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The burden of chronic disease 

Chronic or noncommunicable diseases are broadly defined as conditions that last one 

year or more and that result of a combination of genetic, physiological, environmental, 

and behavioural factors, requiring ongoing medical attention or limiting activities of 

daily living (1, 2). The risk factors for chronic diseases can be categorised in 

modifiable behavioural risk factors, such as tobacco use, physical inactivity, unhealthy 

diet, and the harmful use of alcohol and metabolic risk factors like raised blood 

pressure, overweight/obesity, hyperglycaemia, and hyperlipidaemia (3). 

An estimated 41 million people worldwide died of chronic diseases in 2016, 

representing 71% of all deaths. Four diseases were responsible for the vast majority 

of those deaths: cardiovascular diseases (17.9 million deaths), cancer (9.0 million 

deaths), chronic respiratory diseases (3.8 million deaths), and diabetes (1.6 million 

deaths) (2). In parallel with the high disease burden, the costs of managing chronic 

diseases take a huge toll on health care systems around the world, especially in highly 

developed countries. In the United States (US), circa 90% of the nation’s $3.8 trillion in 

annual health care expenditure are attributable to patients with chronic and mental 

health conditions (4, 5). In the European Union (EU), every year, approximately 

550,000 people of working age die prematurely from chronic disease, costing EU 

economies €115 billion (0.8% of GDP) in health care expenses (6). In 2016, 70% to 

80% of the total healthcare costs in the EU – an estimated €700 billion – were spent 

on chronic diseases (7). 

The 2030 Agenda for Sustainable Development adopted by the United Nations (UN) 

recognised chronic disease management as one of the major challenges for improving 

health of the populations: unlike the advances against communicable diseases, the 

progress in the prevention and control of premature mortality from chronic diseases 

has lagged. Therefore, in order to achieve the World Health Organisation (WHO) 

Sustainable Development Goals targets by 2030, countries need comprehensive 

strategies to reduce death from chronic diseases more effectively (8). The current 

COVID-19 pandemic has reshaped public opinion on the importance of investing in 

health and healthcare, bringing into the public discussion the efforts that must be 

done in order to promote and safeguard public health. In the words of the Director-

General of the WHO, Dr. Tedros Adhanom Ghebreyesus: One of the key lessons from the 

COVID-19 pandemic is that we must invest in data and health information systems, as 

part of our overall public health capacity, before a crisis strikes. To emerge from this 

crisis stronger, we must be able to monitor progress with real-time, reliable and 

actionable data (8). 
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Heart failure 

Cardiovascular diseases lead as the disease group in chronic diseases with the highest 

burden in terms of disability-adjusted life-years (DALYs) across the globe (9). Heart 

failure (HF) is a type of cardiovascular disease described as a complex clinical 

syndrome that results from any structural or functional impairment of ventricular 

filling or ejection of blood (10, 11). HF is characterised by typical symptoms (e.g. 

breathlessness, ankle swelling and fatigue) and signs (e.g. elevated jugular venous 

pressure, pulmonary crackles and peripheral oedema) and it is caused by a structural 

and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or 

elevated intracardiac pressures at rest or during stress (12). 

The main terminology used to describe HF is based on the measurement of the left 

ventricular ejection fraction (LVEF), which represents the percentage of blood that is 

ejected from the left ventricle of the heart with each beat. HF comprises a wide range 

of patients, from those with normal LVEF [typically considered as ≥50%; HF with 

preserved ejection fraction] to those with reduced LVEF [typically considered as 

<40%; HF with reduced ejection fraction]. Patients with an LVEF in the range of 40–

49% are labelled as patients with mid-range ejection fraction (12). Each of those 

classes of patients according to their LVEF typically have different underlying 

aetiologies, demographics, co-morbidities, and response to therapy (13). 

Another terminology related to the symptomatic severity of HF is the New York Heart 

Association (NYHA) functional classification (14). NYHA classes are used to describe 

the severity of symptoms and exercise intolerance. They provide useful and 

complementary information about the presence and severity of the disease, thus 

guiding HF treatment (see Table 1.1). 

HF is a major health concern associated with significant morbidity, mortality, and 

reduced quality of life for patients. An estimated 64.3 million people are living with 

heart failure across the globe (15). In developed countries, approximately 1% to 2% of 

the adult population live with HF, with its prevalence rising above 10% amongst the 

population older than 70 years of age; incidence is estimated to be between 5 and 10 

per 1000 persons per year (16, 17). In addition, the absolute number of HF patients 

has been on the rise due to the aging population, global population growth, and 

improved survival after diagnosis (18, 19). 

The costs related to heart failure in 2014 in the EU were estimated around €29 billion 

in one year (20). In the US, those costs were estimated at $30.7 billion in 2012, 

including the cost of health care services, medicines to treat heart failure, and 

productivity losses (21). 
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Table 1.1 – New York Heart Association functional classification based on severity of symptoms and physical activity: 

adapted from the American Heart Association website (22) 

NYHA 
class 

Patient symptoms 

Class I No limitation of physical activity. Ordinary physical activity does not cause undue 
fatigue, palpitation, dyspnea (shortness of breath). 

Class II Slight limitation of physical activity. Comfortable at rest. Ordinary physical 
activity results in fatigue, palpitation, dyspnea. 

Class III Marked limitation of physical activity. Comfortable at rest. Less than ordinary 
activity causes fatigue, palpitation, or dyspnea. 

Class IV Unable to carry on any physical activity without discomfort. Symptoms of heart 
failure at rest. If any physical activity is undertaken, discomfort increases. 

 

Decreased health-related quality of life (HRQoL) in HF patients has been reported in 

the literature and it has been associated with the symptomatology of the disease (23-

26). More specifically, HRQoL has been shown to decrease as NYHA functional class 

worsens (27). HF entails a high hospitalisation burden, being responsible for about 1-

2% of all hospital admissions (28) and the most common diagnosis in hospitalised 

patients older than 65 years of age (29, 30). After the first diagnosis, the average HF 

patient is hospitalised roughly once a year (31). Regarding mortality, since HF is a 

complex syndrome that can be viewed as the chronic stage of any underlying disease 

or condition leading to cardiac impairment, attributing an absolute number deaths 

due to HF can be challenging; HF-related mortality is often attributed to the most 

likely cause for death and not specifically to HF (32). 

Numerous prognostic markers of death and/or HF hospitalisation have been 

identified in HF patients with HF (see Table 1.2). However, their direct clinical 

applicability may be limited and precise risk stratification in patients with HF remains 

challenging, in spite of the several multivariable prognostic risk scores developed for 

different HF populations (33-38). From a medical perspective, the goals of managing 

patients with HF consist in improving their clinical status, functional capacity, and 

quality of life, preventing hospital admissions, and reducing mortality (39-41). 

Table 1.2 – Markers of worse prognosis in patients with heart failure: reproduced from 2016 ESC Guidelines for the 
diagnosis and treatment of acute and chronic heart failure (12) 

Demographic data Older age, male sex, low socio-economic status. 

Severity of heart failure Advanced NYHA Class, longer HF duration, reduced peak oxygen 
consumption, high VE-VCO2 slope, Cheyne–Stoke ventilation, short 
6-minute walking distance, reduced muscle strength, poor quality of 
life. 
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Clinical status High resting heart rate, low blood pressure, clinical features of fluid 
overload (both pulmonary congestion and peripheral oedema, 
jugular venous dilatation, hepatomegaly), clinical features of 
peripheral hypoperfusion, body wasting, frailty. 

Myocardial remodelling 
and severity of heart 
dysfunction 

Low LVEF, LV dilation, severe diastolic LV dysfunction, high LV 
filling pressure, mitral regurgitation, aortic stenosis, LV 
hypertrophy, left atrial dilatation, RV dysfunction, pulmonary 
hypertension, dyssynchrony, vast area of hypo/akinesis, wide QRS 
complex, presumed inflammation or infiltration on CMR, inducible 
ischaemia and poor viability on imaging. 

Biomarkers of 
neurohormonal 
activation 

Low sodium, high natriuretic peptides, high plasma renin activity, 
high aldosterone and catecholamines, high endothelin-1, high 
adrenomedullin, high vasopressin. 

Other biomarkers Markers of renal function, inflammatory markers, cardiac stress 
markers, cardiac damage markers, metabolic markers, collagen 
markers, markers of organ damage/dysfunction. 

Genetic testing Certain mutations in inherited cardiomyopathies associated with 
high-risk of sudden cardiac death or rapid HF progression. 

Cardiovascular co-
morbidities 

Atrial fibrillation, ventricular arrhythmia, non-revascularisable 
coronary artery disease, previous stroke/TIA, peripheral arterial 
disease. 

Non-cardiovascular co-
morbidities 

Diabetes, anaemia, iron deficiency, COPD, renal failure, liver 
dysfunction, sleep apnoea, cognitive impairment, depression. 

