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Emotions significantly influence human behavior during decision-making. While lab evi-
dence is abundant, field studies are limited, often with rough measures or temporal gaps
between triggers and behavior. Using high-frequency beer sales, in-play match data, and
betting odds in a soccer stadium, we study the immediate impact of emotional cues on
alcohol consumption. We integrate the emotional constructs Surprise and Suspense, con-
sidering positive and negative states. Surprise consistently increases beer sales, suggesting
alcohol consumption in emotionally charged situations. Suspense mainly reduces beer sales.
The positive emotional state dominates over the negative one regarding effect sizes, offering
evidence that “celebration beats frustration.”
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For many years, economic research has extensively addressed the emotions that people
might experience after making a decision, such as regret (Loomes and Sugden, 1982,

for example), but it has rarely considered the effects of immediate emotions on decision-
making. More recent studies explicitly incorporate cues, such as the smell of alcohol, into
models of human behavior though (e.g., Laibson, 2001). Loewenstein (2000) elaborates
on the theoretical relevance of immediate emotions and the consequences of a wide range
of visceral factors, such as anger or fear, for human behavior, which leads him to conclude
that “visceral factors play an essential (probably the dominant) role in human behavior”
(p. 427). But investigating such a claim empirically is challenging, so most studies of
how emotions influence decision-making have relied on lab experiments, which by their
very nature cannot induce (or control) intense emotions (Tymula and Glimcher, 2018).
One solution might be to leverage settings that induce strong emotional responses, such
as weather extremes, terrorist attacks, political conflicts, or sporting events.
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In recent years, especially sporting events have become an area of interest because they
typically have two key advantages over other settings (Palacios-Huerta, 2023). First, the
psychological mechanism can be clearly identified, which is much more difficult (if not
impossible) in the other settings, where direct physical or financial consequences also
influence behavior. Second, sporting events in general, and regular league games in
particular, are present in everyday life and as such are associated with a more “normal”
set of intense emotions.

Edmans, Garcia, and Norli (2007), identifying negative domestic stock market reactions
following losses of national soccer teams, were among the first to investigate the effects of
sports sentiment. Others have more explicitly focused on reference point-based behavior
by exploiting upsets. For instance, upset losses in the National Football League (NFL)
increase family violence (Card and Dahl, 2011), and those in college football leagues
apparently increase the sentence lengths imposed by juvenile court judges (Eren and
Mocan, 2018), while upset wins in colleague football increase excessive partying and
reports of rape (Lindo, Siminski, and Swensen, 2018). Overall, focused on post-match
behavior, these studies exploit settings in which the temporal lag between the emotional
trigger and observed behavior is comparably large. This is different in our paper, in which
we explore the immediate behavioral response to emotional triggers.

Our conceptual framework builds on Ely, Frankel, and Kamenica (2015) who seek
to explicitly model dynamics in this context by introducing two constructs pertaining
to emotional cues: Surprise and Suspense1. We propose adopting and extending this
framework to support our attempt to provide the first field evidence of the effects of
immediate emotions on alcohol use2. Alcohol use in general is deeply rooted in society,
widely recognized as a leading risk factor for death and disability (e.g., Griswold et al.,
2018), and a major contributor to criminal behavior such as family violence (Klostermann
and Fals-Stewart, 2006). However, even though “virtually all major theories of drinking
behavior and alcohol problems include an important role for emotional factors” (Lang,
C. J. Patrick, and Stritzke, 1999, p. 328ff.), field evidence of the immediate effects of

1In detail, Surprise is a backward-looking emotion that relates events, such as goals scored during
the match, to anterior beliefs about the final outcome of a match, for instance. Suspense instead is a
forward-looking emotion attributed to the variance in the next period’s beliefs. Previous studies explore
the effects of Surprise and Suspense on sports demand, in the context of Wimbledon tennis (Bizzozero,
Flepp, and Franck, 2016), Premier League soccer (Buraimo et al., 2020), UEFA Champions League
matches (Richardson, Nalbantis, and Pawlowski, 2023), and eSports events (Simonov, Ursu, and Zheng,
2023). Kessler et al. (2022) examine how short-term fluctuations in incidental happiness affect economic
behavior by conducting a series of experiments in a sports bar, but the authors consider self-reported
measures of surprise and excitement.

2By exploiting variation in Major League Baseball (MLB) match duration between the last alcohol
call at the end of the seventh inning and the end of the match, Klick and MacDonald (2021) provide
some indirect evidence for the impact of game-related alcohol consumption on crime near the stadium.
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emotions on alcohol use as a mass phenomenon is largely missing.
To investigate this link, we combine high-frequency transaction data on beer sales

during almost 100 matches played by a first division soccer team in Germany with the
corresponding in-play event information and betting odds. These data allow us to measure
Surprise and Suspense and to account for potential negative and positive emotional states
during a match. For example, a home team fan might likely make different consumption
decisions following a goal by the home team than an away team goal. Our proposed
random intercept model is estimated by means of Hamiltonian Monte Carlo and has
two levels. Level 1 (within-level) consists of match minute-specific information. Level
2 (between-level) contains match-specific data to control for differences in alcohol sales
across matches.

This empirical design may help to justify the conditional independence assumption.
However, it raises concerns about issues of reverse causality. In principle, if alcohol use
influences fan behavior, it also might affect relevant match events. Home advantage is
a well-established phenomenon in sports, and it can be attributed, at least partly, to
crowd noise and social pressure on referees (Garicano, Palacios-Huerta, and Prendergast,
2005). Fan support tends to be dynamic during a match, and some of that dynamism
might reflect the alcohol level consumed by the crowd, such that alcohol use at time t
might drive outcome probabilities (cues) in the future. However, the likelihood of alcohol-
induced enthusiastic cheering altering key events during the match seems negligible, given
the average of 88.5 beers sold per minute during the match in our sample.

We find stable effects for Surprise increasing beer sales, yet we find almost no effects
when we replace beer by shandy and weaker effects on soft drink purchases as the depen-
dent variable. Thus, people seem to turn specifically to alcohol in emotionally charged
situations, which is in line with psychological theories suggesting that alcohol may facil-
itate positive emotional experiences (Cooper et al., 1995) and reduce tension or stress
(Greeley and Oei, 1999).

In contrast, we find Suspense to predominantly decrease beer sales, which could be
explained by both the fear of missing important plays when the tension is high, and the
desire to alleviate boredom by drinking alcohol when the tension is low (M. Patrick and
Schulenberg, 2011). In particular, this finding lends some credibility to the claim by
Wood, McInnes, and Norton (2011) that sports event-related traffic fatalities after close
matches are due to aggressive driving caused by high levels of testosterone rather than
excessive drinking during the match.

Finally, we find larger effects for the positive emotional state than the negative state,
leading us to conclude that “celebration beats frustration” in our research. This finding
may help to explain why, as Wood, McInnes, and Norton (2011, p. 617) infer, “losers are
more likely to drive home safely.”
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I. DATA AND MEASURES

The underlying data consist of three pools. The first pool gathers transaction data
(second-by-second sales of beer, water, hot wine punch, and so on) from VfB Stuttgart,
a German first division soccer club. For the second pool, we obtain data regarding
the sports betting market and basic match facts (e.g., minute-by-minute in-play and
closing odds, date of the match, kickoff time) from NowGoal and OddsPortal. The
third pool includes key match events, match day information, and further information on
the teams (e.g., goals, red cards, ten minute-by-ten minute weather) from OptaSports,
kicker.de, transfermarkt.de, Deutscher Wetterdienst (German weather service), Google
Maps, kalender-online.com, schulferien.org, and cannsatter-volksfest.de. For more details
and exact sources see online appendix tables B1 and B2, respectively.

A. Setting

We observe spectator behavior in the Mercedens-Benz Arena, where the soccer club
VfB Stuttgart plays its home matches. Exploiting real in-play match events and using
rarely accessed in-play transaction data (excluding sales during halftime, pre- and post-
match) from the Mercedes-Benz Arena offers a promising approach, for several reasons.
First, VfB Stuttgart’s home matches draw some of the highest average attendances in
Europe (e.g., 51.862 in season 2015/163), so our analysis should be resilient, due to the
high number of transactions. To track transactions, the club uses TCPOS4 (point-of-sell
technology), which documents every transaction taking place at any cash point in the
stadium in a fully coherent, self-contained system.

Second, during the observed seasons, no stadium construction projects were taking
place. Thus, no selection effects arise due to the unavailability of certain stands, for
example. Moreover, no unexplained heterogeneity can arise as the result of changing
beer vendors; for the entire sample, the vendor is the same, namely, Krombacher.

Third, this stadium imposes a strict segregation of spectators in sectors, surrounded
by fences, during all matches, which is unlike the situation in many other stadiums in the
Bundesliga. Across five areas, spectators cannot flow easily5, though they can enter the
catacombs in their section, which feature screens that allow them to watch the match and
its key evens even if they are not in the stands, such that in-play information could affect
their consumption decisions even when they are waiting in line to make their purchases.

3See https://www.transfermarkt.com/bundesliga/marktwerte/wettbewerb/L1, for example (re-
trieved on May 23, 2023).

4TCPOS is one of the global leading providers in the point-of-sell technology sector for hospitality
and retail industries and is the official service provider in the Mercedes-Benz Arena.

5For some matches, the away fan area is extended by seats in the Untertürkheimer Kurve (opposite
of the Cannstatter Kurve). We address this anomaly in the data preparation stage.
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This segregation enables us to estimate effects for different stands and isolate home team
versus away team fans, who likely experience diametrically opposed emotions for the same
match events.

Fourth, cashpoints in the stadium are located close to every stand, but it takes some
time to reach them. Still, contemporaneous or shortly delayed effects, such as in the same
minute of or shortly after a signal, could occur if people who are already at a cashpoint
impulsively decide to purchase. The same holds true for spectators on their way, such that
they are in closer proximity to a cashpoint. Beer sales also might decrease in the short
time span surrounding an event if consumers and salespeople spontaneously turn their
attention to a monitor to see a replay. To explore such temporal patterns in behavior,
we estimate contemporaneous effects, as well as effects up to 9 minutes after the signal.

Fifth, we can rule out inaccuracy due to the absence of real-time information. We are
able to perfectly match real time with the match minute, such that delayed kickoffs do
not lead to mismatched data points.

Sixth, though we cannot draw conclusions at the individual level, the investigation
of alcohol use as a mass phenomenon is beneficial, especially as a form of reference
point behavior. According to wisdom-of-the-crowd effects, the real expectations of people
in aggregate should be closer to rationally expected reference points than individual
appraisals, which tend to be highly biased. Research analyzing the individual effect of
emotional cues must consider this deviation, which can be challenging.

B. Beverage Sales

We operationalize alcohol consumption first in relation to beer sales, as the main de-
pendent variable. Subsequently, we also consider shandy and soft drinks to test for
the relevance of alcoholic strength. Water and hot wine punch sales provide controls for
baseline consumption and substitution effects, respectively. Table I summarizes beverage
sales on a per minute basis.

Table I. Descriptive Statistics: Beverage Sales Per Minute

count mean std min 25% 50% 75% max
Beer 8,820 88.5 57.4 0 44 76 123 320
Hot Wine 8,820 2.19 6.28 0 0 0 1 69
Shandy 8,820 8.64 8.35 0 3 6 12 68
Soft Drinks 8,820 16.7 17.1 0 5 11 23 130
Water 8,820 2.89 5.24 0 0 1 3 68
This table presents basic summary statistics of beverage sales on a per minute basis. The count variable is calculated

by the number of matches (98 in the main specification) times 90 match minutes (halftime break excluded). On average
there are 88.5 beer sales per minute in our sample. The number of beer sales serves as the dependent variable in the
main specification and is substituted by shandy and soft drink sales in two alternative specifications. Water and hot wine
(punch) control for baseline consumption and substitution effects, respectively. No minutes exhibit zero beer sales, after
taking lags in the main specification. Percentages of 25%, 50%, and 75% denote the respective quantiles.

Clearly, beer accounts for the most transactions, with an average of 88.5 per minute.
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The corresponding, relatively high standard deviation of 57.4 give rise to the question
of why beer sales vary so much during matches. For all beverages, we also observe
match minutes with no sales. However, taking the lags, all observed minutes in the main
specification actually exhibit beer sales; the empty minutes occur at the very beginning of
the match. A typical match in our sample exhibits 76 beer, 0 hot wine punch, 6 shandy,
11 soft drink, and 1 water sale(s) per minute (see 50% quantile in table I). The fewest
transactions actually involve water, taking into account that hot wine punch is only sold
in winter months.

Figure 1 illustrates the numbers in table I by depicting the time series of beer and
water sold in the whole stadium, except for the away fan areas, during a match between
VfB Stuttgart and SC Freiburg on Sunday, February 3, 2019, at 6:00 PM.

Figure 1. Beer and Water Sales, Exemplary Match

1 15 30 45 60 75 90
Minute

25

50

75

100

125

150

B
ee

r S
al

es

0

2

4

6

8

10

12

14

W
at

er
 S

al
es

Beer
Water

This figure shows the development of beer and water sales over time for an exemplary German first division soccer match
between VfB Stuttgart and SC Freiburg on February 3, 2019 at 6:00 PM. The underlying data reflect the whole stadium,
except for away fan areas. Sales during the break are excluded. The figure depicts a typical movement of beer sales, which
first decrease, then peak around the half time break, and decrease towards the end of the match.

For beer, we identify a third-degree polynomial sales pattern over time (sales during
the break excluded), which is typical a motion across all matches. Immediately after
kickoff, beer sales begin to decrease signifying that fans who have paid to see live sports
leave the cashpoint areas where they can buy alcohol. The observed delay likely reflects
the queues at the cashpoints due to a high demand before kickoff. Also, fans arriving too
late or just before kickoff and not wanting to forgo a beer can contribute to this pattern.

Then, just before halfway through the first half, beer sales reach their local minimum
before they rise and find a maximum right after halftime break. Obviously, there is
nothing to miss during the break in terms of live sports; halftime shows are either not
presented or rather unattractive in German soccer (cf. many U.S. sports). Directly after
halftime (right next to the 45th minute), sales remain at their overall maximum, again
likely due to delay effects. We attribute the increase in the first half to anticipation
effects, such that consumers likely expect high demand and long lines during the break.
Economically speaking, people with lower opportunity costs of missing out go to buy
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early.
In the second half, beer sales drop considerably. This overall decline in sales in the

second half might occur because fans leave before the end of the match to avoid crowds or
traffic jams (congestion). An unfinished beer extends time in the stadium, because there
is a deposit for returned cups. Especially in cold winter months, people could substitute
a drink in the second half with one after the match in a bar near the stadium or at home,
which arguably is more comfortable than in the stadium.

All in all, water sales do not exhibit a clear pattern like beer sales. However, we can
see a typical decreasing volume towards the end of the match. More relevant for our
research, we find that water and beer sales exhibit systematically different dynamics. By
explaining beer sales, we are not summarizing transactions in general but alcohol sales
in particular.

C. Emotional Cues

Emotional cues, as we construct and calculate them for this research, refer implicitly
to reference point-based behavior. In this regard, we complement recent papers that use
professional sports data in empirical tests of the theoretical prediction by Kőszegi and
Rabin (2006) that utility from deviations between rationally expected references points
and actual outcomes influence behavior under uncertainty (e.g., Card and Dahl, 2011;
Eren and Mocan, 2018; Lindo, Siminski, and Swensen, 2018). Whereas these prior studies
focus on post-match sentiment, we explore the effects of emotional cues during a match.

As noted, we focus on the emotional cues Surprise and Suspense, theoretically intro-
duced by Ely, Frankel, and Kamenica (2015). With respect to their formulation for a
soccer context, we follow Buraimo et al. (2020). Our key explanatory variables are

Surpriset = u

 ∑
m∈H,D,A

[
pm

t − pm
t−1

]2 and (1)

Suspenset = u

 ∑
m∈H,D,A

pHG
t+1

[(
pm

t+1 | pHG
t+1

)
− pm

t

]2
+ pAG

t+1

[(
pm

t+1 | pAG
t+1

)
− pm

t

]2 (2)

with u (·) =
√

· (3)

in which variable p represents a probability. The match minute is given by t. The path
m ∈ M = {H,D,A} can refer to home (H), draw (D), or away (A). Superscript HG
indicates a “Home Goal”, such that pD

t+1 | pHG
t+1 is the conditional probability in minute

t + 1 of the match ending in a draw given the home team scores in minute t + 1, for
example. The equivalent AG indicates an “Away Goal.”

