Information concerning Colloquium doctum Mathematics level 2

for International Business Administration (IBA)
and International Bachelor Economics & Business Economics (IBEB)

ERASMUS UNIVERSITY ROTTERDAM

General information

Available time: 2.5 hours (150 minutes).

The use of a so called “graphing calculator” or “programmable calculator” is not permit-
ted. “Simple” scientific calculators are allowed.

Please write down a complete set of calculations for each of the questions. All calculations
must be done algebraically, and all necessary steps, formulas, substitutions, diagrams or
graphs leading to your final answer must be written down. Furthermore, questions con-
taining the words “solve”, “derive” or “calculate” require an exact answer; a decimal
approximation is not allowed.

Content information

In the exam you may find questions regarding the following topics:

A: NUMBERS AND RULES OF CALCULATION

1. The sets N, Z,Q, R and the operations addition, subtraction, multiplication and

division.
Natural numbers: N=1{0,1,2,3,...}
Integers: z={...,-2,-1,0,1,2,...}

Rational numbers: Q ={% |a € Z,be N,b# 0}

2. Absolute value |z| and simple graphs corresponding with absolute value.

| = r when x>0
TI=Y =z when z<0

B: ALGEBRAIC SKILLS

1. Fractions
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2. Special products
o (a+b)>=0a®=+2ab+0b?
e (a+b)(a—10b)=a®> -1

3. Factorization of a polynomial of second degree (quadratic function) into linear
terms.

For example:
o f(z) = 2% — 22 — 15 can be factorized as follows: f(z) = (x —5)(z + 3)
o f(x) = 2% —2x can be factorized as follows: f(x) = z(z —2)
4. The power rules and corresponding rules for logarithms. Use of rational and
negative exponents.
o af . a7 =gl
o — — P4

o (aP)? = Pt
)
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e ar = {/a
e Jloga? =p- 9loga
. Tlog loga Ina Ploga

" logg Ing rlogyg
e Jloga+ logb= 9logab

e Jloga — Ylogh = glog%

Remark: log is the commonly used notation for °log

5. Application of the items mentioned in B1 through 4

o through substitution of numbers
e through substitution of expressions
o by reformulation and reduction of expressions

C: STANDARD FUNCTIONS

1. Properties of the following standard functions:
e polynomials

In particular:
the linear function y = ax + b
the quadratic function y = ax® + bx + ¢

azr+b

e the rational function y = e

power functions y = c- 2"

In particular the function y = \/x

exponential functions y = ¢* and their inverse functions y = 9logx

the function y = € and its inverse function y = Inxz



2. Sketch the graphs of the standard functions and use the notions domain (all
possible values of x for which the function is defined), range (the set of all
values of y obtained as z varies in the domain), zeroes, ascending, descending
function and asymptotic behaviour.

For example: The function y = 2% is ascending and has a horizontal asymp-
tote y = 0; the domain of function y = Inx is equal to (0,00], the function is
ascending and has a vertical asymptote x = 0.

3. Apply transformations on graphs such as shifting and stretching, and describe
the link between the transformation and the alteration of the corresponding
function.

e translation of f(z) along the vector (a,b) results in y = f(x —a) +b
e multiplication of f(x) with a with respect to the z-axis results in y = a- f(x)
e multiplication of f(x) with b with respect to the y-axis results iny = f(x/b)

For example: argue that the domain of y = v/3x — 6 is equal to © > 2.

For example: sketch the graph of f(x) =2+ 3v/x — 6, where x > 6, based on
a sketch of the graph of \/x

D: EQUATIONS AND INEQUALITIES

1. Solving equations using the following general rules

e a-b=0a=00rb=0
e a-b=a-cea=0o0rb=c

° %:c@a:b-candb;ﬁo

a ¢
° g—aéwd—b-c and b,d # 0
e d’=bsa=bora=-b

2. Solve equations with polynomials using standard algorithms

e Linear equations
e Quadratic equations of the form ax® +b=0 or ax?® + bxr =0

o Solve general quadratic equations of the form ax® + bx + c = 0 by means
of factorization or by means of the so-called “quadratic formula”:

The solutions of ax® + bx +c =0 are given by x1 2 = —bdvbi—dac Vzlf%
e Linear or quadratic equations with parameters
3. Solve equations of the type:
l'a = b = €Tr = b% = %

loga In
T — g _ g _ a
9* =a = x= Yloga = Tosg — Ing

Ilogr =a = x=g°

4. Solve equations of the type f(x) = g(x) algebraically
5. Solve equations of the type |f(x)| = g(z) algebraically



6. Solve inequalities of the type f(x) > g(x) by first solving f(z) = g(z) alge-
braically and subsequently using a sketch of both graphs.