Non-adherence Non-adherence with recommended HF treatment. 

Clinical events HF hospitalisation, aborted cardiac arrest, ICD shocks. 

Abbreviations: CMR, cardiac magnetic resonance; COPD, chronic obstructive pulmonary 
disease; HF, heart failure; ICD, implantable cardioverter defibrillator; LV, left ventricular; LVEF, 
left ventricular ejection fraction; NYHA, New York Heart Association; QRS, Q, R, and S waves 
(combination of three of the graphical deflections); RV, right ventricular; TIA, transient 
ischaemic attack; VE-VCO2, ventilatory equivalent ratio for carbon dioxide. 

 

Chronic disease management and technology 

Chronic disease management (CDM) consists in detecting, screening, and treating 

chronic diseases and providing access to palliative care for those in need (42). 

Managing chronic diseases is a major challenge for healthcare systems worldwide, 

which have been primarily designed to address acute episodic care rather than to 

provide organised care for people with long-term medical conditions (43). Chronic 

diseases often require long periods of supervision, observation, or care, which makes 

the basic features of primary care – including continuity, coordination, and 

comprehensiveness – the suitable setting for managing chronic conditions (44). In 

fact, evidence suggests that reorienting health policy and healthcare towards chronic 
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care systems – including strong primary care, which is more proactive in nature – 

generates better health outcomes at a lower cost than reactive systems relying mainly 

on secondary care (45, 46). 

The Chronic Care Model is a well-established framework for CDM and for practice 

improvement. It includes key elements such as better integrated and coordinated care, 

collaboration across multidisciplinary teams of care providers, planned care with 

regular follow-up and review, and support for patient self-management (47). Despite 

evidence showing that that model leads to more effective care and improved patient 

outcomes for people with chronic diseases (48, 49), there is also evidence suggesting 

that many health care providers do not follow the recommended best practices 

effectively (50, 51). 

Many barriers to the achievement of optimal CDM have been identified, including: (i) 

the complexity in the communication within the caring team, (ii) the complexity of 

designing meaningful care plans that are up-to-date, evidence-based, and personalised 

for the patient, (iii) the difficulty in keeping track of the actions of the caring team 

members and their responsibilities, (iv) the burden of regular review and follow-up, 

(v) the limited means of providing support for patient self-management, and (vi) the 

administrative overheads and bureaucracy associated with keeping clinical records 

(52-54). 

Through tackling all the aforementioned barriers, healthcare practice supported by 

digital technologies (electronic processes and communications, the internet, and other 

information technologies) – usually branded under the broad name of eHealth, or 

mHealth if involving mobile devices – is expected to be a more effective way of 

approaching chronic disease management (55). Therefore, considering that existing 

health care delivery models seems to be outdated in order to effectively manage 

chronic disease – as evidenced by low adherence to quality and control indicators –, 

modifying health care delivery to include team-based care combined with patient-

centred technologies seems to be a promising alternative (56) (see Figure 1.1). 

The World Health Assembly in 2018 acknowledged the potential of digital 

technologies to play a major role in improving public health. Then, delegates agreed 

on a resolution on digital health that urges Member States to prioritize the 

development and greater use of digital technologies in health as a way of promoting 

Universal Health Coverage and advancing the Sustainable Development Goals (57). 

The promise of technology in the treatment of chronic disease rests on two essential 

pillars: (i) providing a framework for patient engagement in changing modifiable 

behavioural risk factors and (ii) generating, collecting, treating, and analysing disease-

related data that can be used for predicting important events related to the disease 

and for fine-tuning the treatment of patients. 



Chapter 1 

8 

 

Figure 1.1 – Models of care delivery in chronic disease management: reproduced from Milani and Lavie (2015) (56) 
IPU, integrated practice unit; PCP, primary care physician. 

Early warning systems 

Early warning systems (EWS) are timely surveillance systems that collect information 

on diseases in order to anticipate health deterioration and to trigger prompt clinical 

intervention, thereby improving prognosis and treatment outcomes (58). Generally 

speaking, EWS in health care consist of three main elements (59): (i) monitoring and 

collection of clinical data (e.g. vital signs, biomarkers, self-reported health status); (ii) 

a framework allowing for the identification of patterns and trends in these data, 

indicating significant changes in the health status of the patients; and (iii) the 

establishment of pre-determined conditions – such as the existence of statistically 

uncommon patterns in the data, threshold values or ranges for specific parameters 

within the collected data, or the presence of a particular combination of signs and 

symptoms – that trigger an alarm and follow-up actions. Figure 1.2 presents a 

schematic representation of the operation of an early warning system. 

In a first approach, we can think of EWS as simple algorithms/plans of action based on 

bedside observations for identifying patients at risk on general hospital wards (60). In 

this context, EWS are tools developed for recording physiological parameters (e.g. 

systolic blood pressure, heart rate, respiratory rate, urinary output, temperature, level 

of consciousness, etc.) and for using them to assess the level of risk for an undesirable 
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outcome through a composite score. This score is used as a mechanism for early 

intervention and for treatment to be initiated (61). 

When seen in the light of the use of technology for chronic disease management, the 

implementation of EWS usually takes the form of any type of medical device for 

remote patient monitoring (RPM), which can be defined as a patient management 

approach that uses information and communication technologies to monitor and 

transmit physiological data related to patient health status between geographically 

separated individuals (62). RPM facilitates frequent or continuous assessment of 

disease signs and symptoms, which can be easily measured by patients, family or 

caregivers. It can lead to favourable health outcomes by improving patients' quality of 

life, by preventing the psychological and physical strain resulting from critical clinical 

events (e.g. hospital admissions, disease exacerbations, etc.), and by empowering 

patients and encourage them to take more responsibility for their own health (63, 64). 

RPM lays the foundation of a hospital to home framework, which may contribute to 

early discharge planning and to reduce hospital admissions as well as hospital stays. 

In this way, it present a promising patient management approach, especially for 

chronic diseases. 
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Figure 1.2 – Schematic representation of an early warning system 
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Nowadays computational potentialities allow for using more complex data analysis 

techniques, where the simple algorithms/plans of action mentioned above can be 

replaced by more complex methods. Diagnostic algorithms (DA) are mathematical 

relationships that use a wide range of data collected by EWS for calculating the 

likelihood of an event (e.g. hospitalisation or death). These algorithms are used for 

assisting medical personnel in their decision making process (65-68) by translating 

their output into clinical decision rules for clinical practice, for instance, by 

prioritising patients according to their likelihood of having an event or by raising an 

action-triggering alarm if the probability of having that event exceeds a pre-defined 

threshold (69).  

Finally, it is also worth mentioning the huge potentialities of artificial intelligence and 

machine learning for continuously improving the DA prediction capabilities through 

the incorporation of big data collected by the EWS and/or other data sources, as well 

as for the constant fine-tuning of the follow-up actions resulting from a DA, based on 

the collected data on health outcomes (70, 71). 

In conclusion, the future of EWS will be dictated by upcoming innovation in the field, 

the empowerment of patients – by involving them in their own health care –, and the 

acceptability of those interventions by health care professionals and patients. Given 

the unquestionable rise in the prevalence of chronic diseases, there will be an increase 

in the demand for innovative solutions. In reality, EWS are already playing a great role 

in shaping the future of health care and they are likely to see their importance grow 

sustainably. 

Health technology assessment 

Health technology assessment (HTA) is defined by the systematic evaluation of 

properties, effects, and/or impacts of health technology through a multidisciplinary 

process that assesses the social, economic, organisational and ethical issues of a health 

intervention or health technology with the main purpose informing a policy decision 

making (3). 

HTA can be used in the scope of technology-related policies and decisions in a variety 

of ways (72, 73): 

 Providing information on benefits and harms of new treatments compared to 

available treatment options; 

 Determining reimbursement status; 

 Supporting the price negotiation process; 
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 Helping clinicians and patients framing the use of an intervention for a particular 

clinical context; 

 Informing health professional associations about the role of a technology in 

clinical protocols and/or practice guidelines; 

 Supporting innovators in finding applications that are most likely to be (cost-

)effective; 

 Advising governments about the undertaking of public health programs (e.g., 

immunisation, screening, and environmental protection programs); 

 Liaising with lawmakers and other political decision makers about policies on 

technological innovation, research and development, regulation, payment, and 

delivery of health care; 

 Capacitating research agencies on evidence gaps and unmet medical needs; 

 Prioritising innovations are steering innovation towards conditions with the 

highest unmet need; 

 Supporting policy makers in planning resource capacity. 