As equation (1) specifies, Surprise is a backward-looking measure. It is based on the
path-specific difference between the current outcome probability and the outcome proba-
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bility in the period just before the current one, which serves as reference point. To capture
the entire movement of changes, we can square and sum the differences between prob-
abilities over all possible outcomes. Squaring the components within the sum prevents
the path-specific parts from canceling each other out and also weights large deviations
more heavily. Surprise is high if the current match situation does not align with former
expectations, such as when an underdog scores an opening goal just before the end of the
match.

In contrast, Suspense is a forward-looking measure, suggesting a what-if scenario that
reflects the difference between the current outcome probability and the outcome proba-
bility in the next minute, given that teams score in the next minute. Very unlikely goals
might influence the outcome probabilities strongly, which is why deviations from the ref-
erence points are weighted by the probability of the event happening. Summing over the
weighted probability space (home win, draw, and away win) shows the expected value
character of Suspense. Finally, Suspense is high if the variance of potential outcomes
for the next period is large. For example, toward the end of the match, the two teams
might equally likely score with a high probability in the next period, and the current
score indicates a draw.

The underlying utility function in equation (3) controls for the curvature, reflecting the
relative valuation of low versus high values. An exponent close to 1 implies that low cue
portions are of similar importance to high portions. Low values near 0 instead denote
strongly diminishing utility.

Both cues are based on match outcome probabilities, for which we use transformed
in-play betting odds (see online appendix section A.1 for the exact procedure). Endo-
geneity seemingly might be a concern, because emotions could trigger odds and therefore
emotional cues. But we obtain the odds from the Asian bookmaker Crown, which should
be irrelevant for the typical fan of VfB Stuttgart (in contrast with a regionally popular
bookmaker like tipico). Therefore, even when liquidity is low, emotionally involved peo-
ple are unlikely to account for significant betting volume. Instead, betting odds generally
are likely to stem from the high stakes of professional bettors (or syndicates) that use
statistical models to determine underpriced odds.

Outcome probabilities based on in-play betting odds inherently exhibit missing values,
because the market closes around important match events like goals when the odds are
updated. Another reason for missing odds is the low liquidity that occurs when a match
is practically decided before the end. For the imputation of these values, we use a
gated recurrent unit (GRU) network via TensorFlow (Abadi et al., 2015), which includes
goals, red cards, and previous outcome probabilities as features. In online appendix
section A.2.1, we describe this imputation procedure in detail.

1. Emotional States. We distinguish between negative and positive emotional states,
according to the perspective of home fans. To be precise, we employ endogenous state
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switching (indicated by S), where

pH
t < pH

t−1 ⇒ S = 0 and
pH

t > pH
t−1 ⇒ S = 1

(4)

and the current state is maintained for pH
t = pH

t−1. If pH
1 = pH

0 , we choose the starting
state at random, and both states have the same probability to be selected (pH

0 denotes
the pre-match outcome probability for a home win). Online appendix table B3 provides
descriptive statistics pertaining to how the states are represented in the sample; online
appendix figure B1 illustrates the distribution of the states during matches.

The state switching criteria in equation (4) based on changes in outcome probabilities
are closely related to Surprise, as defined in equation (1). Although the sign of Surprise
is strictly positive, we can think of S = 0 and S = 1 as negative and positive Surprise,
respectively, because the marginal effect is free to switch signs, depending on the best fit.

We do not explicitly distinguish between negative and positive Suspense. Instead, we
assume that people are affected by Suspense regardless of the match event and the team
they support. This implies that, independent of any preferences about the timing of the
resolution of uncertainty during the match (Palacios-Huerta, 1999; Dillenberger, 2010),
realized relief after a tension phase is likely important for defining the emotional direction
(i.e., negative or positive) rather than the expectation. As such, the emotional state in
which people experience Suspense in t depends on the terminated and non-stochastic cue
Surprise.

2. Visualization. In this subsection, we explicitly consider the entire stadium, ex-
cluding away fan areas. This sample is the largest possible block of data, accounting for
emotional direction, and therefore smooths potential idiosyncrasies.

Figure 2 reveals how cues reflect key match events like goals (HG and AG), which
change the outcome probability of the match. The data depicted by figure 2 refers to the
same match between VfB Stuttgart and SC Freiburg, which ended in a draw (in stoppage
time, which we do not consider in our analysis).
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Figure 2. Emotional Cues for Exemplary Match
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This figure shows the development of emotional cues over time for an exemplary German first division soccer match
between VfB Stuttgart and SC Freiburg on February 3, 2019 at 6:00 PM. Although VfB Stuttgart is the favorite, both
cues exhibit a smaller jump when the away team scores at the beginning of the match (denoted AG) compared with the
home team goals at the end (denoted HG). Key events like goals are more decisive when less time remains. Goals by the
away team evoke the negative emotional state 0, from the perspective of home fans. Finally, the match ended in a draw
(in stoppage time), but because we do not consider stoppage time, the last goal of the match is not depicted.

As we can see, Surprise as an adaptive variable returns to its pre-goal level very quickly
after Freiburg scores in the first half, due to the varying reference point pt−1. A goal for SC
Freiburg (away) leads to the negative state 0 for home team fans. Stuttgart was favored
in the match, so an away goal changes the match situation considerably. However, with
a lot of time remaining, the jumps are higher when Stuttgart first equalizes and then
breaks the tie deep in the second half.

For Suspense, the obvious pattern is its characteristic upward trend over time. The
less time that remains, and the more information that is revealed, the greater the effect
of a large variance of potential events in the next period; every goal becomes more crucial
with respect to the final result.

II. MODEL

A. Formulae and Dimensions

To deal with the longitudinal multilevel data, we follow Asparouhov, Hamaker, and
Muthén (2017) in determining

Yit = Y1it + Y2i , (5)

where i is the match index, and the match minute is captured by t. That is, equation (5)
represents the orthogonal decomposition of the dependent variable Yit into two compo-
nents, in which Y2i (between-level) is the time average of Yit, and Y1it (within-level) is
oscillating around Y2i, such that Y1it = Yit − Y2i. The explained variable Y is a matrix
that comprises the number of beverage sales across matches in its N rows and the number
of units sold over time, i.e., during the matches in it’s T columns. The same applies to

Electronic copy available at: https://ssrn.com/abstract=4569227



Celebration Beats Frustration 11

Y1. In contrast, Y2 is a N × 1 vector, reflecting the lack of time specificity at level 2.
Having introduced the main components of the model, we can establish the within-level

equation as

[Y1it | Sit = s] = ν1i +
L∑
l=1

Y1i(t−l)ϕ1sl +
L∑

l=0

(
X1i(t−l)β1sl +Z1i(t−l)γ1sl

)
+W1itψ1ts + ε1it .

(6)

Then at the between-level, we set up

ν1i = Z2iγ2 + υ2i ,

which is a random intercept model. In other words, mean sales vary between matches,
which we explain with a fixed-effects vector (Z2i) and a random component (υ2i).

We choose hierarchical modeling over a classical fixed-effects estimator because it offers
a higher number of degrees of freedom and thus increased model precision. The slope
parameters are more flexible, in the sense that they are not tied to a single intercept.
The first-difference estimator, as common alternative, is not suitable, due to the trend-
stationary dependent variable; to use it, we would have to take multiple differences to
obtain a stationary time series, and data are costly in our rather small sample. Instead, we
introduce match minute dummies, usingW1, to capture general sales patterns, unrelated
to events in the match (see section I.B).

Intercept ν1 and random term υ2 are N × 1 vectors; the match minute dummy vector
W1 is N × T and its coefficient vector ψ1 is 1 × T . Cues collected in X1 (N × T ×G1,1)
share a marginal effect object β1 with dimensions G1,1 × 1. The fixed-effects in Z1 and
Z2 are N × T × G1,2 and G2 × N objects, such that G1,2 and G2 are the number of
covariates in Z1 and Z2. The marginal effect objects ϕ1, γ1, and γ2 have corresponding
dimensions: 1 × 1, G1,2 × 1, and G2 × 1, respectively. Finally, the residual ε is a N × T

matrix6.
As equation (6) illustrates, the whole model is conditional on the state Sit = s. Lagged

marginal effects thus apply to sales in t, given a certain state s, irrespective of whether
the system was in a different state in the previous period.

B. Main Specification

For the main model specification, we use 98 matches from 6 seasons, spanning from
2013/14 to 2018/19.7 We limit the set to league matches (i.e., Bundesliga and 2. Bun-

6Throughout this paper, we represent vectors, matrices, and higher dimensional objects with bold
letters to distinguish them from scalars.

7A regular season consists of 34 matches or 17 home matches per season. Subtracting the 4 high risk
matches we exclude thus yields 98 matches.
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desliga, which are Germany’s first and second divisions) to keep the sample homogeneous
with respect to length and point in time at which the match outcome is determined. Cup
matches, with potential overtime and penalty shootouts, thus are excluded. In addition,
we do not consider stoppage time, so each time series lasts 90 minutes and has the ex-
act same length for all matches. Next, we eliminate 4 high risk matches, for which the
league decided that no alcohol, or only light beer, would be sold. The dependent variable
includes beer sales and this main model specification refers to the entire stadium except
for away fan areas.

1. Covariates. We control for weather conditions and substitutions at the within-
level. For example, rain could simultaneously alter both the relative strength between
teams and drinking behavior. Also, except for the potentially negligible effect of the en-
tering player, there can be no updates to outcome probabilities during substitutions. That
is, the systematic absence of match key events like goals and red cards during substitu-
tions clearly affects outcome probabilities and simultaneously offers fans an opportunity
to go for a drink. Therefore, we add substitutions as covariates. Other critical variables
at the between-level include the total number of spectators and the price of beverages,
which can improve model precision. For justifications of this model identification and
additional details on the covariates, please see online appendix section A.3 and online
appendix table B1.

2. Data Engineering. We standardize all explanatory variables (including the lagged
dependent variable and all dummy variables). Standardization is highly recommended
when using Markov chain Monte Carlo methods. Especially in a regularization context,
it is important that large-scale features do not overwhelm features of smaller scales. For
our data, varying scales are very prominent (e.g., air pressure in hPa versus emotional
cues). The dependent variable is demeaned (following the basic idea of the decomposition
described in section II.A) and transformed by the inverse hyperbolic sine (IHS) to allow a
ceteris paribus comparison between the different specifications8. We do not log-transform,
because for the alternative specifications Die-Hard Fans, Shandy, Soft Drinks, and Seasons
in section III.B we observe match minutes with no sales even after taking the lags. Yet
we obtain marginal effects in %. Finally, we drop the first match minute dummy, due to
perfect multicollinearity, resulting in a total of T−1 minute dummies for which coefficient
ψ11 serves as reference group.

3. Priors. For the main specification, we use several prior distributions. Without any
theoretical guidance related to most of the parameters, and considering that the level-1
sample size which is not extremely small, we apply weakly informative priors in most

8The slope of sinh−1 (y) = ln
(

y2 +
√

y2 + 1
)

is approximately equal to that of ln (y) for y ≥ 2, so we
interpret the coefficients as for a log-transformed dependent variable, because the scale of our dependent
variable is large enough.

Electronic copy available at: https://ssrn.com/abstract=4569227

https://
https://
https://


Celebration Beats Frustration 13

cases. First, we choose

ε ∼ N
(
0, σ2

)
with σ ∼ C+ (0, 1) ,

where C+ denotes the Half-Cauchy distribution. Second, we specify

υ2 ∼ N
(
N (0, 1) ,N + (0, 1)

)
,

where N+ is the truncated normal distribution. Third, we use a continuous version of
the spike-and-slab prior (Mitchell and Beauchamp, 1988; George and McCulloch, 1993;
Ishwaran and Rao, 2005), such that

θj | λj, c ∼ N
(
0, c2λj

)
where θj ∈ {ϕ1s,β1s,γ1s,ψ1s,γ2} ,

such that λj ∼ Beta(0.5, 0.5) for j = 1, . . . , J , and
c2 ∼ Γ−1(3, 1) .

(7)

Except for ψ1 (no lags) and γ2 (no states), all vectors affected by the spike-and-slab
design contain lagged values and are state-dependent. The feature space is comparably
large, and it is difficult to foresee which variables explain variation in the dependent
variable, so we choose to regularize all parameters, which also helps prevent overfitting.

The spike-and-slab prior uses a binary indicator variable λ that determines whether
the coefficient is zero (i.e., it comes from a “spike”, λ → 0) or non-zero (“slab”, λ → 1).
The slab width is denoted by the parameter c. It is generally not flexible to fix c, so a
common practice entails placing a hyperprior on c to allow for heavy-tailed slabs. The
sparsity information of the coefficient vector can be controlled with the parameters of the
Beta prior in equation (7).

4. Estimation. We estimate the model using the probabilistic programming package
PyMC (Salvatier, Wiecki, and Fonnesbeck, 2016), which relies on Theano in its compu-
tational backend.9 In particular, we apply the No-U-Turn (NUTS) sampler (Hoffman
and Gelman, 2014), a recursive algorithm for continuous variables based on Hamiltonian
mechanics that extends Hamiltonian Monte Carlo (HMC) by eliminating the need to set
a number of steps through the inbuilt automatic stoppage once the sampler starts to
make a U-turn. We set a comparably large acceptance probability of 0.975 (default value
is 0.8), which is associated with a small step size, so that we can achieve non-diverged
trajectories for the samples. We run 4 chains with 2000 iterations each and an additional
1000 burn-in samples per chain that we discard. The Gelman-Rubin statistic R̂ (Gelman
and Rubin, 1992; Brooks and Gelman, 1998) monitors convergence.

9Common frequentist approaches using linear algebra are not feasible, because the objects lack fitting
dimensions, due to the emotional states.
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III. EMPIRICAL RESULTS

A. Main Specification

Figure 3 depicts the main model posterior distributions of marginal effects β11 (Sur-
prise) and β12 (Suspense) separately for negative (0) and positive (1) states. In addition
to the contemporaneous effects (l = 0), we present all effects up to nine minutes after
the signal (L = 9).

Figure 3. Main Model Posterior Distributions of Coefficients for Surprise and Suspense
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This figure shows the posterior distributions of the coefficients for Surprise and Suspense, based on the main specification.
The posteriors are depicted for all lags in both states (negative state 0 and positive state 1). For example, a positive effect
for Surprise appears in both states 3 minutes after a key match event (see distributions for the third lag in the upper
panel). The median depicted by the dashed line, equal to 0.02 for positive state 1, implies that a one standard deviation
increase in Surprise in positive state 1 increases the conditional mean of the number of beers sold during minute 3 after a
key match event by approximately 2%, ceteris paribus.

The statistically and economically significant effects for Surprise and Suspense on the
number of beer sales are most pronounced for l = 3. We use the median (dashed line)
of the l = 3 marginal effect in positive state 1 for Surprise (upper panel) as an example;
it is equal to 0.02. A one standard deviation increase in positive Surprise then increases
the conditional mean of the number of beers sold during minute 3 after a key match
event by approximately 2%, ceteris paribus. If we take the average value of 85.5 from
table I as a basis, this increase corresponds to roughly two additional beers. At first
glance, this effect might not seem notable, except that–as the exemplary match between
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VfB Stuttgart and SC Freiburg in figure 2 reveals–the leading goal for Stuttgart increases
Surprise more than 0.8. Considering the standard deviation of 0.07 for Surprise in state
1 (see online appendix table B5), the marginal effect in this numerical example increases
by a factor of approximately 10, such that 17 additional beers are sold (20% of 85.5).

This effect for l = 3 corresponds to just a single minute; the total effect is longer
lasting. For example, we find positive posterior distributions for Surprise when l = 2,
l = 4, and l = 5 as well. Besides, not all people in the stadium drink alcohol (e.g.,
children, teetotalers, pregnant women).

The coefficients for Suspense (lower panel) follow the same reasoning, but the main
effect when l = 3 is clearly larger than that of Surprise for both states. Due to the lower
relative increase of Suspense for the second home goal though (figure 2), we calculate that
approximately 10 beers less are sold in l = 3 at state 1, if we follow the same procedure
described for Surprise. Also, the posteriors are wider (less precise), so our conclusions
with respect to Suspense reflect greater uncertainty. Overall though, we yield several
notable findings.