For example: When solving x* — 3x — 10 > —x + 5, we first compute the
solutions of x> — 3z — 10 = —x + 5, i.e. © =5 of x = —3. A sketch of the
graphs supplies the answer to the problem: x < —3 or xz > 5.

E: CALCULUS

1. Recognize and use the different symbols for the derivative of a function.
f(z), %, % and %(x) all denote the same notion.
2. Compute the derivative of the sum, the product, the quotient and of combina-
tions of standard functions, as described in item C1. Use the chain rule.

Some examples:
1
sum: flx)=2*+x = f'(x) :2z+ﬁ

product: f(x)=(*=3z+5)lnaz = f(z)=2z—-3)Inz+ (2 —32+5)- i

2 2 2

. oz ;o (b +3)-2x—2°(5) 5z’ + 6w
quotient: f(z) = 5213 = fl(x) = (5z + 3)2 - (5z + 3)2
chain rule:  f(x) = elr =5 = f(z) =8zxete’ 5

3. Use the differential quotient (Ay/Ax) as indication of the local change of a
function.

4. Determine on which intervals a function is constant (derivative = 0), ascending
(derivative > 0) or descending (derivative < 0).

5. Determine (by inspecting the sign of the derivative) whether a function has
maximum and/or minimum values, and calculate the coordinates of these ex-
treme values.

Ezample: the derivative of the function f(x) = 2% — 2x — 15 is equal to 0
when x = 1. For every x < 1 the function is decreasing, for every x > 1 the
function increasing, so the function has a minimum at x = 1. The coordinates
of this minimum are (1,—16).

6. Determine the second derivative f”(z) of the sum, the product, the quotient
and (in simple cases) of combinations of standard functions as described in
item C1.

7. Determine on which intervals a function is convex (second derivative > 0) or
concave (second derivative < 0).

The second derivative of the function f(x) = (v —1)3 +4 is equal to f"(x) =
6(x —1). This second derivative is equal to 0 only if x = 1. For every x < 1
the function f is concave and for every x > 1 the function is convez.



8. Determine (by inspecting the sign of the second derivative) whether a function
has points of inflection, and calculate the coordinates of such inflection points.

o The function f(z) = (x — 1) + 4 in the example above has a point of
inflection at x = 1. The coordinates are (1,4).

e The second derivative of the function f(x) = (x — 1)* + 4 is equal to
f"(z) = 12(x — 1)%. This second derivative is equal to 0 only if z = 1.
For every x < 1 the function f satisfies f(x) > 0 and for every x > 1
the function also satisfies f"(x) > 0. Hence, this function does not have
any point of inflection.

F: STRAIGHT LINES AND SYSTEMS OF EQUATIONS

1. Determine the formula of a straight line either in case two of its points are
given, or in case a single point and the slope of the line are given.

2. Know the conditions for two parallel straight lines and two perpendicular straight
lines.

The two lines y = ax + b and y = cx + d are parallel when a = c. The lines
are perpendicular when ac = —1.

3. Give the formulas for the tangent line and the normal line (i.e. the line per-
pendicular to the tangent line) at a given point on the graph of (combinations
of) standard functions.

Ezample: the function f(x) = 2% — 2x — 15 satisfies f(6) = 9 and f'(6) = 10.

The tangent line of the graph of f(x) at x = 6 is described by y = 10z — 51.

The normal line at the point with x-coordinate equal to 6 is given by y =
1 96
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4. Solve a system of two linear equations with two unknowns.

For example:
20 +2y = 2 T =2
=
3r+y = 5

5. Sketch the solution of a system with linear inequalities.