HTA has strong political support in most developed countries, where HTA agencies 

have been established for promoting rational choices informed by evidence on the 

allocation of limited resources for health care (74). The European Network for Health 

Technology Assessment (EUnetHTA), a joint effort aimed at creating an effective and 

sustainable network for HTA agencies across Europe (75), defines nine key domains 

for HTA activities (76): (i) health problem and current use of technology, (ii) 

description and technical characteristics of technology, (iii) safety, (iv) clinical 

effectiveness, (v) costs and economic evaluation, (vi) ethical analysis, (vii) 

organisational aspects, (viii) patient and social aspects, and (ix) legal aspects. 

Economic evaluation 

Economic evaluation (EE) is a topic of growing interest in the context of the 

assessment of health technologies, as policy makers have turned to evidence based 

decision making for supporting their political decisions. 

For making those decisions, the more conventional welfarist economics aims at 

providing a coherent ethical framework for making meaningful statements about 

whether some states of the world are socially preferable to others (77). The neo-

classical stream of welfarist economics is built on four key tenets (78): (i) the utility 

principle, where individuals rationally maximise their welfare by ordering options 

and choosing their preferred one; (ii) individual sovereignty, which determines that 
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individuals are the best judges of what contributes most to their utility; (iii) utility is 

derived only from the outcomes of behaviour and processes rather than the processes 

or intentions leading led to the outcomes; and (iv) welfarism, i.e. judging the goodness 

of states of affairs only by utility information. Under this line of decision making, 

interpersonal comparisons are normally disregarded and an overall social judgement 

is reached by using the Pareto principle, i.e. any increase of utility for one individual 

involves no utility loss for another (79). 

Despite the welfarist approach being the most commonly used for making decisions in 

the health care space, an alternative extra-welfarist approach has been suggested, 

which differs from the first in four general principles: (i) by rejecting the tenet of 

welfarism that restricts the analysis to the individual utility – in health policy, other 

outcomes may include health or health gain, the distribution of health or health gain, 

and other measures like patient preferences or caregiver burden; (ii) by allowing the 

use of sources of valuation other than the affected individuals (e.g., experts, 

representatives of the general public, or authoritative decision makers); (iii) by 

permitting the weighting of relevant outcomes, which are often considered important 

as means of incorporating equity and other considerations, through a variety of ethical 

considerations including wealth, need, and desert; and (iv) by enabling the 

interpersonal comparison of relevant outcomes – although normally not in terms of 

individual utility, but rather in terms of capabilities and characteristics like health, 

handicap, ability to cope, schooling, ability to exercise discretion –, thus enabling 

movement beyond Paretian economics (80). In summary, the extra-welfarist approach 

proposes to offer the broadening of the evaluative space and the consequences that 

performing an evaluation may have in decision making. 

In a practical manner, EE in health care can be defined as the comparison of two or 

more alternative healthcare interventions in terms of their costs and effects (81). EEs 

are labelled according to the way in which effects are measured, as made explicit in 

Table 1.3. 

Cost-utility analysis (CUA) is the type of economic evaluation recommended in the 

guidelines of most jurisdictions (82). CUA incorporates HRQoL by measuring their 

results in quality-adjusted life years (QALYs) (83-85) – a measure of health in which 

the benefits in terms of length of life are adjusted to reflect the quality of life –, thus 

making comparisons across different diseases easier. However, despite many authors 

formally distinguishing between CUA and cost-effectiveness analysis (CEA), others 

consider CUA as a particular type of CEA (86), with the latter being often used as an 

umbrella term for both types of analyses, which will be the approach taken in this 

thesis. 
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Table 1.3 – Different economic evaluation studies: adapted from Drummond et al. (2015) (81) 

 Denomination Effects measured 

Partial economic 
evaluation 

Cost-minimisation analysis 
(CMA) 

None: a cost-analysis of both 
alternatives is performed 

 Cost-consequence analysis 
(CCA) 

Health outcomes, adverse 
effects, etc. are listed and 
presented in a disaggregated 
tabular or graphical format 

Full economic evaluation Cost-effectiveness analysis 
(CEA) 

Natural units (e.g. blood 
pressure, weight, life years 

 Cost-utility analysis (CUA) Utility (quality-adjusted life 
years, disability-adjusted life 
years) 

 Cost-benefit analysis (CBA) Monetary units 

 

The cost-effectiveness results of a new intervention are usually expressed as an 

incremental cost-effectiveness ratio (ICER). The ICER represents the additional costs 

per an extra unit of effect gained with the new healthcare intervention (normally 

referred to as intervention) when compared to the current standard treatment 

(normally referred to as comparator). The ICER is achieved through the formula: 

𝐼𝐶𝐸𝑅 =  
(𝐶𝑜𝑠𝑡𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛−𝐶𝑜𝑠𝑡𝑠𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟)

(𝐸𝑓𝑓𝑒𝑐𝑡𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛−𝐸𝑓𝑓𝑒𝑐𝑡𝑠𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟)
. 

If we take euros (€) as the currency used for measuring costs and the QALY as the unit 

used for measuring effects, the ICER will be presented in €/QALY. The ICER is then 

compared to a pre-defined cost-per-QALY threshold, which theoretically represents 

the opportunity costs of healthcare spending, given budget constraints, when seen 

from the supply side (87), or an estimate of the value that society places on a QALY, 

when seen from a demand side (88). Some authors argued that cost-effectiveness 

thresholds used for decision making are normally overestimated, as they are based on 

historical estimates, heuristics or judgements, and they should be replaced by 

empirical estimates of the supply side threshold, which could be considered more 

appropriate for judging the cost-effectiveness of new technologies when the aim is to 

maximise population health (89). However, beyond the academic discussion on the 

most appropriate way of defining the cost-effectiveness threshold, an intervention can 

be considered cost-effective when the ICER is lower than the pre-defined cost-

effectiveness threshold. The cost-effectiveness plane (90), which plots the difference 

in costs in the Y-axis and the difference in effects in the X-axis between the 

intervention and the comparator, is an intuitive graph that is frequently used for 

presenting cost-effectiveness results (see Figure 1.3). 
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Figure 1.3 – Cost-effectiveness plane 
λ, cost-per-QALY threshold; Δ, difference; NE, Northeast; NW, Northwest; SE, Southeast; SW, Southwest.  

The uncertainty concerning the parameters used in economic evaluations is normally 

investigated through what we refer to as sensitivity analyses. Univariate or 

deterministic sensitivity analyses, when parameter values are individually changed 

and their impact on the ICER is assessed, or probabilistic sensitivity analyses, when a 

probabilistic distribution is attributed to each of the parameters used in the 

evaluation and the parameters are simultaneously varied a pre-defined number of 

times using Monte Carlo simulations (91). For each simulation, an ICER is calculated, 

thus allowing for the creation of confidence intervals around the ICER – using 

quantiles – and for the plotting of the simulations in the cost-effectiveness plane for a 

graphical visualisation of the impact of parameter uncertainty in the ICER. 

An alternative to the use of the ICER is the incremental net monetary benefit (INMB), 

which can be calculated using the threshold (λ) as the value for the effects through the 

following expression: 𝐼𝑁𝑀𝐵 = λ × ΔE − ΔC, where Δ𝐸 and Δ𝐶 are the differences 

between effects and costs, respectively, between the intervention and the comparator. 

Thus, the ICER will be acceptable if: 𝐼𝐶𝐸𝑅 =
ΔC

ΔE
< λ, for ΔE > 0 and 𝐼𝐶𝐸𝑅 =

ΔC

ΔE
> λ, for 

ΔE < 0. In other words, the ICER is acceptable if the INMB is positive or, graphically, if 

the plotting of Δ𝐸 and Δ𝐶 in the cost-effectiveness plane is under the line for λ. 
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When comparing two interventions, the INMB concept can be applied to the 

simulations performed under the probabilistic sensitivity analysis. By calculating the 

percentage of simulations for which the INMB is positive at various cost-effectiveness 

thresholds, we can create a cost-effectiveness acceptability curve by plotting λ in the 

x-axis versus the probability of the intervention being cost effective in the y-axis 

(Figure 1.4) (92). 

 

Figure 1.4 – Cost-effectiveness acceptability curve 

Decision modelling 

Because estimating the cost-effectiveness of an intervention in the health care field 

inevitably comprises the synthesis of information, the increasing use of economic 

evaluations for decision making in health care led to higher requirements in terms of 

analytic methodology. Firstly, researchers need to collect all the relevant information 

regarding the intervention(s) to be dealt with, normally related to factors including 

the epidemiology, natural history, costs, quality of life, and the implications of the 

analysed interventions on these parameters. Thereafter, they need to summarize all 

the available data, which is normally through the development of so called decision 

models. 
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Decision modelling can thus be defined as the set of analytical tools which researchers 

use to represent the complex reality in a more simplistic and comprehensible manner 

or by which experiments that are infeasible or impracticable are simulated (93). 