First, Surprise increases and Suspense decreases the number of beer sales in both states,
aggregated over l = 0 to l = 9. For Surprise (top), l = 2 to l = 5 dominate the negative
impact that appears at the beginning (l = 0 for both states, and l = 1 for state 1).
This evidence indicates that both positive Surprise and negative Surprise have a positive
impact in total. With regard to Suspense (bottom), the slight positive tendency (e.g., for
l = 4 in both states and l = 5 in positive state 1) is overwhelmed by the negative effects
for l = 3. The immediate effects for Suspense are negligibly small or non-existent.

Second, the positive state 1 dominates over the negative state 0 with respect to effect
sizes for both cues, considering the main direction of action (i.e., positive for Surprise
and negative for Suspense). In other words, “celebration beats frustration.” For Suspense
(bottom), this comparison is trivial, in that we only identify clear effects at l = 3. With
respect to Surprise (top), we note that for 3 out of 4 time points, we find a positive effect
(l = 2 to l = 5), with especially strong effects for the positive state 1.

Third, as a whole, the impacts degrade toward the end of the observed time window
except for l = 9 in negative state 0 for Surprise. This result is also clearer for Surprise. In
addition, Surprise initially decreases the number of beer sales unambiguously, in contrast
with Suspense.

Fourth, for Surprise, the sign switch from negative to positive occurs one period earlier
for negative state 0, such that people seem to react more quickly to negative signals than
to positive signals.

Online appendix table C1 contains the posteriors of all variables used in the main
specification. The most important covariates for both states at the within-level are the
first half dummy and the lagged dependent variable. The first half dummy is contempo-
raneously negatively associated with beer sales. The coefficients for the lagged dependent
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variable are positive and mostly decreasing in size with higher-order lags. Furthermore,
we identify some isolated non-zero posterior distributions across lags in positive state 1
like the coefficients related to the number of hot wine punch units sold (positive), the
dummy for home substitutions (negative), and the number of water units sold (first posi-
tive, then negative). Alcohol consumption in negative state 0 seems rather unaffected by
covariates other than the beforementioned first half dummy and the lagged dependent
variable, which both control general time series pattern. Intuitively, people seem to seek
out a “frustration beer” no matter what10.

At the between-level, the dummy for a first division match (negative), some dummies
for kickoff times (positive), and the number of spectators (positive) offer relatively great
explanatory power with regard to the number of beer sales. In addition, the pre-match
probabilities that the joint score exceeds 0.5 and 4.5 (negative and positive, respectively),
the prices for beer and hot wine punch (both positive), the number of active cashpoints
(positive), and the dummies for the match taking place on Saturday (positive) or Sun-
day (negative) exhibit non-zero but more moderate coefficients. For a visualization of
between-match variation in the number of beer sales, please see online appendix fig-
ure C111.

B. Alternative Specifications

We assess the robustness of our findings by exploring alternative or extended specifica-
tions and considering different estimation issues. In this section, we briefly describe each
specification and focus on the observable differences when describing the results.

1. Regularized Horseshoe. Prior distributions can strongly determine the empirical
results in Bayesian estimation, which may be a particular concern in relation to our
comparably small sample setting with a lot of weakly informative priors. Therefore, we
test different distributions to determine if the results change. In particular, we replace the
spike-and-slab prior of the main specification with another regularization prior, namely,
the regularized horseshoe prior (Piironen and Vehtari, 2017). In turn, the definitions

10Contrary to our intuition about substitution effects, hot wine punch sales exhibit a positive coeffi-
cient, similar to water sales. Apparently, when people are willing to buy beer, they also turn to hot wine
punch, or else hot wine punch drinkers drive excess demand. Furthermore, substitutions of players during
the match do not seem to serve as opportunities to go for a drink. In contrast, the negative association
of home substitutions suggests fans are interested in who is being substituted or that substitutions are
systematically conducted at crucial points of the match.

11We explain the positive coefficient of beer price with a combination of inflation and increasing sales
figures over the years. Moreover, the slight negative association for first division matches might suggest
that the prestige of matches (if relevant at all) is outweighed by more positive experiences in the second
division, in which the average winning probability for VfB Stuttgart is significantly higher (“celebration
beats frustration”).

Electronic copy available at: https://ssrn.com/abstract=4569227

https://


Celebration Beats Frustration 17

become

θj | λj, τ, c ∼ N
(
0, τ 2λ̃2

j

)
where θj ∈ {ϕ1s,β1s,γ1s,ψ1s,γ2} ,

with λ̃2
j =

c2λ2
j

c2 + τ 2λ2
j

,

λj ∼ C+(0, 1) for j = 1, . . . , J ,

τ ∼ C+(0, τ 2
0 ) using τ0 =

J
2

J − J
2

σ√
n

, and

c2 ∼ Γ−1(3, 1)

(8)

relative to equation (7). The regularized horseshoe shrinks large signals (coefficients far
from zero) and therefore prevents flat posterior distributions. The largest parameters are
regularized according to N (0, c2). For small coefficients (in absolute value), the horseshoe
estimator applies (Carvalho, Polson, and Scott, 2009), because λ̃2

j → λ2
j . Generally, we

follow Piironen and Vehtari (2017) with respect to distributional choices and their values.
We assume a share of 50% of all features to be relevant (cf. J

2 in equation (8), in which
J denotes the size of the feature space). When we apply the regularized horseshoe, we
find consistent support for our four main findings (online appendix figure C2).

2. Normal Prior. To investigate the effect of regularization, we also run a model with
unregularized prior distributions, such that we consider

ϕ1,β1,γ1,ψ1s,γ2 ∼ N
(
N (0, 1) ,N + (0, 1)

)
in contrast with the main specification. We again confirm our four main findings for the
most part, though the third finding (degraded impacts toward the end) holds only for
Surprise and not for Suspense (online appendix figure C3).

3. Seasons. Most of our data cover two additional seasons, that is, 2011/12 and
2012/13. Unfortunately, we lack bookmaker in-play odds for these two seasons (to the
best of our knowledge). As a robustness check, we leverage these two seasons and predict
the in-play odds for 2011/12 and 2012/13, using a feedforward neural network (online
appendix table A2) in TensorFlow (Abadi et al., 2015), which entails an added set of
34 league matches. We describe the exact imputation procedure in online appendix sec-
tion A.2.2. With this larger sample, we reaffirm our four main findings (online appendix
figure C4). In addition, we can identify more steeply peaked distributions for Surprise.
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C. Are Updating Beliefs Important?

Buraimo et al. (2020) propose another cue, Shock, which is similar to Surprise but
applies to a different reference point. In concrete terms, the reference point in

Shockt =

 ∑
m∈H,D,A

[pm
t − pm

0 ]2
0.5

(9)

is p0, which refers to the fixed pre-match outcome probability at the start of the match
before any in-play information is revealed. Therefore, Shock is backward looking like
Surprise but persistently affected by key match events. Often, Shock exhibits a long-
term upward or downward trend, reflecting the low scores that characterize soccer. The
more time that goes by, the lower the likelihood for changes, which reinforces the direction
in which Shock already moves.

Imagine a match in which the underdog (away team) scores an opening goal just
before the end of the match. In this fictional scenario, the reference point of Surprise
(pt−1) incorporates in-play information, and a draw is the most likely match outcome.
In contrast, based on p0, people expect a clear win for the favorite (home win). The
indignation experienced by home fans, in view of the potentially impending defeat, might
be better reflected as Shock. We therefore include Shock as regressor to identify the
implications for Surprise and Suspense. Again though, we find consistent results (online
appendix figure C5). That is, Shock does not appear relevant for explaining the number
of beer sales, across all combinations of states and lags.

D. Does Involvement Matter?

Including the whole stadium (cf. away fan areas) creates a trade-off between sample
size and accuracy. Most transactions considered in the main specification involve home
fans, but there is a margin for diffusion, because in some stands, away fans can mingle
with home fans. To gain greater accuracy with respect to the direction of the effect of
emotional cues on beer, we thus focus on the Cannstatter Kurve only, which represents a
smaller but more homogeneous sample of home fans. We adjust variables related to the
target stand accordingly. For example, the number of cashpoints is limited to those in
the Cannstatter Kurve only, rather than the whole stadium. Roughly speaking, we find
a similar pattern, if slightly weaker, of effects for Surprise (online appendix figure C6).
Moreover, the effects for Surprise do not vanish, and the temporal pattern across states
is rather diffuse. Thus, we find further support for our first two findings but not for the
latter two.
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E. Is it About Alcohol Use?

1. Shandy. In the main specification, we do not combine beer and shandy, due to
their distinct alcoholic content and taste. If we include shandy as dependent variable, we
can test if people consciously turn to alcohol to deal with sport-related emotions during
the match, such that we expect smaller effects (in absolute terms) or generally less clear
signals for the cues in this analysis. With the exception of Surprise when l = 4 (positive)
in negative state 0, no effects differ unambiguously different from zero (online appendix
figure C7), so we do not find evidence for any of our main findings with this alternative
dependent variable.

2. Soft Drinks. Analogously, we consider soft drinks as dependent variable, using
aggregated sales of Coca-Cola, Coca-Cola Zero, Fanta, Mezzo Mix, Sprite, and Lift
Apfelschorle (apple spritzer). Again, we seek to determine if people specifically turn
to alcohol in emotional situations during the match or instead buy beverages in general
when the match is not suspenseful, for example. In negative state 0, the rather positive
posteriors for the Surprise coefficients are largely compensated for by the mainly negative
posteriors of similar shape, such that we cannot deduce a net increase in sales without
doubt (online appendix figure C8). Furthermore, “celebration beats frustration” does
not hold for Surprise; no effects unambiguously differ from zero for the positive state 1.
Although we find evidence for the third finding, related to diminished impacts over time,
none of the other findings hold in this case.

F. Summary

These robustness checks and alternative or extended specifications allow us to comple-
ment and update our findings. First, Surprise increases the number of beer sales, while
Suspense decreases them, in both states when aggregating over l = 0 to l = 9. Second,
effect sizes in the positive state 1 are generally larger than those in the negative state 0.
Thus, we consistently conclude that “celebration beats frustration” in our setting. Third,
it is important to consider updating beliefs. Fourth, involvement seems important for
the consumption decision, guided by emotional cues. Fifth, these trends indicate that
the key factor is alcohol use, rather than general consumption. We cannot offer clear
conclusions about temporal patterns though (when do effects decay and how are effects
between the two states shifted exactly).

IV. DISCUSSION

A. Identification

At level 1, the missing control for different numbers of spectators during a match could
be a source of endogeneity. If a very unbalanced outflow of either home or away team
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fans occurs, fan support for each team changes, relative to the other team, over the
course of the match. The number of spectators at level 1 thus is an omitted variable that
changes both the cues (outcome probabilities) and the number of beer sales. However, we
logically anticipate that dynamic fan support is responsive to the match, not the other
way around.

Toward the end of a match, a systematic, not beverage-related difference might arise,
such as more purchases of bottled water instead of beer. A bottle is easier to take home
than a cup. In this case, water consumption would not be an appropriate control variable
for baseline consumption. However, we consider this issue largely irrelevant, because all
nonalcoholic beverages are poured into cups in our sample.

In addition to fixed cashpoints, mobile cashpoints and beer runners are available, whose
locations and numbers vary across matches. Beer runners (exclusively) sell beer in the
stands. After the match, they clear their transactions at a single master cashpoint. Before
the 2017/18 season, mobile cashpoints deposited their cumulative transactions with the
master cashpoint too, but after this season, each of them was equipped with their own
cash register systems. Because sales through mobile cashpoints are labeled though, we
can segregate them. Our main dependent variable does not refer to any sales through
mobile cashpoints or beer runners. Although we lack minute-by-minute data about beer
runner sales, the club indicated that they are substantial. Because we can only control
for the availability of beer runners, which reflects heterogeneity in supply, we assume that
the null aggregated post-match numbers imply their absence.

Adding beer runner sales at level 1 seems unlike to systematically adjust differently
to emotional cues and thus alter our main results substantially, but the estimates could
change. That is, we might identify stronger immediate effects, because fans do not have
to walk to the cashpoint; the opportunity costs for buying from a runner also are lower.
A longer wait time also could even observed consumption back in time. Thus our findings
represent lower bound estimates, because they exclude transactions by people with higher
opportunity costs.

Arguably, the model also should include goal dummies, because they change the match
outcome and could affect alcohol use, whether emotionally or indirectly due to the occa-
sion, for example. But cues paint a clearer picture than goal dummies, in that they reflect
the match situation (probabilities rather than each goal treated equally) and depend on a
reference point. A specification with both goal dummies and cues would likely undermine
the significant effects, due to multicollinearity. We believe our model captures the effects
of the key match events effectively through the cues, conditional on the match situation,
which implies they are more fine-tuned. For example, if we assume that the effect of a
goal reflects both the occasion and an emotion, and they both lead to alcohol use, the
occasion part (long versus short lines) and the level of emotion depend on the match
situation, such that they still can be better captured by cues rather than a rough goal
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dummy, which exists irrespective of the score.

B. Fan Reaction

Some emotional threshold may need to be surpassed to spark a consumption decision.
This threshold could depend on the composition of the group of consumers. We attribute
the overall strongest effects in 1 to “celebration beats frustration” and assume a negligible
share of alcohol addicts12, who might have different motives to drink. The systematic
difference between positive and negative emotions for consumption decisions, which “cel-
ebration beats frustration” describes, is reflected by Wood, McInnes, and Norton (2011),
who not only conclude that losers drive home safer, but also emphasize the importance
of psychological factors such as emotional trends.

The absence of consistent direct effects for Shock illustrates the importance of shifting
reference points. When deciding whether to consume alcohol, people seem to update
their beliefs based on what they observe on the field instead of holding on to pre-match
expectations, according to the significant effects we find for Surprise and Suspense. On
the one hand, fans might not buy alcohol during suspenseful phases, due to the fear
of missing out. On the other hand, people might systematically turn to alcohol (social
drinking) when they are bored to make the experience more entertaining (M. Patrick and
Schulenberg, 2011). Both can explain the negative effects for Suspense and the in-play
behavior before the post-match study of Wood, McInnes, and Norton (2011), who relate
traffic fatalities after close matches to aggressive driving due to an increased testosterone
level rather than drinking during the match.

Moreover, the weaker effects for Surprise in the die-hard fans specification likely reflects
their greater emotional involvement. If the average die-hard fan is more involved than
other fans and imposes a higher emotional threshold to be passed, because their opportu-
nity costs of not watching (fear of missing out) are higher, a certain amount of Surprise
would lead to fewer beer sales. Furthermore, the die-hard fans in the standing room might
systematically turn to mobile beer runners, to avoid higher opportunity costs and also in
response to the poorer accessibility of cashpoints. This behavioral choice decreases the
observed number of beer sales. Then, the effects of the cues would be underestimated,
because there are sales we do not see at level 1.

Regarding whether alcohol is important for the effects of the cues, we can only confirm
the necessary condition. The sufficient condition is open for discussion, in that the zero-
centered cue effects for shandy and soft drinks may be related to differences in consumers.
For example, perhaps a larger share of women prefer shandy, and a higher share of children

12We recognize that the definition of alcohol addiction can apply to a lot of people, depending on the
design of the test. Here, we refer to excessive drinkers who clearly stand out from the average of the
population.
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would imply more sales of soft drinks. If groups of people react systematically differently
to emotional cues, external validity diminishes, and it already is limited in that we only
access data pertaining to one club playing league matches. In the absence of selection
effects, our results suggest the importance of alcoholic strength at least in positive state 1,
in that we do not find any clear effects on shandy sales and only effects for negative state
0 if soft drinks is the dependent variable. This finding contrasts with the “celebration
beats frustration” finding for soft drinks but supports it for alcohol if people in negative
state 0 substitute beer with sugary drinks like cola, for example.

Theoretical underpinnings for the special position of alcohol are given by Cooper et
al. (1995) and Greeley and Oei (1999). Greeley and Oei (1999) provide an overview of
the tension reduction theory (TRT), according to which negative (emotional) stress/ten-
sion increases alcohol use, because individuals consume alcohol for its stress-response
dampening effects. Cooper et al. (1995) stress the importance of considering different
psychological motives for drinking. While TRT focuses on alcohol as a potential modera-
tor of negative affective states, they find alcohol to be used to regulate positive emotions
as well.

Considering that Surprise increases and Suspense decreases alcohol sales most of the
time, fans apparently postpone consumption in suspenseful phases, then react to match
key events when the suspense gets resolved. Note that we explain the wider posteri-
ors for Suspense by acknowledging that Suspense is a hypothetical measure, with more
uncertainty by construction.

