalization of the 
findings of a study both methods need replications with different samples; a one-shot study is 
not conclusive. Both methods cannot make strong causal interpretations when observational 
data are used; then at least also theoretical support is needed. When null hypothesis testing is 
used in both methods, such tests and the corresponding p-values have strong limitations and are 
prone to misinterpretations; a low p value only indicates a potential randomness of the data and 
is not a prove of the specific alternative hypothesis of interest (average effect, or necessity 
effect).  
When a researcher uses NCA or OLS, these common fundamental limitations should be 
acknowledged. When NCA and OLS are used in combination the fundamental differences 
between the methods should be acknowledged. It is important to stress that one method is not 
better than the other. NCA and OLS are different and address different research questions. To 
ensure theory-method fit, OLS is the preferred method when the researcher is interested in an 
average effect of X on Y, and NCA is the preferred method when the researcher is interested in 
the necessity effect of X on Y.  
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Appendix. Script for obtaining and analysing the Galton dataset. 
 
library(HistData) # R package that contains the Galton dataset 
library(NCA) # R package for conducting NCA 
data("GaltonFamilies") # get the Galton data from the HistData 
package 
head(GaltonFamilies) # print the head of the data file 
Parent.Height<-GaltonFamilies[,4]*2.54 # parent height in cm 
Child.Height<-GaltonFamilies[,8]*2.54 # child height in cm 
data<-as.data.frame (cbind(Parent.Height,Child.Height)) # make a 
data frame  
#pdf("Galton OLS.pdf") # delete '#' for storing a pdf file of the 
scatter plot 
plot(data, xlab = "Parent height", ylab = "Child height") # make 
scatter plot 
modelOLS<- lm(Child.Height~Parent.Height, data) # perform OLS 
regression analysis 
slopeRegression<-modelOLS$coefficients[2] # slope of the OLS 
regression line 
interceptRegression<-modelOLS$coefficients[1] # intercept of the 
OLS regression line 
abline(modelOLS) # draw OLS regression line 
#dev.off() #delete '#' for storing a pdf file of the scatter plot 
#pdf("Galton NCA.pdf") #delete '#' for storing a pdf file of the 
scatter plot 
plot(data, xlab = "Parent height", ylab = "Child height") 
modelNCA<- nca_analysis(data, 'Parent.Height', 'Child.Height', 
ceilings = "c_lp") # perform NCA 
modelNCA 
slopeCeiling<-modelNCA$summaries$Parent.Height$params[9] # slope 
of the C-LP ceiling line 
interceptCeiling<-modelNCA$summaries$Parent.Height$params[10] # 
intercept of the C-LP ceiling line 
abline(interceptCeiling,slopeCeiling) # draw the C-LP ceiling line   
#dev.off() #delete '#' for storing a pdf file of the scatterplot 
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