The role of decision modelling in economic evaluation can be summarised in four 

different features (94): (i) synthesis of all relevant information in an analytical 

framework that reflects the possible prognoses and the disease pathways and their 

relationship with the interventions under evaluation; (ii) consideration of all relevant 

comparators, expanding from randomised control trials (RCTs), which are normally 

limited to head-to-head comparisons; (iii) using the appropriate time horizon for the 

context of decision making by extrapolating both costs and effects into the future; and 

(iv) addressing variability and uncertainty in a systematic and/or probabilistic 

manner. 

In the context of economic evaluation, decision models use mathematical 

relationships to produce possible outcomes of a group of alternatives being evaluated. 

Based on a set of inputs defined by the user, a model is able to present a wide range of 

results that can be easily interpreted. It is precisely the generation of easily 

interpretable results – such as probability of an intervention being cost-effective at 

any given willingness-to-pay. This feature makes decision modelling extremely useful 

in practice, as the ultimate goal of economic evaluations is to inform decision makers 

so that they can make rational choices with regards to the allocation of resources. 

Therefore, the ability to decipher the methodology of decision modelling and to 

communicate results in a perceptible manner is the key to the success of decision 

modelling for the economic evaluation of health care interventions. 

Decision modelling techniques are now completely established in HTA research, as 

health economic models represent strong analytical tools that empower decision 

making processes by contributing to the validity and generalisability of the results of 

economic evaluations (95). 

Objectives 

The main objective of this thesis is to study the methodology used in the economic 

evaluation of early warning systems for chronic disease management. More 

specifically, it focuses on the decision modelling methods used in this framework. 

Decision models for assessing the cost-effectiveness of new healthcare interventions 

are normally disease-specific. However, given that EWS, regardless of their target 

disease, have in common that they are aimed at monitoring patients’ health status 

through periodically measuring individual patient characteristics in order to 

anticipate health deterioration and to trigger prompt clinical intervention, it seems 
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worthwhile to explore the possibility to develop a more generic decision model for 

assessing their cost-effectiveness. 

Following on the above, although this thesis intends to elaborate on the generic 

methods used in the economic evaluation of early warning systems for chronic disease 

management, heart failure is the disease and home telemonitoring the EWS 

intervention in focus, as these were the disease and intervention for which we had the 

necessary data for doing the proposed work in this thesis. The possible inferences for 

other diseases and early warning system interventions are discussed in the context of 

each chapter, where appropriate, and in the general discussion of the thesis. 

Outline of the thesis 

Besides the general introduction, this thesis has seven more chapters. Chapter 2 

consists of a systematic literature review describing the general and methodological 

characteristics of existing decision-analytic models for the economic evaluations of 

early warning systems for the management of chronic heart failure and a quality 

assessment of the methodological characteristics of those models. Chapter 3 aims at 

determining the impact of nonfatal hospitalisations on the health-related quality of life 

of a cohort of patients previously diagnosed with heart failure by using their quality of 

life measurements before and after hospitalisation. Chapter 4 describes a diagnostic 

algorithm for predicting the clinical deterioration in heart failure patients using a 

remote patient monitoring programme. Chapter 5 presents the construction and 

validation of a discrete event simulation model that is able to model heart failure 

patients managed with usual care or an early warning system (with or without a 

diagnostic algorithm) and to account for the impact of individual patient 

characteristics in their health outcomes. Chapter 6 uses the developed model for 

assessing the cost-effectiveness of a home telemonitoring system and a diagnostic 

algorithm in the management of heart failure in the Netherlands. Chapter 7 reviews 

and compares the legal framework in the United States and the European Union for 

the approval of medical devices and drugs and it compares the available information 

on clinical research and health technology assessment-supported recommendations in 

each of the considered jurisdictions for the health technologies under analysis. Finally, 

Chapter 8 consists of the general discussion of the thesis, where its main findings are 

summarised, discussed, and interpreted in the context of the objectives of the thesis. 

Additionally, it issues recommendations for further research for healthcare policy. 
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Abstract 

Introduction: Describing the general and methodological characteristics of decision-

analytical models used in the economic evaluation of early warning systems for the 

management of chronic heart failure patients and performing a quality assessment of 

their methodological characteristics is expected to provide concise and useful insight 

to inform the future development of decision-analytical models in the field of heart 

failure management. 

Areas covered: The literature on decision-analytical models for the economic 

evaluation of early warning systems for the management of chronic heart failure 

patients was systematically reviewed. Nine electronic databases were searched 

through the combination of synonyms for heart failure and sensitive filters for cost-

effectiveness and early warning systems. 

Expert commentary: The retrieved models show some variability with regards to 

their general study characteristics. Overall, they display satisfactory methodological 

quality, even though some points could be improved, namely on the consideration and 

discussion of any competing theories regarding model structure and disease 

progression, identification of key parameters and the use of expert opinion, and 

uncertainty analyses. A comprehensive definition of early warning systems and 

further research under this label should be pursued. To improve the transparency of 

economic evaluation publications, authors should make available detailed technical 

information regarding the published models. 
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Introduction 

Heart failure (HF) is a major health concern associated with significant morbidity, 

mortality, and reduced quality of life for patients. Throughout the Western world 

approximately 1–2% of the adult population has HF, with its prevalence rising to 

above 10% amongst persons ≥70 years of age; incidence is estimated to be between 5 

and 10 per 1000 persons per year (16). In the United States alone, the total prevalence 

of heart failure was 5.1 million in 2010, with a reported incidence of 825,000 cases 

and an associated 57,757 deaths for that same year (96). Projections have shown that 

HF prevalence in the U.S. will increase 46% between 2012 and 2030, resulting in an 

increase of total medical costs from $20.9 billion in 2012 to $53.1 billion in 2030 (97). 

In the European Union, HF was responsible for total health care costs of €19.9 billion 

in 2009, circa 2% of the total health care expenditure for that year (98). 

Heart failure is a condition characterized by typical symptoms (e.g., breathlessness, 

ankle swelling and fatigue) and signs (e.g., elevated jugular venous pressure, 

pulmonary crackles and peripheral oedema) caused by a structural and/or functional 

cardiac abnormality, resulting in a reduced cardiac output and/ or elevated 

intracardiac pressures at rest or during stress. The current definition of HF relates to 

stages at which clinical symptoms are apparent. As such, before clinical symptoms 

become apparent, patients may have asymptomatic structural or functional cardiac 

abnormalities – such as systolic or diastolic left ventricular (LV) dysfunction –, which 

are precursors of HF (12). Severity of disease is usually measured using the New York 

Heart Association (NYHA) functional classification, which categorizes HF as mild 

(stages I and II), moderate (stage III), or severe (stage IV), based on the severity of the 

patients' symptoms (99). The goals of HF management are to relieve inherent signs 

and symptoms, prevent hospital admission, and improve survival (100). In this 

regard, not only mortality but also prevention of HF hospitalizations – which is now 

recognized as an important feature for patients and healthcare systems – have 

become the main outcomes of interest in clinical trials on HF (39). 

Early warning systems are timely surveillance systems that collect information on 

diseases in order to anticipate health deterioration and trigger prompt clinical 

intervention, thereby improving prognosis and treatment outcomes (58). Generally 

speaking, early warning systems in health care consist of three main elements: (i) 

monitoring and collection of clinical data (e.g., vital signs, biomarkers, self-reported 

health status); (ii) a framework allowing for the identification of patterns and trends 

in these data, indicating significant changes in the health status of the patients; and 

(iii) the establishment of pre-determined conditions – such as the existence of 

statistically uncommon patterns in the data, threshold values or ranges for specific 

parameters within the collected data, or the presence of a particular combination of 
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signs and symptoms – that trigger an alarm and follow-up actions. This entails more 

favourable health outcomes, with the concomitant improvement in the patients' 

quality of life, by buffering them from the psychological and physical strain resulting 

from hospital admissions. Additionally, via the monitoring of patients' vital signs and 

other important elements in an outpatient setting, early warning systems empower 

patients by encouraging them to take more responsibility for their own health (63, 

64). 

Considering that chronic heart failure management guidelines are targeted at 

relieving signs and symptoms, preventing hospital admission, and improving survival, 

it is expected that early warning system consist of a powerful tool in the management 

of the disease. Given that most of disease deterioration indicators are passible of being 

remotely monitored, early detection of these indicators enables better disease 

prognosis and treatment outcomes. There is already strong evidence in the literature 

that these systems can reduce both HF-related deaths and hospitalizations (101, 102), 

contrary to the conclusions of alternative studies that cast doubt on the effectiveness 

of outpatient management programmes (103). Additionally, avoiding hospitalizations 

using early warning systems may lead to substantial savings in costs. To gauge the 

sums involved, it should be recalled that each hospitalization for HF-related problems 

in the USA was reported to have an average cost of $18,000 in 2008 (104). 