Negative immediate effects can result from tumult or distraction in the stands and
at the cashpoints. After a key match event, people need time to stand up, go to the
cashpoint, maybe wait in the line, and finish the transaction. Accordingly, we often
observe the strongest cue effects after a couple of minutes. In most specifications, the
effects get weaker or switch signs toward the end of the observation period. We can
explain these shifts according to a saturation effect: Once a fan has bought a beer, they
are not likely to buy another one immediately.

V. CONCLUSION

We investigate the effects of emotional cues on alcohol sales during soccer matches,
using real data pertaining to both emotional cues and alcohol use. We find robust evidence
against the null hypothesis that Surprise and Suspense have no impact on beer sales.
Instead, our effects are statistically and economically significant. Irrespective of the
emotional state, Surprise primarily increases and Suspense predominately decreases beer
sales. In addition, a positive emotional state dominates the negative state with respect
to effects size for both cues. Thus, “celebration beats frustration.”

Broadly speaking, by providing empirical evidence for the influences of emotions expe-
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rienced during the decision-making process for consumption decisions, we highlight the
importance of short-term emotions in determining economic behavior. More specifically,
we contribute to the sparse empirical literature on emotions and alcohol use as a mass
phenomenon.

While one might be inclined to view the chosen setting of this study as not providing
representative evidence, it is important to note that the key issue for any such choice
should be the ability to observe and isolate the effects of interest (Falk and Heckman,
2009). Furthermore, “Angrist and Pischke (2010) remind us that empirical evidence
on any causal effect is always local.” (Palacios-Huerta, 2023, p. 5). We thus hope to
encourage economists and psychologists to model utility as a function of both preferences
and emotions and to further test reference point-dependent constructs of emotions in
sports settings in the future.
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A Additional Information on Estimation

A.1 Calculation of Emotional Cues

To calculate the emotional cues Shock, Surprise, and Suspense, we need match outcome
probabilities, because all three emotional cues reflect in-play probabilities for the three
potential outcomes H (home win), D (draw), and A (away win) in each minute of the
match. Furthermore, Shock and Surprise call for pre-match outcome probabilities, again
for H, D, and A, in that the reference point for Shock is p0 (equation (9)) and that for
Surprise in match minute 1 requires p0 as reference point as well; Suspense also needs a
starting point to simulate different potential match outcomes, as we clarify subsequently.
The simulation for Suspense needs pre-match probabilities for the combined score to
exceed a certain amount of goals.

We use betting odds to approximate these probabilities. In particular, we apply in-play
odds from NowGoal (bookmaker Crown) and pre-match closing 1X2 (H, D, A) odds, as
well as pre-match closing over/under odds1 from OddsPortal (the sources are detailed in
table B2). Our use of in-play odds diverges from the approach of Buraimo et al. (2020),
who estimate outcome probabilities based on the time remaining, the current score, and
the number of red cards. That is, they simulate different match outcomes by using historic
goal distributions for the respective league and use the relative frequencies for H, D, and
A from the scorelines at the end of the match as outcome probabilities. In contrast,
we obtain the implied probabilities by taking the reciprocal of the odds, which usually
add up to a value greater than 1, called the over-round. Then, we remove the difference
between this over-round and 1 (considered the bookmaker commission or margin) that is
inversely proportional to the size of the odds so that the resulting pseudo-probabilities,
which we call normalized odds, sum up to 1.

For the unconditional probabilities pHG
t+1 and pAG

t+1, as well as the conditional probabilities
pm

t+1 | pHG
t+1 and pm

t+1 | pAG
t+1 in Suspense (equation (2)), instead, we follow the simulation

approach proposed by Buraimo et al. (2020). Both the unconditional probabilities and
the conditional probabilities specify hypothetical scenarios we cannot directly derive from
bookmaker odds.

We refine their simulation approach though. Buraimo et al. (2020) estimate the score-
line of each encounter by exploiting a priori information about the teams’ strengths, past
performances, coaches, venue, and all other factors that have predictive power for the
score. This information is embedded in pre-match odds. We use the last odds quoted
before the match starts, referred to as closing odds. Closing odds most precisely reflect
the market’s assessment of the match outcome by accommodating more information than

1Over/under odds work as follows: If a bettor thinks there will be one or more goals for a given
match, they will bet on over 0.5 and win the wager if at least one team scores. If they anticipate that
there will be not more than two goals, they place their money on under 2.5.
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any other, previously quoted odds. Then we take the average across multiple bookmaker
odds, to avoid possible idiosyncrasies linked to individual bookmakers. Thus, the data
contain closing odds from up to 36 bookmakers and over/under odds from up to 34
bookmakers. To increase the number of over/under odds, we also collect data about the
combined score to exceed/subceed the statistics ±0.5, ±1.5, ±2.5, ±3.5, ±4.5, and ±5.5
goals.

Although Buraimo et al. (2020) proposes independent Poisson distributions to estimate
the number of goals scored by each team, we use a bivariate Poisson distribution to esti-
mate the scoreline and thereby relax the harsh independence assumption. Consequently,
we assume that the number of goals scored by the home team, denoted by the random
variable R1, and the number of goals scored by the away team, denoted by the random
variable R2, are jointly Poisson distributed such that

P (R1 = k1, R2 = k2) = exp (−δ1 − δ2 − δ3)
δk1

1

k1!
δk2

2

k2!

min(k1,k2)∑
k=0

 k1

k

 k2

k

 k!
(
δ3

δ1δ2

)k

in which k1 and k2 are realizations of R1 and R2, respectively. Moreover, δ1 and δ2 refer
to the scoring rates of the teams and

Cov(R1, R2) = δ3 .

If δ3 = 0, we end up at the independent Poisson distributions.
We use this in-play model to generate the probabilities for every scoreline of a given

match. In addition, we calculate the probabilities for the match outcomes H, D, and A by
summing the scoreline probabilities. Note that we restrict k1 and k2 to a maximum of 10,
so we estimate the joint probabilities of all reasonable hypothetical scorelines for which
the number of goals of each team does not exceed 10, such that P (R1 = 10, R2 = 10) is
the last probability estimated.

To estimate the scoring rates δ1, δ2, and δ3, we minimize the squared difference between
the transformed bookmaker odds and our estimated probabilities from the in-play model.
The function we minimize is

F =
∑

m∈H,D,A

(qm − pm)2

where pm is a vector of probabilities obtained from our model, and qm denotes the vector
of normalized pre-match match win and over/under bookmaker odds. The match win
odds provide information about which scoring rate should be larger; the over/under odds
help reveal the exact size of the scoring rates when minimizing. For a match in which
VfB Stuttgart is the clear favorite, for example, their scoring rate is naturally higher.
However, the information on who is expected to win does not suffice to determine the

4
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magnitude of δ1, δ2, and δ3.
In a next step, we distribute the estimated scoring rates δ1+δ3 and δ2+δ3 across minutes

of the match. With the assumption that goals are uniformly distributed throughout a
match, we could evenly split up the scoring rates, resulting in δ/90 for each minute.
However, scoring rates are not constant; more goals are scored toward the end and fewer
goals at the beginning. Buraimo et al. (2020) propose spreading the scoring rates in
proportion to the empirical distribution of goals per minute, which they generate by
gathering the timing of goals scored by many teams in the past.

Although this empirical distribution better captures the average scoring patterns, it
generally fails to represent the scoring patterns of an individual team adequately, which
depend on the team’s individual strength, its way of playing, and its coach’s philosophy.
The teams at the tails of the distribution can reveal scoring behaviors far away from the
average. Therefore, we propose team-specific empirical goal distributions to distribute
the scoring rates across the minutes, reflecting all goals scored by a given team during all
games played before the current encounter.

To guarantee a smooth distribution, we use a 10-minute moving average and linearly
extrapolate missing values at the beginning of the time-series. The underlying data for the
empirical goal distributions come from kicker (see table B2) and cover seasons 2013/14
to 2018/19 (inclusive). That is, the goal distribution for VfB Stuttgart consists of all
league goals scored during that period (considering league affiliation due to relegations
and promotions). The same is true for all opponents, such that each team takes its own
weighting for the individual scoring rate. The squad and the way teams play can change
significantly over the years, so it would be preferable to use goal data from the last few
matches but due to the limited number of matches per season, we need to extend the
observation period. Otherwise, we end up with a very sparse empirical goal distribution,
with no observed goals for many match minutes.

With the per minute scoring rates, we can simulate the number of goals occurring in
each minute of the match. We draw from a Bernoulli distribution with success probability
equal to the per minute scoring rate in t and sum the final scoreline that thus results. To
account for red cards, we rely on Vecer, Kopriva, and Ichiba (2009) who find that a red
card decreases the affected team’s scoring rate by 2

3 , while the opposite team’s scoring
rate increases by a factor of 1.2. For each match, we repeat this simulation 100,000
times so that there are 90 × 100, 000 = 9, 000, 000 simulations per match. Then we can
determine the probabilities required for the calculation of Suspense in t by evaluating the
probabilities for the match outcome, given that the home or the away team, respectively,
scores in the next minute. Without any next minute in regular match time in the 90th
minute, we cannot calculate Suspense for it, such that we drop observations for this time
point from the sample.

5
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A.2 Imputation of In-Play Probabilities

A.2.1 Seasons 2013/14 to 2018/19. The betting market is closed when odds are
updated or liquidity is low, so data on in-play odds exhibit missing values by nature,
which in turn lead to missing in-play outcome probabilities. For the affected time points,
we cannot transform the odds to obtain the outcome probabilities.

We handle the missing in-play outcome probabilities for seasons 2013/14 to 2018/19,
as used in the main specification, by predicting their values using gated recurrent units
(GRUs) and a separate training sample of approximately 4000 matches, played during
the seasons 2013/14 to 2019/20 in the German first and second division. These GRUs
represent an extension to recurrent neural networks (RNNs) that can account for dynamic
behavior in the data by processing sequences of inputs.

As introduced by Cho et al. (2014), a GRU consists of two gates, an update gate
and a reset gate. The update gate determines which new information is added and
which is discarded, similar to the forget and input gate of a long-short-term-memory
(LSTM); the reset gate determines how much past information to forget. Because the
GRU lacks the LSTM’s output gate, there are fewer parameters to train, which promises
less computational effort with similar or better performance than LSTMs. Our GRU
networks consist of an input layer, 3 hidden GRU layers, a hidden dense layer, and an
output layer. Moreover, we make use of bias nodes and alternate activation functions
in the hidden layers between rectified linear unit (ReLU) and hyperbolic tangent (tanh).
Table A1 displays the model configuration.

Table A1. Gated Recurrent Unit Network Model Configuration

Layer Input Units Bias Kernel Init. Bias Init. Activation L2 Kernel
gru_1_input (None, 10, 7) NaN NaN NaN NaN NaN NaN
gru_1 (None, 10, 7) 128 True GlorotUniform Zeros relu NaN
gru_2 NaN 96 True GlorotUniform Zeros tanh NaN
gru_3 NaN 64 True HeUniform Zeros relu NaN
gru_4 NaN 32 True GlorotUniform Zeros tanh NaN
dense NaN 32 True HeUniform Zeros relu NaN
output NaN 3 True GlorotUniform Zeros softmax 0.0010
This table presents the configuration for the GRU network used to impute missing in-play outcome probabilities for

seasons 2013/14 to 2018/19. The separate training sample consists of approximately 4000 matches from seasons 2013/14
to 2019/20 in the German first and second division. For each minute we, train 1 GRU network. The GRU networks include
an input layer, 3 hidden GRU layers, a hidden dense layer, and an output layer. “Init.” in columns 5 and 6 is short for
“Initialization”, and NaN (“Not a Number”) labels unspecified parameters. As the first entry in the second column “(None,
10, 7)” shows, we use a full batch approach with a time series length of 10 and 7 features, namely, number of goals scored
and red cards received by each team in t, as well as transformed in-play odds for the match outcome. Furthermore, the
activation functions for the hidden layers are ReLU and tanh, alternating (column 7). The output layer squeezes the data
between 0 and 1, according to the softmax function and is regularized by an L2 penalty term (last column).

For each minute, we train one GRU network, separately. The features (see “7” in
“(None, 10, 7)” - second column of table A1) include the number of goals scored and
red cards received by each team in t, as well as transformed in-play odds for the match
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outcome prior to t (for t = 1, transformed pre-match odds are used). The input sequences
comprise this information in the last 10 minutes (see “10” in “(None, 10, 7)” - second
column of table A1). Consequently, we use the information in t − 10 to t to predict the
probabilities in t. For the periods prior to the 10th minute, this sequence reduces to t0
to t. Note that there are no betting odds for stoppage time, and NaN (“Not a Number”)
denotes parameters that are not specified.

In-play odds are available to us on a minute-by-minute basis. However, these odds are
obviously not synchronized with the match minutes. If multiple odds updates occur per
match minute, we use the most recent update. Should there be a goal or a red card in
a certain minute but the odds remain unchanged, because they were placed before the
match event, we replace the odds by NaN and predict it using a GRU network. The
underlying assumption is that goals or red cards must change outcome probabilities and
odds. For the whole match, the last updated odds are also the last usable odds. We
replace all odds after them by NaN, because we do not know whether the odds do not
change due to the course of the match or because the markets are closed because the
match is almost decided, for example.

We standardize all features so that they are on the same scale, such that each feature
has zero mean and unit variance. Specifically, we standardize the data by fitting param-
eters on the training set, then reuse them to transform the test data. In this way, we
ensure there is no test set information in the training process, and, assuming training
and test data come from the same distribution, we obtain more precise estimates for the
mean and variance in the test set, because of the larger sample size of the training set.
We carry out this transformation for each minute, separately. The targets are a vector
of normalized odds, such that they give rise to a regression problem. Therefore, and
because we want to penalize large deviations more strongly, we choose the mean squared
error (MSE) as the objective loss function that needs to be minimized during the training
process.

For the optimization, we use the AMSGrad variant (Reddi, Kale, and Kumar, 2019) of
Adam (Adaptive Moment) Estimation (Kingma and Ba, 2014), which features stochastic
gradient descent, based on the adaptive estimation of first-order and second-order mo-
ments. It thus is appropriate for settings with a relatively large number of parameters.

The number of epochs depends on the current match minute and is evenly spaced over
the interval [250, 500], rounded to the nearest integer, so that the network for minute 1
uses 250 epochs, and the network for minute 90 uses 500 epochs, because the higher the
match minute, the more missing values there are, creating inaccuracies in prediction that
stack over time. The batch size is equal to the size of the training data, such that the
full data set is processed as one chunk (see “None” in “(None, 10, 7)” - second column of
table A1). To prevent overfitting, we impose an L2 penalty of size 0.001 on the weights
of the output layer.

7

Electronic copy available at: https://ssrn.com/abstract=4569227



Figure A1 displays the number of matches available to train the GRU networks for
each minute.

Figure A1. Gated Recurrent Unit Network Available Observations
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This figure shows the available number of observations (matches) in the training sample for the GRU network. We clearly
observe a decrease in the number of matches the higher the match minute.

The number of matches available decreases over time, because the betting market is
often closed toward the end of a match, especially if the winner is clear before the very end
but not if scorelines are close. As matches with close scorelines at the end tend to result in
a draw, we confront a self-selection problem regarding missing in-play odds. Therefore, we
randomly over-sample underrepresented scorelines (e.g., 4-0, 4-1, 0-4, or 1-4) by drawing
samples with replacement from these minority classes until their relative frequencies are
equal to the relative frequencies of the occurrence of the cases in the training sample in
each minute. Analogously, we randomly over-sample the underrepresented red cards, to
ensure the algorithm does not ignore red cards as feature.

To evaluate the accuracy of the predictions, we randomly split the data set into 5 folds
and apply cross-validation. Figure A2 displays various performance metrics, along with
their 95% confidence intervals.
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Figure A2. Gated Recurrent Unit Network Performance Metrics
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This figure shows GRU network performance metrics loss (top left), mean squared error (top right), mean absolute error
(bottom left), and root mean squared error (bottom right) with their associated 95% confidence intervals (CI), based on
5-fold cross validation with the training set.