The ever increasing financial strains that plague health care systems confront their 

decision-makers with necessary choices about resource allocation. Understandably, 

cost-effectiveness became a colloquial term amongst decision-makers, who 

increasingly have been led to support their decisions on economic evaluations and 

evidence-based studies. The increased preponderance of these studies led to higher 

requirements in terms of analytic methodology, asking for the use of decision-analytic 

models – succinctly defined as sets of mathematical relationships that model the 

natural progression of disease and that, by simulating patient cohorts and disease 

pathways, allow for the estimation of clinical effects and their associated costs – that 

provide sound evidence for well-informed decision-making in the field of health 

technologies (105). 

Describing the different approaches used in published models is expected to provide 

concise and useful insight to inform the future development of decision-analytical 

models in the field of heart failure management. Therefore, the objective of this study 

is to systematically review the literature on decision-analytical models used for the 

economic evaluation of early warning systems for the management of chronic heart 

failure patients, and to describe the general and methodological characteristics of 

those models. 
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Methods 

Identification and selection of studies 

A systematic literature review was performed to identify studies in which decision-

analytical models were used for the assessment of the cost-effectiveness of early 

warning systems in the management of heart failure. The studies were selected 

according to the following inclusion criteria: 

1. The study deals with a population ≥ 18 years old, of either sex or any ethnic 

group, who has been diagnosed with heart failure; both empirical (primary data) 

and theoretical (model) populations were considered. 

2. The intervention under analysis is an early warning system as defined in the 

introductory section of this paper. No restrictions regarding to the comparator 

were imposed when selecting the studies for inclusion. 

3. The study is an economic evaluation. Both cost-consequence analyses (106) or full 

economic evaluations (cost-effectiveness, cost-utility, or cost-benefit analyses) 

where there is a comparison between two or more alternatives and a 

simultaneous analysis of both costs and consequences (107) were considered. 

4. The study reports patient and/or cost data, and uses a decision-analytical model 

based on such data. With regards to the term 'decision-analytical model', we used 

a modified definition from the International Society for Pharmacoeconomics and 

Outcomes Research (ISPOR) Task Force on Good Research Practices – Modeling 

Studies (108): “a logical mathematical framework that synthesizes evidence on 

health consequences and costs from many different sources, including data from 

clinical trials, observational studies, insurance claim databases, case registries, 

public health statistics, and preference surveys, whose purpose is to structure 

evidence on clinical and economic outcomes in a form that can help to inform 

decisions about clinical practices and health-care resource allocations.”  

5. The study concerns an intervention which takes place in an outpatient setting. 

6. The study is an English-language paper published in a peer-reviewed journal. 

Taking into consideration the PICOS (population, intervention, comparator, outcomes, 

and study design) framework for study characteristics as defined in the PRISMA 

Statement (109), point 1 refers to the population, point 2 to the intervention and 

comparator, point 3 to the outcome, and points 4-6 to the study design. 

Nine electronic databases (EMBASE, MEDLINE, CENTRAL, NHS Health Economic 

Evaluation Database, Health Technology Assessment database, Database of Abstracts 

of Reviews of Effects, Science Citation Index Expanded, PsycINFO, and Cumulative 
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Index to Nursing and Allied Health Literature) were searched up to December 2014 

through the combination of synonyms for heart failure and sensitive filters for cost-

effectiveness and early warning systems. The initial search strategy for EMBASE 

(searched via Embase.com) was developed using a combination of free text words, 

EMBASE-specific thesaurus terms, and a filter for excluding non-English articles and 

undesirable publications types (see Appendix 2.1 for the full search query). The 

remaining databases were searched after translating the search query using database-

specific thesaurus terms and syntax. All identified citations from the electronic 

searches and other sources were imported into and managed using EndNote X6. 

The selection of relevant articles resulted from a three-step process. Firstly, all titles 

were assessed by one reviewer (F.A.A.); studies were excluded if they explicitly failed 

to comply with one or more inclusion criteria. Secondly, two reviewers (F.A.A. and 

A.K.) independently screened abstracts of the remaining references. And thirdly, two 

reviewers (F.A.A. and M.A.) assessed the full-text articles for eligibility for data 

extraction. In steps two and three, studies were excluded if the reviewers considered 

that they did not meet all six inclusion criteria. Any divergences in those steps were 

resolved through discussion. If agreement could not be reached, a third reviewer 

(R.K.) made the final decision. 

Analyses 

Data extraction of general study characteristics 

A table for data extraction was used for the abstraction of the general study 

characteristics. This table extracted model information concerning publication year, 

country, type of economic evaluation, objective, model type (Markov, decision tree, 

etc.), model structure, role of modelling (as described by Buxton et al. (93)), patient 

population, comparator, intervention, perspective of study, time horizon, cycle length, 

outcome(s) measured, uncertainty/sensitivity analyses, main results, and conclusion. 

General characteristics of included studies were extracted independently by two 

reviewers (F.A.A. and J.S.). Disagreements were resolved by finding a consensus 

between the two reviewers. If consensus was not possible, a third reviewer (M.A.) was 

consulted. 

Methodological characteristics assessment: Philips checklist 

The methodological characteristics of included models were assessed using the 

checklist for the critical appraisal of decision-analytic models for health technology 

assessment developed by Philips et al. (110). Questions in the checklist were 

answered “yes” if the study paid objective attention to the item in question; “no” if the 

item was not fulfilled or insufficient information was provided to unequivocally score 

it as "yes"; “N/A” (not applicable) if the question was either not applicable to the study 
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or referred to a previous question scored with “no”; and “CT” (can’t tell) if the 

question could not be addressed given the information provided in the study. 

The methodological characteristics assessment was undertaken independently by two 

reviewers (F.A.A. and J.S.). Dissimilarities in scoring were resolved by discussion. If 

agreement in a particular item was not possible the reasons for disagreement were 

disclosed to a third reviewer (M.A.), who attributed the final score for that item. 
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Results 

Study retrieval 

The electronic literature searches retrieved 6848 potentially relevant publications, 

from which 2083 were eliminated after deduplication. From the remaining 4765 

references, 3636 were excluded based on title and further 1102 based on abstract, 

yielding 27 studies for full-text reading. The inclusion criteria further excluded 21 of 

these studies. However, the study by Burri et al. (111) was ultimately included – 

notwithstanding the fact that its target population was not restricted to patients 

diagnosed with heart failure but concerned all patients with cardiac implantable 

electric devices – on the belief that it contained information that would be valuable for 

answering our research question. Still, a formal distinction between this study and the 

remaining inclusions should be made (see Appendix 2.2 for the full list of excluded 

studies and reasons for exclusion). 

In total we reviewed seven full-text publications reporting decision-analytical models 

(111-117). Figure 2.1 presents a flowchart describing the inclusion and exclusion 

process of relevant literature. 

Analyses 

General study characteristics 

Information concerning the general and methodological characteristics of three of the 

reviewed models (113, 114, 116) could only be retrieved from additional publications 

in which fragments of these models were described. These publications were not 

technical reports but rather publications where the original model was described. 

Consequently, in order to fully evaluate the model reviewed in this study, four extra 

papers had to be included for assessment (118-121). 

In Appendix 2.3 we provide a brief narrative description of the reviewed models, 

highlighting their general characteristics and giving an overview of the work that has 

been done in each of those studies. Table 2.1 provides an overview of the study 

characteristics of the reviewed models, showing existing differences and similarities 

between these characteristics. 
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Figure 2.1 – Flowchart of the inclusion process of the search results 
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Except for Morimoto et al. (116), from 2004, all papers were published after 2009, 

within five years predating our review. All reviewed studies are cost-utility analyses, 

except the cost-consequence analysis by Burri et al. (111). The time horizon of the 

studies shows great variability, ranging from 1 year (112) to lifetime (113, 114). Only 

Burri et al. (111) does not report QALYs as a final outcome, and four articles (111, 

112, 115, 117) report some sort of hospitalization measurement as an outcome of 

their studies. Five studies (111, 114-117) use Markov modelling – a type of model 

characterized by mutually exclusive health states which represent the possible 

consequences of the options under evaluation, and that reflect disease progression 

through stochastic transitions of patients between health states over discrete time 

periods (105), using two different types of Markov states: disease progression state 

(severity of disease, i.e. NYHA class) or health care provision state (hospitalization 

status). The remaining two studies (112, 113) model data using decision trees. 

Modelling plays three different roles in the reviewed studies: (i) informing decisions 

in the absence of hard data (111, 113, 116, 117), (ii) synthesizing head-to-head 

comparisons where relevant trials do not exist (112, 117), and (iii) extrapolating 

results of a single clinical trial over a longer timeframe (114, 115). With regards to the 

quantification of uncertainty, approaches are not consensual: only three studies (113, 

115, 117) report probabilistic sensitivity analyses (PSA), while remaining models 

assess uncertainty merely by using deterministic sensitivity analyses; Pandor et al. 

(117) go one step further and include an expected value of perfect information (EVPI) 

analysis. The main results and conclusions of the reviewed articles are unanimous in 

their positive recommendations on the intervention(s) over the comparator. 
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Table 2.1 – General study characteristics 

Study 
number, 
author, 
source 

Burri et al. 
(111) 

Klersy et al. 
(112) 

Laramée et al. 
(113) 

Miller et al. (114) Moertl et al. 
(115) 

Morimoto et al. 
(116) 

Pandor et al. 
(117) 

Publication 
year 

2013 2011 2013 2009 2013 2004 2013 

Country UK US, Italy, France, 
Germany, and UK 

England and 
Wales 

US Austria and 
Canada 

US England and 
Wales 

Type of 
economic 
evaluation 

Cost-
consequence 
analysis 

Cost-effectiveness 
and cost-utility 
analyses 

Cost-utility 
analysis 

Cost-utility 
analysis 

Cost-utility 
analysis 

Cost-utility 
analysis 

Cost-utility 
analysis 

Objective Compare the 
long-term costs 
and 
consequences of 
daily home 
monitoring 
versus 
conventional 
follow-up in 
patients with 
cardiac 
implantable 
electric devices 

Assess the cost-
effectiveness and 
the cost-utility of 
remote patient 
monitoring versus 
with usual care 

Assess the cost-
effectiveness of 
three monitoring 
strategies for 
optimising 
medical therapy in 
chronic heart 
failure 

Estimate the long-
term cost-
effectiveness of 
disease 
management 
programme in 
heart failure 

Assess the cost-
utility of NT-
proBNP-guided, 
intensive patient 
management 
(BMC) versus 
multidisciplinary 
care or usual care 

Assess the cost-
utility of chronic 
heart failure 
management with 
or without B-type 
natriuretic 
peptide (BNP) 
measurement 

Determine the 
clinical 
effectiveness and 
cost-effectiveness 
of home TM or 
STS strategies 
compared with UC 
for patients 
discharged from 
acute care after 
HF exacerbation 

Model type 
(Markov, 
decision 
tree, etc.) 

Markov model Decision tree and 
budget impact 
model 

Decision tree** Markov model Markov model Markov model 
(two Markov 
models combined 
in decision tree) 

Markov model 

Model 
structure 

Four health 
states: well, 
poststroke, post-
ADHF, and dead 

The decision tree 
in both arms 
considers two 
options: (i) the 

Decision tree for 
intervention sub-
divides in True HF 
and No HF, which 

Four health states: 
NHYA I, NHYA II, 
NHYA III & IV, and 
dead 

Five health states: 
4 based on 
number of 
hospitalizations 

Six health states: 5 
according to 
number of 
hospitalizations 

Four health states: 
alive at home, 
dead, HF-
hospitalisation, 
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patient is 
hospitalized for 
HF or (ii) the 
patient is not 
hospitalized for 
HF 

respectively sub-
divide in BNP 
above threshold 
(echo positive), 
BNP below 
threshold (HF 
missed), BNP 
above threshold 
(echo negative), 
and BNP below 
threshold (no 
echo) 

(0, 1, 2, and ≥3) 
and death; after 
18 months 9 
health states, 
splitted according 
to beta blocker 
treatment 

(0, 1, 2, 3, and ≥4) 
and death 

and other 
hospitalization 

Role of 
modelling***
* 

Informing 
decisions in the 
absence of hard 
data 

Synthesizing 
head-to-head 
comparisons 
where relevant 
trials do not exist 

Informing 
decisions in the 
absence of hard 
data 

Extrapolating the 
results of a 18-
month clinical 
trial 

Extrapolating the 
results of a 18-
month clinical 
trial 

Informing 
decisions in the 
absence of hard 
data 

Synthesizing 
head-to-head 
comparisons 
where relevant 
trials do not exist 
and informing 
decisions in the 
absence of hard 
data 

Patient 
population 

Patients who 
have undergone 
an implantable 
cardioverter 
defibrillators or 
cardiac 
resynchronizatio
n therapy 
defibrillators 
implantation, 
and are 
managed in an 
outpatient 
setting* 

Patients 
previously 
diagnosed with 
heart failure 

Patients with CHF 
(CHF due to left 
ventricular 
systolic 
dysfunction and 
patients with CHF 
from any cause); 
subgroups ≤75 
and >75 years 

Male and female 
subjects, aged ≥18 
years, with 
symptoms of CHF 
and documented 
systolic 
dysfunction 

Patients 
discharged after 
heart failure 
hospitalization 

Symptomatic CHF 
patients (NYHA 
classes II–IV) aged 
35–85 after 
hospital 
admission 
because of CHF 
with 
leftventricular 
systolic ejection 
fraction < 40% 

HF patients 
discharged from 
hospital within 28 
days 

Comparator Conventional Usual care: patient 
visit to a clinic 

Usual care in the Usual care Usual care: 
patients were 

CHF management 
without BNP 

Usual care: 
standard post-
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follow-up doctor’s office, 
multidisciplinary 
outpatient clinic, 
or emergency 
department 
without additional 
phone calls from 
and to the patient 

community referred to their 
primary care 
physician with a 
detailed disease 
management plan 

measurement discharge 
multidisciplinary 
care without 
regular follow-up 

Intervention Daily home 
monitoring 
(BIOTRONIK 
Home 
Monitoring® 
system) where 
clinical and 
technical data 
transmitted 
automatically 
daily via the 
mobile phone 
network, plus 
instant 
automated alert 
transmission in 
case of a 
prespecified 
parameter 
deviation 

Remote patient 
monitoring : (i) 
telephone 
monitoring 
approach with 
regular structured 
telephone contact 
between patients 
and healthcare 
providers; (ii) 
technology 
assisted 
monitoring 
approach relying 
on ICT, with data 
transfer via 
remote external 
monitors or CIEDs 

(i) management 
guided by clinical 
assessment by a 
specialist; (ii) 
management 
guided by serial 
measurement of 
circulating NP 
concentration by a 
specialist 

Telephonically 
administered DM 
programme 
consisting of a 
disease manager 
and a registered 
nurse with 
specialized 
cardiac training 
who provides 
patient education 
and medication 
management in 
conjunction with 
the primary care 
provider ** 

(i) nurse-led MC: 
visits by a 
specialized HF 
nurse, optional 
telephone 
support, and 2 
prescheduled 
consultations with 
HF specialist; (ii) 
BMC with risk 
stratification 
performed upon 
NT-proBNP 
discharge levels 

CHF management 
with BNP 
measurement 

(i) home TM 
during office 
hours; (ii) home 
TM 24/7; (iii) 
human-to-human 
STS; and (iv) 
human-to-
machine STS 

Perspective 
of study 

UK NHS Health care payer UK NHS and 
personal social 
services in 
England and 
Wales 

Health care 
system 

Health care payer Health-care 
system 
perspective*** 

NHS in England 
and Wales 

Time 
horizon 

10 years 1 year Lifetime Lifetime 20 years 10 years** 30 years 
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Cycle length 1 year N/A 1 year 6 months 1 month 3 months 1 month 

Outcome(s) 
measured 

12 health 
consequences 
and costs 

Costs, # 
hospitalizations, 
length of stay for 
HF and for any 
cause, and QALYs 

Costs, QALYs, and 
ICER 

Costs, QALYs, and 
ICER 

Costs, QALYs, and 
ICER 

Costs, QALYs, and 
ICER 

All-cause 
mortality, all-
cause and HF-
related 
admissions to 
hospital, costs, 
QALYs, and ICER 

Uncertainty 
/ Sensitivity 
analyses 

Deterministic 
(univariate) 

None Probabilistic 
sensitivity 
analysis 

Deterministic 
(univariate) 

Deterministic and 
probabilistic 
sensitivity 
analyses 

Deterministic 
(univariate and 
multivariate) 

Probabilistic 
sensitivity 
analysis, EVPI 
analysis, and 
scenario analysis 
for costs 

Main results HM was cost 
neutral vs. CFU;  
HM reduced # 
patients with 
inappropriate 
shocks due to 
lead issues and 
atrial 
fibrillation; HM 
reduced the 
number of 
battery 
replacements 
and the number 
of in-office FU 
visits, while 
increasing 
unscheduled 
visits 

The difference in 
costs between 
RPM and UC 
ranged from €300 
to €1000, 
favouring RPM; 
QALY gain of 0.06 
favouring RPM; 
length of stay once 
hospitalised 
similar for both 
groups 

NP was the most 
cost-effective 
option in patients 
with CHF due to 
LVSD (ICER 
£3,304 vs. CA) and 
from any cause for 
all patients (ICER 
£14,694 vs. CA) 
and subgroup <75 
years (ICER 
£2,517 vs. UC); NP 
was dominated by 
other strategies in 
subgroup >75 
years with CHF 
from any cause, 
where CA was 
cost-effective vs. 
UC (ICER £11,508) 