The blue line depicts the metric, averaged across the five folds; the blue-shaded area
illustrates the associated confidence bounds. The upper left and right panel belong to
loss and MSE, respectively. The lower left panel depicts the mean absolute error (MAE),
and the lower right panel indicates the root mean squared error (RMSE). All metrics
exhibit a general increasing trend over time. We offer three reasons for this pattern.
First, the number of matches in the training set decreases over time. Second, prediction
errors increase over time, because closing odds offer lower predictive power the more time
goes by. Third, the number of key events (goals and red cards) increases toward the end
of the match, which extends the directions a match can develop. All three aspects make
the prediction more difficult.

Because the targets are probabilities, we can focus on the MAE. However, similar
deduction applies to the other performance metrics. The MAE can be interpreted as
the mean absolute deviation between actual and predicted targets in percentage points.
Consequently, predicted probabilities differ between 0.53 (minute 16) and 1.37 (minute
88) percentage points from the actual probabilities, with standard deviations of 0.04
(in minute 16) and 0.29 (in minute 88) percentage points. The MAE averaged across
all minutes is 0.0076 (0.76 percentage points deviant from actual probabilities) with an
average standard deviation of 0.0006 (0.06 percentage points).

A.2.2 Seasons 2011/12 and 2012/13. We find no in-play bookmaker odds available
for seasons 2011/12 and 2012/13, from which probabilities could be derived. Therefore,
we train a feedforward neural network (FFNN) for each minute to impute the missing
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probabilities. The training data are the same as for the GRU networks (section A.2.1).
Our predictors are normalized pre-match closing odds on the result (see section A.1 on
normalization) and in-play key events goals and red cards.

The FFNNs consist of an input layer, 3 hidden layers, and an output layer. The number
of units in each layer declines from 128 to 32. The output layer contains 3 units, reflecting
the number of desired outcomes. We use a bias vector in each layer. The activations are
alternately ReLU and tanh, as well as a softmax in the output layer to get results between
0 and 1, which then sum to 1. Generally, we initialize the weights using a Xavier uniform
initialization (Glorot and Bengio, 2010). For the hidden ReLU layers, however, we use He
uniform to initialize, as proposed by He et al. (2015). To prevent overfitting, we impose
an L2 penalty of size 0.001 on the weights of the output layer. As for the GRU networks,
the number of epochs depends on the current match minute; the value is evenly spaced
over the interval [250, 500], rounded to the nearest integer, so that the network for minute
1 uses 250 epochs, and the network for minute 90 uses 500 epochs. Furthermore, we use
full batch learning here.

We standardize the features to have zero mean and unit variance, analogous to sec-
tion A.2.1. Again, we apply this transformation for each minute, separately. The targets
are a vector of normalized in-play probabilities for the potential outcomes H, D, and A,
such that we face a regression problem. To minimize the MSE, we again use the AMS-
Grad variant of Adam Estimation. Moreover, we oversample underrepresented scores and
red cards, as described for the GRU networks in section A.2.1.

Table A2 displays the complete architecture. Figure A3 reveals the number of matches
available to train the FFNN for each minute. Figure A4 depicts several performance
metrics and their associated 95% confidence intervals, which we obtain from 5-fold cross-
validation.

Table A2. Feedforward Neural Network Model Configuration

Layer Input Units Bias Kernel Init. Bias Init. Activation L2 Kernel
dense_1_input (None, 7) NaN NaN NaN NaN NaN NaN
dense_1 (None, 7) 128 True GlorotUniform Zeros relu NaN
dense_2 NaN 64 True GlorotUniform Zeros tanh NaN
dense_3 NaN 32 True HeUniform Zeros relu NaN
dense_4 NaN 16 True GlorotUniform Zeros tanh NaN
output NaN 3 True GlorotUniform Zeros softmax 0.0010
(Equivalent description as for table A1, but using a feedforward neural network and transformed pre-match odds instead

of in-play odds as features to predict transformed in-play odds for seasons 2011/12 and 2012/13).
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Figure A3. Feedforward Neural Network Available Observations
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(Equivalent description as for figure A3, but using a feedforward neural network).

Figure A4. Feedforward Neural Network Performance Metrics
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(Equivalent description as for figure A2, but using a feedforward neural network).

According to the MAE, the predicted probabilities on average differ between 0.74
(minute 1) and 1.95 (minute 48) percentage points from the actual probabilities, with
standard deviations of 0.02 (minute 1) and 0.06 (minute 48) percentage points. The MAE
averaged across all minutes is 1.66 percentage points deviance from actual probabilities,
with an average standard deviation of 0.04 percentage points.

A.3 Covariates

In addition to the cues, we add variables for air pressure, precipitation (dummy),
relative humidity, temperature, and wind speed at level 1. These covariates aim to
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capture weather conditions around the stadium, which we consider relevant for drinking
behavior and match outcome. For example, Ventura-Cots et al. (2019) find a positive
association between alcohol consumption and colder weather, as well as fewer sunlight
hours. Lakshmana Rao and Mohan (2021) provide evidence that injuries occur mostly
when the weather conditions are hot and humid, cold, and/or wet and rainy. Adverse
weather conditions also create opportunities to consume, because people tend to retreat
further into the catacombs, where the cashpoints are.

Weather data are measured in 10 minute steps, instead of a minute-by-minute basis.
Therefore, we linearly interpolate air pressure, temperature, relative humidity, and wind
speed. The precipitation dummy uses information on precipitation duration. Whenever
the 10-minute precipitation duration is 0 or 10, the precipitation dummy is 0 or 1, respec-
tively. If precipitation duration lies between 0 and 10 minutes (e.g., 8 minutes), we split
the dummy into two blocks, comprised of one block with zero values and another block
with ones, such that the order of the blocks is assigned at random. For example, for 8
minutes of rain, for the first minutes of a 10-minute interval, the precipitation dummy
equals 1, and then for the last 2 minutes the dummy takes a value of 0.

In winter months, spectators can buy hot wine punch in addition to the other drinks,
so we include hot wine punch sales to control for substitution effects.

Furthermore, a dummy variable separating the first and second half of each match is
necessary, because the two halves are structurally different, as figure 1 depicts.2

In addition to the substitutions discussed in section II.B.1, water sales at level 1 control
for baseline consumption, such that any effect on beer sales is more clearly attributable
to the conscious decision to buy alcohol. That is, the effects on alcohol sales become
cleaner when we also measure the sales of fans who are “just thirsty”. Model precision
increases too, such that baseline consumption reflects any global trend of variation on
beverage sales.

At level 2, we include several probability estimates based on average closing over/under
odds (normalized over/under odds). By adding the variables adapted from over/under
odds, we seek to cover different spectator sentiments across matches. Pre-match sales
and sales at the beginning of the match (due to delay effects) likely exhibit heterogeneity,
reflecting the different levels of excitement in expectation of high versus low scoring
matches.

We calculate pre-match outcome probability estimates using average closing odds for
away team wins and draws (we drop home team wins due to multicollinearity). A match
with a clear favorite is fundamentally different than a match with an uncertain outcome.
These variables aim to account for the fan’s basic state of mind. For example, fans who

2Analyzing both halves completely separate from each other would be interesting. Due to the re-
stricted length of the time series though, this approach is not feasible.
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usually buy one beer might skip it when they anticipate a very close match, if their fear
of missing out exceeds the loss of a beer not consumed, which results in a systematic
difference in mean sales between matches.

Beer prices also could be an important driver for demand and are therefore included at
match level, to refine the (sports) seasonal dummies. Beer prices are stable within each
season, but there is some variation between seasons over time.

The geodesic distance, defined as the shortest path between two points on a surface
(the earth), between the away team’s stadium and the home stadium of VfB Stuttgart
(latitude-longitude data) can affect match relevance, due to its strong correlation with
local rivalries (derbies). Barry et al. (2014) and Neal and Fromme (2007) find that
the importance of a match (e.g., due to a rivalry) increases alcohol consumption by
college football fans. We control for seasonal patterns beyond weather by using monthly
dummies. For example, match relevance likely varies between the start of the season in
autumn and its end in spring, which is not perfectly reflected by weather (e.g., snow in
April). Pre-match team rankings and the round further contribute to match relevance.
In general, matches between similarly ranked teams toward the end of the season are
more important, because they can be decisive for how the teams will be ranked.

A dummy indicates whether the match is a first or second division match. During the
observation period, VfB Stuttgart played in both divisions. The second division holds
less prestigious matches, which might lead to systematic heterogeneity. For example, im-
portant first division matches might prompt additional consumption, due to perceptions
that the event is special.

Two further dummies indicate whether the day after the match is a public holiday and
if the match takes place during school holidays. Public holidays likely lead to disparities
in drinking behavior. People might alter their drinking habits when the following day
is a public holiday, during which excursions and festivities are popular pastimes. Zonda
et al. (2009) identify a significant increase in alcohol consumption during holidays. Fur-
thermore, people do not have to work on holidays, or on Sundays, so the public holiday
dummy only refers to weekdays in this regard. School holidays likely change the compo-
sition of spectators, because family vacations typically take place during school holidays,
which might alter per capita alcohol use.

Another potential factor influencing in-play consumption is the pre-match alcohol level,
so we add a dummy denoting when the Cannstatter Volksfest and the Stuttgart Spring
Festival take place. These festivals, hosted by the Cannstatter Wasen, a 35 hectare
area near the stadium, are of great regional importance. With more than four million
visitors (pre COVID-19), the Cannstatter Volksfest is considered the second largest beer
festival in the world (after the Oktoberfest in Munich). We also control for systematic
substitution effects when people forgo their beer in the stadium to drink later at the
festival.
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Drinking behavior also depends on the time of day (Room et al., 2013), such that
across cultures, it is more common after 5:00 p.m. Therefore, we include the kickoff time.
Another potential source of significant differences might be the interval between meals.

With the recognition that supply potentially drives demand, we control for the number
of cashpoints where people can buy drinks and food. Wait times likely are longer if fewer
cashpoints are open, ceteris paribus, which might decrease transactions due to higher
opportunity costs. Variance in the number of cashpoints mainly occurs when single
cashpoints open or close only for certain matches, rather than due to newly constructed
cashpoints, for which the seasonal dummies would be sufficient, assuming the construction
occurs between seasons.

In any case, the number of spectators relates to alcohol sales (assuming enough vari-
ation). We add the information at level 2, because VfB Stuttgart does not collect this
data at level 1.

Next, we add (sports) seasonal dummies to deal with several sources of heterogeneity
over years. Rule changes across seasons, such as shifting definitions of accidental hand-
balls, can lead to more or less controversial referee decisions. According to Meij et al.
(2015), fans exhibit more aggressive behavior when they perceive the match as unfair.
Another source of heterogeneity over seasons involves payment options, such that during
the 2011/12 season, fans could only pay with a so-called fan card. In 2012/13, cash was
added as an option. From 2013/14 onward, people could pay cash or with a credit card.

We use weekday dummies to account for the structural difference between a match
on Saturday versus Friday, for example. Playing simultaneously with a lot of other
teams on Saturday probably evokes a different excitement level, because the consequences
(e.g., rankings) of simultaneous scores can be incorporated immediately into consumption
decisions. Moreover, people tend to drink more on weekends (Room et al., 2013).

Tables B1 and B2 present the entire feature space of the main specification (including
further variables) with descriptions, sources, and additional remarks.
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B Data Overview

Table B1. Variable Summary

Name Description Comment Source
Shock Shock Generated from in-play odds and closing odds 7
Surprise Surprise Generated from in-play odds and closing odds 7
Suspense Suspense Generated from in-play odds, closing odds, histor-

ical scoring rates, timing of goals, and red cards
5, 6, 7, and 8

BeerSls Number of beverage units sold Dependent variable; considered are the sales of a
certain drink (beer, shandy or soft drinks depend-
ing on the specification) within the target stand(s)
(e.g., whole stadium except for the away fan area)

11

AirPress Air pressure (in hPa) Linearly interpolated, because the measuring sta-
tion (5km away from the stadium) records in 10-
minute steps

2

HotWineSls Number of hot wine punch units sold Considered are only the sales within the target
stand

11

Is1stHalf Dummy for first half Generated from match data 6
IsPrecip Dummy for precipitation Derived from precipitation duration on a 10-

minute basis with the measuring station (5km
away from the stadium) recording in 10 minute
steps

2

IsSubAway Dummy for an away substitution 8
IsSubHome Dummy for a home substitution 8
RelHumid Relative humidity (in %) Linearly interpolated, because the measuring sta-

tion (5km away from the stadium) records in 10-
minute steps

2
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Temp Temperature (in Celsius) Linearly interpolated, because the measuring sta-
tion (5km away from the stadium) records in 10-
minute steps

2

WaterSls Number of water units sold 11
Wind Wind speed (in m/s) Linearly interpolated, because the measuring sta-

tion (5km away from the stadium) records in 10-
minute steps

2

AvgClsOver05Prob Pre-match probability that joint score exceeds 0.5 Uses average closing odds (multiple bookmakers) 7
AvgClsOver15Prob Pre-match probability that joint score exceeds 1.5 Uses average closing odds (multiple bookmakers) 7
AvgClsOver25Prob Pre-match probability that joint score exceeds 2.5 Uses average closing odds (multiple bookmakers) 7
AvgClsOver35Prob Pre-match probability that joint score exceeds 3.5 Uses average closing odds (multiple bookmakers) 7
AvgClsOver45Prob Pre-match probability that joint score exceeds 4.5 Uses average closing odds (multiple bookmakers) 7
AvgClsOver55Prob Pre-match probability that joint score exceeds 5.5 Uses average closing odds (multiple bookmakers) 7
AvgClsProbAway Pre-match probability that away team wins Uses average closing odds (multiple bookmakers) 7
AvgClsProbHome Pre-match probability that home team wins Uses average closing odds (multiple bookmakers) 7
BeerPrice Price of beverage (in Euro) The corresponding beverage is beer, shandy or soft

drink depending on which one is set as dependent
variable in the underlying specification

11

GeoDist Geodesic distance between home and away team’s stadium (in km) Generated using latitude and longitude of each
team’s stadium

3

HotWinePrice Price of hot wine punch (in Euro) 11
Is1stDiv Dummy for a first division match 6
IsMobCpoint Dummy for the availability of mobile cashpoints Generated from the number of units sold by mobile

cashpoints; considered are the mobile cashpoints
within the target stand(s) (e.g., whole stadium ex-
cept for the away fan area) using the assumption
that no sales imply no availability

11

IsPromoAway Dummy for the away team promoted last season 10
IsPromoHome Dummy for the home team promoted last season 10
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IsPubHoliday Dummy for a legal or church holiday at the day after the match 4
IsRelegAway Dummy for the away team relegated last season 10
IsRelegHome Dummy for the home team relegated last season 10
IsRunner Dummy for the availability of mobile salesmen Generated from the number of units sold by mo-

bile salesmen (beer runners) who sell beer and soft-
drinks only (no shandy, for example); considered
are the sales in the whole stadium (due to the data
at hand) using the assumptions that no sales imply
no availability and non-zero sales indicate avail-
ability in every stand

11

IsSchlHoliday Dummy for school holidays at the match day 9
IsSoldOut Dummy for a sold-out match 5
IsVar Dummy for the presence of a video assistant referee 6
IsWasen Dummy for Wasen - a local festival 1
Kickoff15:30 Dummy for kickoff time 15:30 6
Kickoff15:45 Dummy for kickoff time 15:45 6
Kickoff17:30 Dummy for kickoff time 17:30 6
Kickoff18:00 Dummy for kickoff time 18:00 6
Kickoff18:30 Dummy for kickoff time 18:30 6
Kickoff20:00 Dummy for kickoff time 20:00 6
Kickoff20:15 Dummy for kickoff time 20:15 6
Kickoff20:30 Dummy for kickoff time 20:30 6
MonthAug Dummy for the match taking place in August 6
MonthDec Dummy for the match taking place in December 6
MonthFeb Dummy for the match taking place in February 6
MonthJan Dummy for the match taking place in January 6
MonthMar Dummy for the match taking place in March 6
MonthMay Dummy for the match taking place in May 6
MonthNov Dummy for the match taking place in November 6
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MonthOct Dummy for the match taking place in October 6
MonthSep Dummy for the match taking place in September 6
NumCpoints Number of active cashpoints Considered are the cashpoints within the target

stand(s) (e.g., whole stadium except for the away
fan area)

11

NumSpects Number of spectators Refers always to all spectators in the whole sta-
dium

5

RankAwayLast Final rank of the away team last season 10
RankAwayPre Rank of the away team before the match 5
RankHomeLast Final rank of the home team last season 5
RankHomePre Rank of the home team before the match 5
Round Round of the season 5
Season2014/15 Dummy for season 2014/2015 6
Season2015/16 Dummy for season 2015/2016 6
Season2016/17 Dummy for season 2016/2017 6
Season2017/18 Dummy for season 2017/2018 6
Season2018/19 Dummy for season 2018/2019 6
WkdayMo Dummy for the match taking place on a Monday 8
WkdaySa Dummy for the match taking place on a Saturday 8
WkdaySu Dummy for the match taking place on a Sunday 8
WkdayTu Dummy for the match taking place on a Tuesday 8
WkdayWe Dummy for the match taking place on a Wednesday 8

This table presents details on dependent and independent variables, used in the main specification, excluding the match minute dummies. Note that, depending on the specification,
isolated variables may be discarded due to multicollinearity. Also, the set of variables might differ slightly in specifications where the sample changes, such as in the Seasons specification
(e.g., additional kickoff time or season dummies). We code all binary indicators 0: false and 1: true. The reference groups for kickoff time, month, season, and weekday are 13:30, Apr,
2013/14, and Fr, respectively. Table B2 particularizes the numbered data sources in the last column.
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Table B2. Data Sources

Source Name URL Retrieved On
1 cannstatter-volksfest.de https://www.cannstatter-volksfest.de/de/landing-page/ October 02, 2019
2 Deutscher Wetterdienst https://www.dwd.de/ November 9, 2021 at 11:50:34 AM
3 Google Maps https://www.google.de/maps/ September 26, 2019
4 kalender-online.com https://kalender-online.com/ November 12, 2021 at 8:43:36 PM
5 kicker https://www.kicker.de/ October 21, 2020 at 8:08:46 PM
6 NowGoal https://www.nowgoal.com/ September 8, 2020 at 10:55:08 to October 21, 2020 12:03:04 PM
7 OddsPortal https://www.oddsportal.com/ October 22, 2020 4:34:22 PM
8 OptaSports August 16, 2021 12:45:28 PM
9 schulferien.org https://www.schulferien.org/ November 13, 2021 5:14:34 PM
10 transfermarkt.de https://www.transfermarkt.de/ September 26, 2019
11 VfB Stuttgart November 7, 2018 and July 12, 2019

This table presents information on the data sources specified in table B1.
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Table B3. Descriptive Statistics: States

count sum mean std min 25% 50% 75% max
State 0 98 5,218 53.2 18.5 18 38.2 55.5 69.5 89
State 1 98 3,602 36.8 18.5 1 20.5 34.5 51.8 72
This table presents basic summary statistics for the negative and the positive state 0 and 1, respectively. Overall, we

observe the positive state 1 3,602 times (sum) in 98 matches (count). There is at least 1 match in which we record the
negative state 0 only 18 times; 25%, 50%, and 75% denote the respective quantiles.

Figure B1. In-Play Distribution of States
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This figure shows kernel density estimates of both negative state 0 and positive state 1 during matches. Overall, we
observe the negative state 0 more often. Positive state 1 exhibits a slight positive trend, whereas the occurences of the
negative state 0 slightly decrease.

Table B4. Descriptive Statistics: Explanatory Variables Per Minute in State 0

count mean std min 25% 50% 75% max
Shock X1,0 5,218 0.2874 0.2287 0.0011 0.0717 0.2604 0.4435 0.9617
Surprise X1,1 5,218 0.0148 0.0599 0 0 0.0040 0.0115 0.9684
Suspense X1,2 5,166 0.0731 0.0417 0.0100 0.0513 0.0622 0.0861 0.2495
AirPress Z1,0 5,218 980 9.31 948 976 981 986 998
HotWineSls Z1,1 5,218 2.45 6.80 0 0 0 1 69
Is1stHalf Z1,2 5,218 0.5228 0.4995 0 0 1 1 1
IsPrecip Z1,3 5,218 0.1083 0.3108 0 0 0 0 1
IsSubAway Z1,4 5,218 0.0255 0.1671 0 0 0 0 2
IsSubHome Z1,5 5,218 0.0305 0.1795 0 0 0 0 2
RelHumid Z1,6 5,218 68 17.4 24.7 57.2 66.8 82.6 99.2
Temp Z1,7 5,218 10.8 7.18 -3.16 5.06 10.4 15.3 31
WaterSls Z1,8 5,218 2.86 4.97 0 0 1 3 61
Wind Z1,9 5,218 3.16 1.46 0.2000 2.17 2.96 4 8.44
AvgClsOver05Prob Z2,0 5,218 0.9182 0.0148 0.8787 0.9084 0.9193 0.9286 0.9513
AvgClsOver15Prob Z2,1 5,218 0.7693 0.0371 0.6706 0.7465 0.7730 0.7958 0.8450
AvgClsOver25Prob Z2,2 5,218 0.5486 0.0540 0.4165 0.5144 0.5474 0.5835 0.6682
AvgClsOver35Prob Z2,3 5,218 0.3407 0.0520 0.2285 0.3068 0.3413 0.3706 0.4672
AvgClsOver45Prob Z2,4 5,218 0.1884 0.0378 0.1145 0.1605 0.1888 0.2099 0.2851
AvgClsOver55Prob Z2,5 5,218 0.0995 0.0233 0.0541 0.0843 0.0983 0.1112 0.1605
AvgClsProbAway Z2,6 5,218 0.3208 0.1395 0.1376 0.2259 0.2778 0.3763 0.7721
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AvgClsProbHome Z2,7 5,218 0.4203 0.1310 0.0772 0.3372 0.4495 0.5141 0.6481
BeerPrice Z2,8 5,218 4.18 0.0919 4 4.20 4.20 4.20 4.30
GeoDist Z2,9 5,218 294 141 55.6 152 326 398 536
HotWinePrice Z2,10 5,218 3.93 0.2862 3.50 3.50 4 4.20 4.30
Is1stDiv Z2,11 5,218 0.8678 0.3388 0 1 1 1 1
IsMobCpoint Z2,12 5,218 0.4293 0.4950 0 0 0 1 1
IsPubHoliday Z2,13 5,218 0.0163 0.1266 0 0 0 0 1
IsRelegAway Z2,14 5,218 0.0136 0.1159 0 0 0 0 1
IsRunner Z2,15 5,218 0.6225 0.4848 0 0 1 1 1
IsSchlHoliday Z2,16 5,218 0.1428 0.3499 0 0 0 0 1
IsSoldOut Z2,17 5,218 0.2192 0.4138 0 0 0 0 1
IsWasen Z2,18 5,218 0.1541 0.3611 0 0 0 0 1
Kickoff15:30 Z2,19 5,218 0.6374 0.4808 0 0 1 1 1
Kickoff15:45 Z2,20 5,218 0.0121 0.1092 0 0 0 0 1
Kickoff17:30 Z2,21 5,218 0.0661 0.2485 0 0 0 0 1
Kickoff18:00 Z2,22 5,218 0.0228 0.1493 0 0 0 0 1
Kickoff18:30 Z2,23 5,218 0.0776 0.2676 0 0 0 0 1
Kickoff20:30 Z2,24 5,218 0.0954 0.2938 0 0 0 0 1
MonthAug Z2,25 5,218 0.0715 0.2577 0 0 0 0 1
MonthDec Z2,26 5,218 0.1135 0.3172 0 0 0 0 1
MonthFeb Z2,27 5,218 0.1261 0.3320 0 0 0 0 1
MonthJan Z2,28 5,218 0.0816 0.2738 0 0 0 0 1
MonthMar Z2,29 5,218 0.1207 0.3259 0 0 0 0 1
MonthMay Z2,30 5,218 0.0707 0.2564 0 0 0 0 1
MonthNov Z2,31 5,218 0.0757 0.2645 0 0 0 0 1
MonthOct Z2,32 5,218 0.0849 0.2788 0 0 0 0 1
MonthSep Z2,33 5,218 0.1518 0.3588 0 0 0 0 1
NumCpoints Z2,34 5,218 157 20.5 113 135 157 178 188
NumSpects Z2,35 5,218 52,218 6,117 36,800 47,125 54,022 58,000 60,000
RankAwayLast Z2,36 5,218 7.56 4.87 1 3 7 12 18
RankAwayPre Z2,37 5,218 9.39 5.00 1 5 9 14 18
RankHomePre Z2,38 5,218 13.1 4.83 1 12 15 16 18
Round Z2,39 5,218 17 9.67 1 8 17 25 34
Season2014/15 Z2,40 5,218 0.1801 0.3843 0 0 0 0 1
Season2015/16 Z2,41 5,218 0.1844 0.3878 0 0 0 0 1
Season2017/18 Z2,42 5,218 0.1573 0.3642 0 0 0 0 1
Season2018/19 Z2,43 5,218 0.1729 0.3782 0 0 0 0 1
WkdayMo Z2,44 5,218 0.0481 0.2140 0 0 0 0 1
WkdaySa Z2,45 5,218 0.5958 0.4908 0 0 1 1 1
WkdaySu Z2,46 5,218 0.2125 0.4091 0 0 0 0 1
WkdayTu Z2,47 5,218 0.0061 0.0781 0 0 0 0 1
WkdayWe Z2,48 5,218 0.0065 0.0805 0 0 0 0 1

This table presents basic summary statistics of explanatory variables (table B1), excluding the lagged dependent variable
and match minute dummies, on a per minute basis in negative state 0. For example, the minimum value of Surprise (X1,1)
per minute in state 0 is 0. Note that 25%, 50%, and 75% denote the respective quantiles.
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Table B5. Descriptive Statistics: Explanatory Variables Per Minute in State 1

count mean std min 25% 50% 75% max
Shock X1,0 3,602 0.3259 0.2054 0.0021 0.1829 0.3319 0.4512 0.8543
Surprise X1,1 3,602 0.0169 0.0718 0 0 0.0019 0.0097 1.06
Suspense X1,2 3,556 0.0621 0.0348 0.0083 0.0408 0.0570 0.0763 0.2242
AirPress Z1,0 3,602 980 9.05 948 975 981 986 998
HotWineSls Z1,1 3,602 1.80 5.42 0 0 0 1 60
Is1stHalf Z1,2 3,602 0.4670 0.4990 0 0 0 1 1
IsPrecip Z1,3 3,602 0.1177 0.3223 0 0 0 0 1
IsSubAway Z1,4 3,602 0.0389 0.2098 0 0 0 0 2
IsSubHome Z1,5 3,602 0.0297 0.1762 0 0 0 0 2
RelHumid Z1,6 3,602 68.4 19.3 24.9 54 71.7 85.4 100
Temp Z1,7 3,602 10.5 7.15 -3.14 4.66 10.1 15.2 30.8
WaterSls Z1,8 3,602 2.94 5.61 0 0 1 3 68
Wind Z1,9 3,602 3.09 1.44 0 2.10 3.02 4.01 8.50
AvgClsOver05Prob Z2,0 3,602 0.9203 0.0140 0.8787 0.9104 0.9201 0.9299 0.9513
AvgClsOver15Prob Z2,1 3,602 0.7743 0.0349 0.6706 0.7530 0.7790 0.7983 0.8450
AvgClsOver25Prob Z2,2 3,602 0.5560 0.0517 0.4165 0.5249 0.5576 0.5882 0.6682
AvgClsOver35Prob Z2,3 3,602 0.3473 0.0500 0.2285 0.3149 0.3430 0.3716 0.4672
AvgClsOver45Prob Z2,4 3,602 0.1930 0.0371 0.1145 0.1679 0.1905 0.2106 0.2851
AvgClsOver55Prob Z2,5 3,602 0.1025 0.0229 0.0541 0.0873 0.0985 0.1130 0.1605
AvgClsProbAway Z2,6 3,602 0.3306 0.1520 0.1376 0.2237 0.2788 0.3984 0.7721
AvgClsProbHome Z2,7 3,602 0.4143 0.1399 0.0772 0.3350 0.4489 0.5241 0.6481
BeerPrice Z2,8 3,602 4.18 0.0900 4 4.20 4.20 4.20 4.30
GeoDist Z2,9 3,602 288 142 55.6 152 326 398 536
HotWinePrice Z2,10 3,602 3.96 0.2680 3.50 3.99 4 4.20 4.30
Is1stDiv Z2,11 3,602 0.8168 0.3869 0 1 1 1 1
IsMobCpoint Z2,12 3,602 0.4275 0.4948 0 0 0 1 1
IsPubHoliday Z2,13 3,602 0.0014 0.0372 0 0 0 0 1
IsRelegAway Z2,14 3,602 0.0053 0.0724 0 0 0 0 1
IsRunner Z2,15 3,602 0.6724 0.4694 0 0 1 1 1
IsSchlHoliday Z2,16 3,602 0.1180 0.3226 0 0 0 0 1
IsSoldOut Z2,17 3,602 0.2821 0.4501 0 0 0 1 1
IsWasen Z2,18 3,602 0.2016 0.4012 0 0 0 0 1
Kickoff15:30 Z2,19 3,602 0.6008 0.4898 0 0 1 1 1
Kickoff15:45 Z2,20 3,602 0.0075 0.0863 0 0 0 0 1
Kickoff17:30 Z2,21 3,602 0.0791 0.2700 0 0 0 0 1
Kickoff18:00 Z2,22 3,602 0.0169 0.1290 0 0 0 0 1
Kickoff18:30 Z2,23 3,602 0.0875 0.2825 0 0 0 0 1
Kickoff20:30 Z2,24 3,602 0.0616 0.2405 0 0 0 0 1
MonthAug Z2,25 3,602 0.0464 0.2103 0 0 0 0 1
MonthDec Z2,26 3,602 0.1105 0.3135 0 0 0 0 1
MonthFeb Z2,27 3,602 0.1421 0.3492 0 0 0 0 1
MonthJan Z2,28 3,602 0.0566 0.2312 0 0 0 0 1
MonthMar Z2,29 3,602 0.0999 0.3000 0 0 0 0 1
MonthMay Z2,30 3,602 0.0974 0.2966 0 0 0 0 1
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MonthNov Z2,31 3,602 0.0902 0.2865 0 0 0 0 1
MonthOct Z2,32 3,602 0.1019 0.3025 0 0 0 0 1
MonthSep Z2,33 3,602 0.1049 0.3065 0 0 0 0 1
NumCpoints Z2,34 3,602 158 20.1 113 140 155 178 188
NumSpects Z2,35 3,602 52,348 6,901 36,800 46,600 54,410 58,680 60,000
RankAwayLast Z2,36 3,602 7.99 4.85 1 3 8 12 18
RankAwayPre Z2,37 3,602 9.06 5.15 1 4 9 13 18
RankHomePre Z2,38 3,602 12.5 5.29 1 10 14 17 18
Round Z2,39 3,602 18.6 9.69 1 10 19 28 34
Season2014/15 Z2,40 3,602 0.1388 0.3458 0 0 0 0 1
Season2015/16 Z2,41 3,602 0.1577 0.3645 0 0 0 0 1
Season2017/18 Z2,42 3,602 0.1968 0.3977 0 0 0 0 1
Season2018/19 Z2,43 3,602 0.1494 0.3565 0 0 0 0 1
WkdayMo Z2,44 3,602 0.0802 0.2717 0 0 0 0 1
WkdaySa Z2,45 3,602 0.5611 0.4963 0 0 1 1 1
WkdaySu Z2,46 3,602 0.2418 0.4282 0 0 0 0 1
WkdayTu Z2,47 3,602 0.0161 0.1259 0 0 0 0 1
WkdayWe Z2,48 3,602 0.0155 0.1237 0 0 0 0 1

(Equivalent description as for table B4, but given positive state 1).