DM programme 
increased overall 
costs per patient 
by $4,850 whilst 
increasing QALYs 
by 0.111, leading 
to an ICER of 
$43,650; results 
were robust for 
changes in 
mortality rates, 
costs of care due 
to aging, utility 
values and the 
targeted 
population; 
assuming all 
programme costs 
to be variable led 
to an ICER of 
$129,738 

MC vs. UC with 
ICERs of €3,746 
for Austria and 
$5,554 for 
Canada; BMC 
strategy dominant 
over both MC and 
UC; cost-
effectiveness 
acceptability 
curves show 
highest likelihood 
of BMC being the 
most cost-
effective 
alternative at 
different 
thresholds 

Additional QALYs 
(0.57 vs. 0.55) and 
lower costs 
($9,577 vs. 
$10,131) for the 
BNP group when 
compared to non-
BNP group; BNP 
group dominant 
over comparator 

24/7 TM was not 
evaluated due to 
lack of data; TM 
during office 
hours resulted in 
£11,873 per QALY 
vs. UC, whereas 
STS-HH had an 
ICER of £228,035 
per QALY when 
compared with 
TM during office 
hours; STS-HM 
was dominated by 
other alternatives 
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Conclusion The model 
establishes HM 
as an 
economically 
viable 
technology when 
applied to the 
UK NHS 

The cost-
effectiveness data 
coupled with the 
demonstrated 
clinical efficacy of 
RPM vs. UC should 
encourage the 
acceptance of RPM 
amongst clinicians 
and consideration 
by third-party 
payers 

NP is the most 
cost-effective 
strategy for CHF 
due to LVSD and 
from any cause, 
except in the 
subgroup of 
patients >75 years 
with CHF from 
any cause 

Estimation of the 
clinical benefits 
and financial 
burden of DM can 
be enhanced by 
model-based 
analyses; results 
suggest that DM of 
HF patients can be 
cost-effective over 
the long term 

NT-proBNP 
guided, intensified 
HF specialist 
patient 
management in 
addition to 
multidisciplinary 
care is dominant 
over 
multidisciplinary 
care alone and 
usual care 

Introduction of 
BNP measurement 
in heart failure 
management may 
be cost-effective 

Despite wide 
variation in UC 
and RM, cost-
effectiveness 
analyses suggest 
that home TM 
during office 
hours was the 
optimal strategy 
in most costing 
scenarios 

Abbreviations: #, number; ADHF, acute decompensated heart failure; BMC, NT-proBNP-guided, intensive patient management; BNP, brain natriuretic peptides; CA, 
clinical assessment; CHF, chronic heart failure; CIED, cardiac implantable electric devices; CFU, conventional follow-up; DM, disease management; EVPI, expected 
value of perfect information; HF, heart failure; HM, home monitoring; ICD, implantable cardioverter defibrillators; ICER, incremental cost-effectiveness ratio; ICT, 
information communication technology; LVSD, left ventricular systolic dysfunction; MC, multidisciplinary care; N/A, not applicable; NHS, National Health Service; NP, 
natriuretic peptide; NYHA, New York Heart Association; QALY, quality-adjusted life year; RPM, remote patient monitoring; STS, structured telephone support; STS-HH, 
human-to-human STS; STS-HM, human-to-machine STS; TM, telemonitoring; UC, usual care; UK, United Kingdom; US, United States 

* Reason for formal exclusion 

**Information to score the particular item was only retrieved from the additional publication in which part of the model was described 

***Inferred due to reported data 

****Based on Buxton et al. (93) 
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Methodological characteristics: quality assessment using the Philips checklist 

Table 2.2 displays the results of the quality assessment using the checklist for the 

critical appraisal of decision-analytic models (110). Items in several topics were not 

fulfilled or insufficient information was available in the article in order to accurately 

assess them. Bearing in mind this review’s objective of providing a useful insight for 

the future development of decision-analytical models in HF management, some 

missing information was considered critical. A few items from the rationale for 

structure and structural assumptions were not addressed sufficiently in most of the 

studies, with special notice to the consideration and discussion of any competing 

theories regarding model structure and disease progression [only one out the seven 

(Pandor et al. (117)) address this issue appropriately]. Furthermore, several items of 

the data identification section were not addressed in proper detail, especially 

concerning the identification of key parameters (only two studies (111, 114) justified 

the process of selecting key parameters and used systematic methods to identify the 

most appropriate data) and the use of expert opinion (none of the studies described 

and justified the use of expert opinion inputs in their work). Finally, the four types of 

uncertainty (methodological, structural, heterogeneity, and parameter) were not 

discussed or addressed in sufficient detail in all of the reviewed studies.  
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Table 2.2 – Scores on the quality assessment framework for decision-analytic models 

Study number, 
author, source 
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Structure (S)          

S1: Statement 
of decision 
problem/obje
ctive 

1 
Is there a clear 
statement of the 
decision problem? 

Y Y Y Y Y Y Y 

 2 

Is the objective of the 
evaluation and model 
specified and 
consistent with the 
stated decision 
problem? 

Y Y Y Y Y Y Y 

  3 
Is the primary 
decision maker 
specified? 

N N N N N N Y 

S2: Statement 
of 
scope/perspec
tive 

1 
Is the perspective of 
the model stated 
clearly? 

Y Y Y Y Y N Y 

 2 
Are the model inputs 
consistent with the 
stated perspective? 

N N N Y Y N/A Y 

  3* 
Has the scope of the 
model been stated and 
justified? 

Y N N Y Y N Y 

  4 

Are the outcomes of 
the model consistent 
with the perspective, 
scope and overall 
objective of the 
model? 

N N N Y Y N/A Y 

S3: Rationale 
for structure 

1 

Has the evidence 
regarding the model 
structure been 
described? 

Y Y Y Y Y Y Y 

  2 

Is the structure of the 
model consistent with 
a coherent theory of 
the health condition 
under evaluation? 

Y N N N N N N 
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  3 

Have any competing 
theories regarding 
model structure been 
considered? 

N N N N N N Y 

 4 

Are the sources of data 
used to develop the 
structure of the model 
specified? 

Y Y Y Y Y Y Y 

  5 

Are the causal 
relationships 
described by the 
model structure 
justified 
appropriately? 

Y Y Y Y N N Y 

S4: Structural 
assumptions 

1 

Are the structural 
assumptions 
transparent and 
justified? 

Y N N Y Y Y Y 

 2 

Are the structural 
assumptions 
reasonable given the 
overall objective, 
perspective and scope 
of the model? 

Y N N N N N N 

S5: 
Strategies/co
mparators 

1 

Is there a clear 
definition of the 
options under 
evaluation? 

N Y** Y** Y** Y Y Y 

  2 
Have all feasible and 
practical options been 
evaluated? 

CT CT CT CT CT CT CT 

  3 
Is there justification 
for the exclusion of 
feasible options? 

N/A N/A N/A N/A N/A N/A N/A 

S6: Model type 1 

Is the chosen model 
type appropriate given 
the decision problem 
and specified causal 
relationships within 
the model? 

N Y Y Y Y Y Y 

S7: Time 
horizon 

1 

Is the time horizon of 
the model sufficient to 
reflect all important 
differences between 
options? 

N N N Y Y N Y 

  2 

Is the time horizon of 
the model, and the 
duration of treatment 
and treatment effect 
described and 
justified? 

Y Y Y Y Y Y** Y 
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 3 
Has a lifetime horizon 
been used? 

N N N Y N N N 

 4 
If not, has a shorter 
time horizon been 
justified? 

Y Y Y N/A N N Y 

S8: Disease 
states/pathwa
ys 

1 

Do the disease states 
(state transition 
model) or the 
pathways (decision 
tree model) reflect the 
underlying biological 
process of the disease 
in question and the 
impact of 
interventions? 

Y Y Y Y N N N 

S9: Cycle 
length 

1 

Is the cycle length 
defined and justified in 
terms of the natural 
history of disease? 

N N/A N/A Y N Y Y 

Data (D)          

D1: Data 
identification 

1 

Are the data 
identification methods 
transparent and 
appropriate given the 
objectives of the 
model? 

Y** Y Y Y N Y Y 

  2 

Where choices have 
been made between 
data sources, are these 
justified 
appropriately? 

Y** Y Y Y Y N/A N/A 

  3 

Has particular 
attention been paid to 
identifying data for the 
important parameters 
in the model? 

N N N N N N Y 

 4 

Has the process of 
selecting key 
parameters been 
justified and 
systematic methods 
used to identify the 
most appropriate 
data? 

Y N N Y N N N 

 5 
Has the quality of the 
data been assessed 
appropriately? 

CT Y Y N N Y Y 

 6 

Where expert opinion 
has been used, are the 
methods described 
and justified? 