C Further Results

C.1 Main Specification

Table C1. Main Model Results

mean std median hdi5% hdi95% R̂

Surprise State 0 β̂1,1,0,0 -0.0200 0.0040 -0.0200 -0.0280 -0.0130 1
β̂1,1,0,1 0.0030 0.0040 0.0030 -0.0020 0.0110 1
β̂1,1,0,2 0.0090 0.0050 0.0100 0.0020 0.0170 1
β̂1,1,0,3 0.0150 0.0040 0.0150 0.0090 0.0230 1
β̂1,1,0,4 0.0140 0.0040 0.0140 0.0070 0.0210 1
β̂1,1,0,5 0.0120 0.0050 0.0120 0.0050 0.0200 1
β̂1,1,0,6 0.0020 0.0040 0.0010 -0.0030 0.0090 1
β̂1,1,0,7 0.0010 0.0030 0.0000 -0.0040 0.0060 1
β̂1,1,0,8 -0.0020 0.0040 -0.0010 -0.0090 0.0030 1
β̂1,1,0,9 -0.0100 0.0050 -0.0100 -0.0180 -0.0020 1

State 1 β̂1,1,1,0 -0.0120 0.0050 -0.0120 -0.0190 -0.0040 1
β̂1,1,1,1 -0.0230 0.0040 -0.0230 -0.0300 -0.0160 1
β̂1,1,1,2 0.0180 0.0050 0.0180 0.0100 0.0250 1
β̂1,1,1,3 0.0200 0.0040 0.0200 0.0130 0.0270 1
β̂1,1,1,4 0.0180 0.0040 0.0180 0.0110 0.0250 1
β̂1,1,1,5 0.0080 0.0050 0.0080 0.0000 0.0150 1
β̂1,1,1,6 0.0060 0.0050 0.0060 -0.0010 0.0130 1
β̂1,1,1,7 0.0050 0.0040 0.0050 -0.0010 0.0120 1
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β̂1,1,1,8 0.0010 0.0030 0.0010 -0.0030 0.0070 1
β̂1,1,1,9 -0.0010 0.0030 0.0000 -0.0060 0.0040 1

Suspense State 0 β̂1,2,0,0 0.0050 0.0100 0.0030 -0.0080 0.0230 1
β̂1,2,0,1 -0.0010 0.0100 0.0000 -0.0190 0.0140 1
β̂1,2,0,2 -0.0100 0.0160 -0.0050 -0.0390 0.0090 1
β̂1,2,0,3 -0.0540 0.0230 -0.0540 -0.0930 -0.0160 1
β̂1,2,0,4 0.0200 0.0200 0.0150 -0.0050 0.0540 1
β̂1,2,0,5 0.0030 0.0130 0.0000 -0.0180 0.0240 1
β̂1,2,0,6 0.0010 0.0110 0.0000 -0.0160 0.0200 1
β̂1,2,0,7 0.0090 0.0140 0.0050 -0.0090 0.0330 1
β̂1,2,0,8 0.0040 0.0100 0.0020 -0.0090 0.0230 1
β̂1,2,0,9 0.0090 0.0100 0.0070 -0.0040 0.0270 1

State 1 β̂1,2,1,0 -0.0100 0.0110 -0.0080 -0.0270 0.0050 1
β̂1,2,1,1 0.0050 0.0110 0.0020 -0.0100 0.0230 1
β̂1,2,1,2 -0.0080 0.0160 -0.0020 -0.0360 0.0120 1
β̂1,2,1,3 -0.0720 0.0230 -0.0720 -0.1100 -0.0340 1
β̂1,2,1,4 0.0150 0.0200 0.0090 -0.0110 0.0490 1
β̂1,2,1,5 0.0110 0.0140 0.0080 -0.0070 0.0350 1
β̂1,2,1,6 0.0070 0.0120 0.0040 -0.0100 0.0270 1
β̂1,2,1,7 0.0130 0.0150 0.0100 -0.0060 0.0380 1
β̂1,2,1,8 0.0010 0.0100 0.0000 -0.0150 0.0180 1
β̂1,2,1,9 0.0040 0.0100 0.0010 -0.0120 0.0200 1

AirPress State 0 γ̂1,0,0,0 0.0010 0.0170 0.0000 -0.0240 0.0260 1
γ̂1,0,0,1 0.0000 0.0180 0.0000 -0.0260 0.0270 1
γ̂1,0,0,2 0.0010 0.0180 0.0000 -0.0260 0.0280 1
γ̂1,0,0,3 0.0000 0.0180 0.0000 -0.0280 0.0250 1
γ̂1,0,0,4 0.0060 0.0210 0.0030 -0.0230 0.0400 1
γ̂1,0,0,5 -0.0050 0.0200 -0.0020 -0.0390 0.0220 1
γ̂1,0,0,6 0.0000 0.0180 0.0000 -0.0270 0.0260 1
γ̂1,0,0,7 -0.0020 0.0190 -0.0010 -0.0320 0.0230 1
γ̂1,0,0,8 0.0050 0.0190 0.0020 -0.0230 0.0350 1
γ̂1,0,0,9 -0.0050 0.0190 -0.0020 -0.0360 0.0230 1

State 1 γ̂1,0,1,0 0.0000 0.0170 0.0000 -0.0290 0.0230 1
γ̂1,0,1,1 0.0000 0.0180 0.0000 -0.0240 0.0290 1
γ̂1,0,1,2 -0.0010 0.0180 0.0000 -0.0280 0.0250 1
γ̂1,0,1,3 0.0000 0.0180 0.0000 -0.0260 0.0260 1
γ̂1,0,1,4 -0.0070 0.0210 -0.0040 -0.0390 0.0240 1
γ̂1,0,1,5 0.0050 0.0200 0.0020 -0.0220 0.0370 1
γ̂1,0,1,6 0.0000 0.0180 0.0000 -0.0290 0.0260 1
γ̂1,0,1,7 0.0030 0.0180 0.0010 -0.0240 0.0310 1
γ̂1,0,1,8 -0.0040 0.0190 -0.0020 -0.0340 0.0240 1
γ̂1,0,1,9 0.0040 0.0190 0.0020 -0.0260 0.0330 1

HotWineSls State 0 γ̂1,1,0,0 0.0020 0.0060 0.0000 -0.0080 0.0120 1
γ̂1,1,0,1 -0.0030 0.0060 -0.0010 -0.0160 0.0050 1
γ̂1,1,0,2 0.0000 0.0060 0.0000 -0.0100 0.0100 1
γ̂1,1,0,3 0.0000 0.0060 0.0000 -0.0110 0.0100 1
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γ̂1,1,0,4 -0.0070 0.0080 -0.0060 -0.0210 0.0040 1
γ̂1,1,0,5 0.0060 0.0080 0.0050 -0.0050 0.0200 1
γ̂1,1,0,6 -0.0010 0.0060 0.0000 -0.0110 0.0090 1
γ̂1,1,0,7 -0.0020 0.0060 -0.0010 -0.0130 0.0080 1
γ̂1,1,0,8 -0.0010 0.0060 0.0000 -0.0120 0.0080 1
γ̂1,1,0,9 0.0050 0.0070 0.0040 -0.0040 0.0180 1

State 1 γ̂1,1,1,0 0.0150 0.0100 0.0150 -0.0010 0.0310 1
γ̂1,1,1,1 0.0040 0.0080 0.0020 -0.0070 0.0200 1
γ̂1,1,1,2 0.0050 0.0080 0.0030 -0.0070 0.0200 1
γ̂1,1,1,3 0.0030 0.0080 0.0010 -0.0090 0.0170 1
γ̂1,1,1,4 -0.0050 0.0090 -0.0030 -0.0210 0.0070 1
γ̂1,1,1,5 0.0010 0.0080 0.0000 -0.0110 0.0150 1
γ̂1,1,1,6 -0.0020 0.0070 0.0000 -0.0150 0.0100 1
γ̂1,1,1,7 -0.0060 0.0090 -0.0040 -0.0220 0.0060 1
γ̂1,1,1,8 -0.0060 0.0080 -0.0030 -0.0210 0.0060 1
γ̂1,1,1,9 -0.0070 0.0090 -0.0060 -0.0220 0.0040 1

Is1stHalf State 0 γ̂1,2,0,0 -0.1290 0.0350 -0.1330 -0.1840 -0.0700 1
γ̂1,2,0,1 -0.0010 0.0230 0.0010 -0.0370 0.0350 1
γ̂1,2,0,2 0.0010 0.0140 0.0000 -0.0200 0.0240 1
γ̂1,2,0,3 0.0030 0.0150 0.0000 -0.0200 0.0260 1
γ̂1,2,0,4 0.0300 0.0250 0.0260 -0.0030 0.0710 1
γ̂1,2,0,5 0.0140 0.0230 0.0050 -0.0150 0.0560 1
γ̂1,2,0,6 0.0090 0.0200 0.0020 -0.0170 0.0420 1
γ̂1,2,0,7 0.0230 0.0260 0.0150 -0.0080 0.0670 1
γ̂1,2,0,8 0.0260 0.0270 0.0190 -0.0060 0.0720 1
γ̂1,2,0,9 0.0210 0.0230 0.0170 -0.0100 0.0570 1

State 1 γ̂1,2,1,0 -0.0560 0.0360 -0.0590 -0.1080 0.0030 1
γ̂1,2,1,1 -0.0100 0.0240 -0.0030 -0.0460 0.0250 1
γ̂1,2,1,2 0.0030 0.0150 0.0010 -0.0180 0.0260 1
γ̂1,2,1,3 0.0060 0.0150 0.0010 -0.0150 0.0310 1
γ̂1,2,1,4 0.0140 0.0240 0.0060 -0.0200 0.0560 1
γ̂1,2,1,5 0.0180 0.0240 0.0100 -0.0090 0.0610 1
γ̂1,2,1,6 0.0100 0.0200 0.0030 -0.0150 0.0450 1
γ̂1,2,1,7 0.0170 0.0260 0.0080 -0.0140 0.0620 1
γ̂1,2,1,8 0.0160 0.0260 0.0070 -0.0160 0.0630 1
γ̂1,2,1,9 0.0240 0.0230 0.0200 -0.0060 0.0610 1

IsPrecip State 0 γ̂1,3,0,0 0.0010 0.0060 0.0000 -0.0070 0.0120 1
γ̂1,3,0,1 0.0060 0.0070 0.0040 -0.0050 0.0180 1
γ̂1,3,0,2 -0.0010 0.0060 0.0000 -0.0110 0.0100 1
γ̂1,3,0,3 0.0010 0.0060 0.0000 -0.0090 0.0120 1
γ̂1,3,0,4 -0.0060 0.0080 -0.0040 -0.0200 0.0040 1
γ̂1,3,0,5 0.0030 0.0070 0.0010 -0.0080 0.0140 1
γ̂1,3,0,6 0.0030 0.0070 0.0010 -0.0060 0.0150 1
γ̂1,3,0,7 0.0020 0.0060 0.0000 -0.0070 0.0130 1
γ̂1,3,0,8 0.0030 0.0070 0.0010 -0.0060 0.0160 1
γ̂1,3,0,9 -0.0030 0.0060 -0.0010 -0.0140 0.0060 1
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State 1 γ̂1,3,1,0 0.0020 0.0060 0.0000 -0.0080 0.0130 1
γ̂1,3,1,1 -0.0040 0.0080 -0.0020 -0.0180 0.0070 1
γ̂1,3,1,2 -0.0060 0.0080 -0.0040 -0.0190 0.0060 1
γ̂1,3,1,3 -0.0010 0.0070 0.0000 -0.0120 0.0100 1
γ̂1,3,1,4 0.0010 0.0070 0.0000 -0.0100 0.0130 1
γ̂1,3,1,5 -0.0040 0.0070 -0.0020 -0.0160 0.0080 1
γ̂1,3,1,6 0.0010 0.0070 0.0000 -0.0100 0.0120 1
γ̂1,3,1,7 -0.0010 0.0060 0.0000 -0.0120 0.0100 1
γ̂1,3,1,8 0.0000 0.0060 0.0000 -0.0110 0.0100 1
γ̂1,3,1,9 0.0020 0.0060 0.0010 -0.0070 0.0120 1

IsSubAway State 0 γ̂1,4,0,0 0.0000 0.0030 0.0000 -0.0050 0.0050 1
γ̂1,4,0,1 0.0010 0.0030 0.0000 -0.0040 0.0070 1
γ̂1,4,0,2 -0.0080 0.0050 -0.0080 -0.0150 0.0000 1
γ̂1,4,0,3 0.0010 0.0030 0.0000 -0.0040 0.0070 1
γ̂1,4,0,4 -0.0010 0.0030 0.0000 -0.0070 0.0040 1
γ̂1,4,0,5 -0.0020 0.0030 -0.0010 -0.0080 0.0030 1
γ̂1,4,0,6 -0.0090 0.0050 -0.0090 -0.0150 0.0000 1
γ̂1,4,0,7 -0.0010 0.0030 0.0000 -0.0070 0.0040 1
γ̂1,4,0,8 -0.0050 0.0050 -0.0050 -0.0130 0.0010 1
γ̂1,4,0,9 -0.0010 0.0030 0.0000 -0.0070 0.0040 1

State 1 γ̂1,4,1,0 0.0010 0.0030 0.0010 -0.0030 0.0080 1
γ̂1,4,1,1 0.0000 0.0030 0.0000 -0.0050 0.0050 1
γ̂1,4,1,2 0.0000 0.0030 0.0000 -0.0050 0.0050 1
γ̂1,4,1,3 -0.0010 0.0030 0.0000 -0.0070 0.0030 1
γ̂1,4,1,4 0.0050 0.0040 0.0040 -0.0010 0.0120 1
γ̂1,4,1,5 0.0010 0.0030 0.0000 -0.0040 0.0070 1
γ̂1,4,1,6 -0.0030 0.0040 -0.0020 -0.0100 0.0020 1
γ̂1,4,1,7 -0.0020 0.0040 -0.0010 -0.0090 0.0030 1
γ̂1,4,1,8 0.0000 0.0030 0.0000 -0.0040 0.0060 1
γ̂1,4,1,9 0.0030 0.0040 0.0020 -0.0020 0.0100 1

IsSubHome State 0 γ̂1,5,0,0 -0.0020 0.0030 -0.0010 -0.0070 0.0030 1
γ̂1,5,0,1 0.0010 0.0030 0.0000 -0.0030 0.0070 1
γ̂1,5,0,2 -0.0030 0.0040 -0.0030 -0.0100 0.0020 1
γ̂1,5,0,3 0.0010 0.0030 0.0000 -0.0030 0.0070 1
γ̂1,5,0,4 -0.0010 0.0030 0.0000 -0.0060 0.0040 1
γ̂1,5,0,5 0.0010 0.0030 0.0000 -0.0030 0.0070 1
γ̂1,5,0,6 -0.0010 0.0030 0.0000 -0.0060 0.0040 1
γ̂1,5,0,7 -0.0020 0.0030 -0.0010 -0.0070 0.0030 1
γ̂1,5,0,8 -0.0010 0.0030 0.0000 -0.0060 0.0030 1
γ̂1,5,0,9 0.0000 0.0030 0.0000 -0.0040 0.0050 1

State 1 γ̂1,5,1,0 0.0010 0.0040 0.0000 -0.0040 0.0070 1
γ̂1,5,1,1 0.0090 0.0050 0.0090 0.0000 0.0170 1
γ̂1,5,1,2 -0.0020 0.0040 -0.0010 -0.0090 0.0030 1
γ̂1,5,1,3 0.0000 0.0030 0.0000 -0.0050 0.0060 1
γ̂1,5,1,4 -0.0030 0.0040 -0.0020 -0.0110 0.0030 1
γ̂1,5,1,5 -0.0180 0.0050 -0.0180 -0.0260 -0.0090 1
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γ̂1,5,1,6 -0.0070 0.0050 -0.0070 -0.0150 0.0010 1
γ̂1,5,1,7 0.0010 0.0040 0.0000 -0.0050 0.0070 1
γ̂1,5,1,8 -0.0030 0.0040 -0.0020 -0.0110 0.0030 1
γ̂1,5,1,9 -0.0010 0.0040 0.0000 -0.0070 0.0050 1

RelHumid State 0 γ̂1,6,0,0 0.0000 0.0170 0.0000 -0.0270 0.0240 1
γ̂1,6,0,1 0.0010 0.0170 0.0000 -0.0250 0.0300 1
γ̂1,6,0,2 -0.0040 0.0190 -0.0010 -0.0340 0.0230 1
γ̂1,6,0,3 0.0040 0.0200 0.0020 -0.0220 0.0390 1
γ̂1,6,0,4 0.0000 0.0180 0.0000 -0.0300 0.0260 1
γ̂1,6,0,5 -0.0010 0.0180 0.0000 -0.0300 0.0230 1
γ̂1,6,0,6 -0.0060 0.0200 -0.0030 -0.0380 0.0250 1
γ̂1,6,0,7 -0.0040 0.0190 -0.0020 -0.0360 0.0220 1
γ̂1,6,0,8 0.0020 0.0170 0.0000 -0.0230 0.0320 1
γ̂1,6,0,9 0.0030 0.0170 0.0000 -0.0220 0.0290 1

State 1 γ̂1,6,1,0 0.0040 0.0170 0.0010 -0.0210 0.0300 1
γ̂1,6,1,1 0.0020 0.0170 0.0000 -0.0270 0.0270 1
γ̂1,6,1,2 0.0040 0.0190 0.0010 -0.0220 0.0350 1
γ̂1,6,1,3 -0.0070 0.0200 -0.0030 -0.0400 0.0220 1
γ̂1,6,1,4 -0.0010 0.0180 0.0000 -0.0300 0.0260 1
γ̂1,6,1,5 0.0000 0.0170 0.0000 -0.0250 0.0290 1
γ̂1,6,1,6 0.0070 0.0200 0.0040 -0.0220 0.0400 1
γ̂1,6,1,7 0.0050 0.0190 0.0020 -0.0200 0.0380 1
γ̂1,6,1,8 0.0010 0.0170 0.0000 -0.0270 0.0270 1
γ̂1,6,1,9 0.0020 0.0170 0.0000 -0.0250 0.0260 1

Temp State 0 γ̂1,7,0,0 0.0050 0.0210 0.0020 -0.0260 0.0390 1
γ̂1,7,0,1 -0.0040 0.0210 -0.0010 -0.0380 0.0250 1
γ̂1,7,0,2 -0.0070 0.0230 -0.0040 -0.0480 0.0230 1
γ̂1,7,0,3 -0.0030 0.0210 -0.0010 -0.0360 0.0270 1
γ̂1,7,0,4 0.0000 0.0210 0.0000 -0.0310 0.0320 1
γ̂1,7,0,5 0.0080 0.0220 0.0040 -0.0240 0.0440 1
γ̂1,7,0,6 -0.0010 0.0210 0.0000 -0.0310 0.0330 1
γ̂1,7,0,7 -0.0060 0.0230 -0.0030 -0.0430 0.0270 1
γ̂1,7,0,8 0.0040 0.0200 0.0010 -0.0280 0.0340 1
γ̂1,7,0,9 0.0000 0.0190 0.0000 -0.0270 0.0310 1

State 1 γ̂1,7,1,0 -0.0060 0.0210 -0.0020 -0.0390 0.0250 1
γ̂1,7,1,1 0.0040 0.0210 0.0010 -0.0240 0.0390 1
γ̂1,7,1,2 0.0090 0.0230 0.0050 -0.0230 0.0490 1
γ̂1,7,1,3 0.0050 0.0210 0.0010 -0.0240 0.0400 1
γ̂1,7,1,4 0.0030 0.0200 0.0000 -0.0270 0.0350 1
γ̂1,7,1,5 -0.0050 0.0220 -0.0020 -0.0410 0.0260 1
γ̂1,7,1,6 0.0050 0.0210 0.0010 -0.0220 0.0410 1
γ̂1,7,1,7 0.0100 0.0230 0.0060 -0.0240 0.0460 1
γ̂1,7,1,8 -0.0020 0.0200 -0.0010 -0.0340 0.0290 1
γ̂1,7,1,9 0.0010 0.0190 0.0000 -0.0290 0.0280 1

WaterSls State 0 γ̂1,8,0,0 0.0020 0.0060 0.0000 -0.0070 0.0120 1
γ̂1,8,0,1 -0.0010 0.0060 0.0000 -0.0120 0.0080 1
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γ̂1,8,0,2 0.0060 0.0070 0.0040 -0.0040 0.0190 1
γ̂1,8,0,3 0.0000 0.0060 0.0000 -0.0100 0.0100 1
γ̂1,8,0,4 0.0000 0.0060 0.0000 -0.0110 0.0090 1
γ̂1,8,0,5 0.0000 0.0060 0.0000 -0.0090 0.0110 1
γ̂1,8,0,6 -0.0010 0.0060 0.0000 -0.0120 0.0080 1
γ̂1,8,0,7 0.0050 0.0070 0.0030 -0.0050 0.0170 1
γ̂1,8,0,8 0.0040 0.0060 0.0020 -0.0050 0.0160 1
γ̂1,8,0,9 0.0000 0.0050 0.0000 -0.0090 0.0100 1

State 1 γ̂1,8,1,0 0.0190 0.0090 0.0190 0.0030 0.0340 1
γ̂1,8,1,1 0.0060 0.0080 0.0040 -0.0050 0.0210 1
γ̂1,8,1,2 -0.0060 0.0080 -0.0040 -0.0200 0.0040 1
γ̂1,8,1,3 -0.0030 0.0070 -0.0010 -0.0160 0.0080 1
γ̂1,8,1,4 -0.0010 0.0060 0.0000 -0.0130 0.0090 1
γ̂1,8,1,5 0.0020 0.0060 0.0010 -0.0080 0.0140 1
γ̂1,8,1,6 0.0000 0.0060 0.0000 -0.0110 0.0110 1
γ̂1,8,1,7 0.0070 0.0080 0.0050 -0.0050 0.0210 1
γ̂1,8,1,8 -0.0020 0.0070 0.0000 -0.0140 0.0080 1
γ̂1,8,1,9 -0.0100 0.0080 -0.0100 -0.0240 0.0020 1

Wind State 0 γ̂1,9,0,0 -0.0090 0.0130 -0.0070 -0.0300 0.0100 1
γ̂1,9,0,1 0.0060 0.0160 0.0030 -0.0170 0.0340 1
γ̂1,9,0,2 -0.0040 0.0140 -0.0020 -0.0300 0.0160 1
γ̂1,9,0,3 0.0030 0.0140 0.0000 -0.0170 0.0260 1
γ̂1,9,0,4 -0.0040 0.0160 -0.0020 -0.0320 0.0200 1
γ̂1,9,0,5 0.0120 0.0180 0.0070 -0.0130 0.0410 1
γ̂1,9,0,6 0.0010 0.0200 0.0000 -0.0310 0.0350 1
γ̂1,9,0,7 0.0010 0.0150 0.0000 -0.0230 0.0260 1
γ̂1,9,0,8 -0.0040 0.0140 -0.0010 -0.0270 0.0170 1
γ̂1,9,0,9 -0.0070 0.0140 -0.0020 -0.0330 0.0110 1

State 1 γ̂1,9,1,0 0.0030 0.0130 0.0010 -0.0140 0.0270 1
γ̂1,9,1,1 -0.0150 0.0170 -0.0140 -0.0420 0.0080 1
γ̂1,9,1,2 0.0060 0.0140 0.0030 -0.0140 0.0300 1
γ̂1,9,1,3 0.0000 0.0140 0.0000 -0.0220 0.0220 1
γ̂1,9,1,4 0.0090 0.0170 0.0060 -0.0140 0.0380 1
γ̂1,9,1,5 0.0010 0.0180 0.0000 -0.0260 0.0310 1
γ̂1,9,1,6 0.0200 0.0220 0.0170 -0.0090 0.0550 1
γ̂1,9,1,7 -0.0060 0.0160 -0.0030 -0.0310 0.0170 1
γ̂1,9,1,8 -0.0050 0.0150 -0.0010 -0.0290 0.0150 1
γ̂1,9,1,9 -0.0070 0.0140 -0.0020 -0.0340 0.0100 1

AvgClsOver05Prob - γ̂2,0 -0.0200 0.0290 -0.0120 -0.0740 0.0180 1
AvgClsOver15Prob - γ̂2,1 -0.0100 0.0330 -0.0020 -0.0700 0.0420 1
AvgClsOver25Prob - γ̂2,2 -0.0110 0.0400 -0.0030 -0.0770 0.0570 1
AvgClsOver35Prob - γ̂2,3 0.0100 0.0430 0.0010 -0.0640 0.0820 1
AvgClsOver45Prob - γ̂2,4 0.0270 0.0420 0.0150 -0.0290 0.1010 1
AvgClsOver55Prob - γ̂2,5 0.0040 0.0320 0.0000 -0.0460 0.0610 1
AvgClsProbAway - γ̂2,6 -0.0040 0.0200 -0.0020 -0.0360 0.0240 1
AvgClsProbHome - γ̂2,7 0.0070 0.0190 0.0040 -0.0200 0.0370 1
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BeerPrice - γ̂2,8 0.0170 0.0170 0.0150 -0.0060 0.0440 1
GeoDist - γ̂2,9 0.0070 0.0060 0.0070 -0.0010 0.0170 1
HotWinePrice - γ̂2,10 0.0170 0.0160 0.0150 -0.0050 0.0420 1
Is1stDiv - γ̂2,11 -0.0440 0.0220 -0.0430 -0.0830 -0.0090 1
IsMobCpoint - γ̂2,12 0.0000 0.0100 0.0000 -0.0170 0.0180 1
IsPubHoliday - γ̂2,13 0.0020 0.0050 0.0010 -0.0050 0.0110 1
IsRelegAway - γ̂2,14 0.0010 0.0050 0.0000 -0.0050 0.0100 1
IsRunner - γ̂2,15 0.0010 0.0080 0.0000 -0.0120 0.0150 1
IsSchlHoliday - γ̂2,16 0.0010 0.0060 0.0000 -0.0080 0.0110 1
IsSoldOut - γ̂2,17 0.0020 0.0060 0.0010 -0.0070 0.0140 1
IsWasen - γ̂2,18 -0.0020 0.0050 -0.0010 -0.0120 0.0050 1
Kickoff15:30 - γ̂2,19 0.0290 0.0250 0.0250 -0.0050 0.0690 1
Kickoff15:45 - γ̂2,20 0.0090 0.0080 0.0080 -0.0020 0.0220 1
Kickoff17:30 - γ̂2,21 0.0110 0.0140 0.0070 -0.0060 0.0370 1
Kickoff18:00 - γ̂2,22 0.0070 0.0090 0.0050 -0.0040 0.0240 1
Kickoff18:30 - γ̂2,23 0.0300 0.0150 0.0290 0.0060 0.0540 1
Kickoff20:30 - γ̂2,24 0.0430 0.0240 0.0410 0.0060 0.0830 1
MonthAug - γ̂2,25 0.0050 0.0080 0.0020 -0.0060 0.0190 1
MonthDec - γ̂2,26 0.0020 0.0060 0.0010 -0.0060 0.0130 1
MonthFeb - γ̂2,27 0.0000 0.0060 0.0000 -0.0100 0.0090 1
MonthJan - γ̂2,28 -0.0050 0.0060 -0.0040 -0.0160 0.0030 1
MonthMar - γ̂2,29 -0.0010 0.0050 0.0000 -0.0100 0.0060 1
MonthMay - γ̂2,30 0.0020 0.0050 0.0010 -0.0060 0.0120 1
MonthNov - γ̂2,31 -0.0050 0.0060 -0.0030 -0.0160 0.0040 1
MonthOct - γ̂2,32 0.0030 0.0070 0.0010 -0.0060 0.0140 1
MonthSep - γ̂2,33 0.0030 0.0080 0.0010 -0.0080 0.0170 1
NumCpoints - γ̂2,34 0.0140 0.0170 0.0110 -0.0100 0.0430 1
NumSpects - γ̂2,35 0.0490 0.0110 0.0490 0.0320 0.0680 1
RankAwayLast - γ̂2,36 0.0010 0.0040 0.0000 -0.0070 0.0080 1
RankAwayPre - γ̂2,37 -0.0010 0.0060 0.0000 -0.0110 0.0080 1
RankHomePre - γ̂2,38 -0.0010 0.0080 0.0000 -0.0150 0.0120 1
Round - γ̂2,39 0.0020 0.0100 0.0000 -0.0140 0.0160 1
Season2014/15 - γ̂2,40 0.0010 0.0090 0.0000 -0.0130 0.0160 1
Season2015/16 - γ̂2,41 0.0000 0.0100 0.0000 -0.0160 0.0150 1
Season2017/18 - γ̂2,42 0.0040 0.0120 0.0010 -0.0130 0.0230 1
Season2018/19 - γ̂2,43 0.0080 0.0150 0.0040 -0.0100 0.0330 1
WkdayMo - γ̂2,44 -0.0090 0.0120 -0.0060 -0.0310 0.0070 1
WkdaySa - γ̂2,45 0.0180 0.0220 0.0170 -0.0130 0.0540 1
WkdaySu - γ̂2,46 -0.0170 0.0180 -0.0150 -0.0470 0.0090 1
WkdayTu - γ̂2,47 -0.0030 0.0060 -0.0020 -0.0150 0.0050 1
WkdayWe - γ̂2,48 0.0040 0.0090 0.0010 -0.0100 0.0200 1
BeerSls State 0 ϕ̂1,0,1 0.1930 0.0100 0.1930 0.1770 0.2080 1

ϕ̂1,0,2 0.1690 0.0100 0.1690 0.1530 0.1850 1
ϕ̂1,0,3 0.0630 0.0100 0.0630 0.0460 0.0780 1
ϕ̂1,0,4 0.0280 0.0110 0.0280 0.0100 0.0460 1
ϕ̂1,0,5 0.0330 0.0100 0.0330 0.0160 0.0500 1
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ϕ̂1,0,6 0.0150 0.0110 0.0150 -0.0010 0.0310 1
ϕ̂1,0,7 0.0090 0.0100 0.0080 -0.0040 0.0250 1
ϕ̂1,0,8 -0.0010 0.0060 0.0000 -0.0120 0.0080 1
ϕ̂1,0,9 -0.0080 0.0080 -0.0080 -0.0210 0.0030 1

State 1 ϕ̂1,1,1 0.1840 0.0100 0.1840 0.1670 0.2000 1
ϕ̂1,1,2 0.1800 0.0100 0.1800 0.1630 0.1960 1
ϕ̂1,1,3 0.0580 0.0100 0.0580 0.0410 0.0750 1
ϕ̂1,1,4 0.0230 0.0120 0.0230 0.0000 0.0390 1
ϕ̂1,1,5 0.0230 0.0110 0.0230 0.0000 0.0380 1
ϕ̂1,1,6 0.0170 0.0110 0.0170 -0.0010 0.0340 1
ϕ̂1,1,7 0.0220 0.0110 0.0220 0.0050 0.0400 1
ϕ̂1,1,8 0.0000 0.0060 0.0000 -0.0100 0.0100 1
ϕ̂1,1,9 -0.0020 0.0070 -0.0010 -0.0140 0.0080 1

Noise - σ̂ 0.2560 0.0020 0.2560 0.2530 0.2600 1
SlabWitdh - c2 0.0110 0.0010 0.0110 0.0090 0.0130 1

This table presents summary statistics on the posterior distributions of the coefficients, estimated in the main specifica-
tion. We exclude the match minute dummies for presentation reasons. Columns 7 and 8 include the 5% and 95% quantiles
of the highest density interval, respectively. The last column provides the Gelman-Rubin statistic. Indices of coefficients
denote the level, the variable, the state, and the lag. For ϕ, we drop the variable index, because it is redundant. The
median for β1,1,1,3 equal to 0.02 implies: a one standard deviation increase of Surprise in positive state 1 increases the
conditional mean of beer sales during minute 3 after a key match event by approximately 2%, ceteris paribus.

Figure C1. Main Model Forest Plot

0.3 0.2 0.1 0.0 0.1 0.2 0.3
1

This figure shows posterior distributions of the intercept ν̂1 for each match. The matches are sorted chronologically from
top to bottom (seasons 2013/14 to 2018/19).
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C.2 Extended Specifications and Robustness Checks

Figure C2. Regularized Horseshoe Posterior Distributions of Coefficients for Surprise
and Suspense
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(Equivalent description as for figure 3, but for the regularized horseshoe specification).
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Figure C3. Normal Prior Posterior Distributions of Coefficients for Surprise and
Suspense
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(Equivalent description as for figure 3, but for the normal prior specification).
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Figure C4. Seasons Posterior Distributions of Coefficients for Surprise and Suspense
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(Equivalent description as for figure 3, but for the seasons specification).
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Figure C5. Shock Posterior Distributions of Coefficients for Surprise and Suspense
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(Equivalent description as for figure 3, but for the shock specification).
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Figure C6. Die-Hard Fans Posterior Distributions of Coefficients for Surprise and
Suspense
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(Equivalent description as for figure 3, but for the die-hard fans specification).
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Figure C7. Shandy Posterior Distributions of Coefficients for Surprise and Suspense
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(Equivalent description as for figure 3, but for the shandy specification).
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Figure C8. Soft Drinks Posterior Distributions of Coefficients for Surprise and Sus-
pense
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(Equivalent description as for figure 3, but for the soft drinks specification).
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