N/A N/A N/A N/A N/A N/A N 
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D2: Pre-model 
data analysis 

1 

Are the pre-model 
data analysis 
methodology based on 
justifiable statistical 
and epidemiological 
techniques? 

CT Y Y Y CT CT Y 

D2a: baseline 
data 

1 

Is the choice of 
baseline data 
described and 
justified? 

Y** Y Y Y Y Y Y 

 2 

Are transition 
probabilities 
calculated 
appropriately? 

CT N/A N/A Y CT CT Y 

 3 

Has a half cycle 
correction been 
applied to both cost 
and outcome? 

N N/A N/A N N N Y 

 4 
If not, has this 
omission been 
justified? 

N N/A N/A N N N N/A 

D2b: 
treatment 
effects and 
diagnostic 
accuracy 

1 

If relative diagnostic 
accuracy have been 
derived from trial 
data, have they been 
synthesised using 
appropriate 
techniques? 

N/A N/A N/A N/A N/A N/A N/A 

 2 

Have the methods and 
assumptions used to 
extrapolate diagnostic 
accuracy to final 
outcomes been 
documented and 
justified? 

N/A N/A N/A N/A N/A N/A N/A 

 3 

Have alternative 
assumptions been 
explored through 
sensitivity analysis? 

N/A N/A N/A N/A N/A N/A N/A 

 4 

Have assumptions 
regarding the 
continuing effect of 
treatment once 
treatment is complete 
been documented and 
justified? 

N N/A N/A N N Y Y 

 5 

Have alternative 
assumptions been 
explored through 
sensitivity analysis? 

N N/A N/A N N Y Y 
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D2c: quality-
of-life weights 
(utilities) 

1 
Are the utilities 
incorporated into the 
model appropriate? 

N/A Y Y Y Y Y Y 

 2 
Is the source for the 
utility weights 
referenced? 

N/A Y Y Y Y Y Y 

 3 

Are the methods of 
derivation for the 
utility weights 
justified? 

N/A N/A N/A Y N Y** N/A 

D3: Data 
incorporation 

1 

Have all data 
incorporated into the 
model been described 
and referenced in 
sufficient detail? 

Y Y Y Y Y Y Y 

 2 

Has the use of 
mutually inconsistent 
data been justified (i.e. 
are assumptions and 
choices appropriate)? 

CT N/A N/A CT CT CT CT 

 3 
Is the process of data 
incorporation 
transparent? 

Y Y Y Y Y Y Y 

 4 

If data have been 
incorporated as 
distributions, has the 
choice of distribution 
for each parameter 
been described and 
justified? 

N/A Y Y N N N Y 

 5 

If data have been 
incorporated as 
distributions, is it clear 
that second order 
uncertainty is 
reflected? 

N/A N/A N/A N N/A N/A Y 

D4: 
Assessment of 
uncertainty 

1 

Have the four 
principal types of 
uncertainty been 
addressed? 

N N N N N N N 

 2 

If not, has the 
omission of particular 
forms of uncertainty 
been justified? 

N N N N N N N 

D4a: 
methodologica
l 

1 

Have methodological 
uncertainties been 
addressed by running 
alternative versions of 
the model with 
different 
methodological 
assumptions? 

N N N N N N N 
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D4b: 
structural 

1 

Is there evidence that 
structural 
uncertainties have 
been addressed via 
sensitivity analysis? 

N N N Y N N N 

D4c: 
heterogeneity 

1 

Has heterogeneity 
been dealt with by 
running the model 
separately for 
different subgroups? 

N N N Y N N N 

D4d: 
parameter 

1 

Are the methods of 
assessment of 
parameter uncertainty 
appropriate? 

N Y Y Y Y Y Y 

 2 

Has probabilistic 
sensitivity analysis 
been done, if not, has 
this been justified? 

N N N N Y N Y 

 3 

If data are 
incorporated as point 
estimates, are the 
ranges used for 
sensitivity analysis 
stated clearly and 
justified? 

N Y Y Y N N N/A 

Consistency (C)          

C1: Internal 
consistency 

1 

Is there evidence that 
the mathematical logic 
of the model has been 
tested thoroughly 
before use? 

Y N N Y Y N N 

C2: External 
consistency 

1 
Are the conclusions 
valid given the data 
presented? 

Y Y Y Y Y Y Y 

 2 

Are any 
counterintuitive 
results from the model 
explained and 
justified? 

N/A N/A N/A N/A N/A N/A N/A 

 3 

If the model has been 
calibrated against 
independent data, 
have any differences 
been explained and 
justified? 

N N/A N/A N N N N 

 4 

Have the results of the 
model been compared 
with those of previous 
models and any 
differences in results 
explained? 

Y N N Y Y N Y 
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Abbreviations: Y, both reviewers agreed that the study paid sufficient attention to an item; N, the item was 
not fulfilled or insufficient information was provided to unequivocally score it as "yes"; N/A (not 
applicable), if the question was either not applicable to the study or referred to a previous question scored 
with “no”; "CT" (can't tell) if the question could not be addressed given the information provided in the 
study. 

*According to the framework, the model scope should include the perspective, involved technologies, 
population, setting, and time horizon at the outset of the study. 

**Information to score the particular item was only retrieved from the additional publication in which part 
of the model was described. 
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Discussion 

Seven studies were retrieved while systematically reviewing the literature presenting 

decision-analytical models utilized for the economic evaluation of early warning 

systems for the management of chronic heart failure patient. The quality of these 

models was assessed through the checklist developed by Philips et al. (110) for the 

critical appraisal of decision-analytic models in health technology assessment. Overall, 

the models show satisfactory methodological quality, even though some points for 

improvement may be glimpsed. 

Bearing in mind that the comparison of cost-effectiveness outcomes was not the main 

focus of the present study, it is worth noting that the wide range of study 

characteristics and methodologies displayed in the reviewed articles may have a 

major impact on the cost-effectiveness estimates, thereby impairing the soundness of 

the comparisons. Furthermore, the wide variety of model approaches, leaves room for 

standardization in a research field that is far from being consensual. Guidelines for 

good modelling practice (108) and key principles in health technology assessment 

(122) may prove to be highly helpful for decision-analytic modellers. Models tend to 

reflect the diverse decision support prevailing in different countries and their changes 

through time. This brings up the issue of transferability, i.e. when data from an 

economic evaluation done in one geographic area is transferred to another location or 

to another moment in time (123). 

During the selection process we found many studies that did not perform a full 

economic evaluation but rather focused only on the effectiveness side of the cost-

effectiveness equation (124-126). In the study by Pandor et al. (117) the authors 

performed a systematic review of the literature and meta-analysis to evaluate the 

clinical effectiveness of home telemonitoring or structured telephone support 

strategies – which both fall under the label of early warning systems – when 

compared with usual care for adults who have been recently discharged (within 28 

days) from an acute care setting after a recent exacerbation of HF. To our knowledge 

the study by Pandor et al. (117) is the only one which partially overlaps with our 

review. Following the systematic review to evaluate the clinical effectiveness, the 

authors added an economic filter to review cost-effectiveness evidence on the same 

interventions and isolated two studies (112, 114) which were also reviewed in this 

paper. An assessment of the methodological quality of each study was performed 

using a combination of key components of the Drummond and Jefferson checklist for 

economic evaluations (107, 127), and the Eddy checklist for mathematical models 

used in technology assessments (128). Finally the authors built an economic model to 

evaluate the cost-effectiveness of several strategies for remote monitoring compared 

with usual care for patients recently discharged with heart failure. Comparing our 
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work with the one by Pandor et al. (117), we consider that we broadened the scope of 

the review, moving from the home telemonitoring and structured telephone support 

to the more comprehensive concept of early warning system. This explains the five 

extra papers comprised in our review, including the one by Pandor et al. (117). Three 

of the additional studies focused on some type of B-type natriuretic peptide 

measurement (113, 115, 116), while the remaining one focused on remote cardiac 

implantable electric devices management in patients implanted with implantable 

cardioverter defibrillators (111). 

We opted for a broader scope because we believe that all studies abiding to the 

suggested definition of early warning systems have common points on their 

interventions and can be evaluated under the same label. For this reason we wanted 

to test whether they can be modelled using similar approaches. Despite finding some 

differences between the models used in the various types of interventions, we also 

found that our line of reasoning was correct, as there are clear similarities amongst 

the models used in all seven studies. 

Finally we would like to praise highly the study by Goehler et al. (129), which 

systematically reviewed and assessed the modelling approaches with the criteria of 

the German Competence Network on Heart Failure in mind. It partially overlaps with 

the present study: two out of the seven papers included in the present review were 

also included in their work, while four of the five unreported papers were yet to be 

published at the time of their study; still, their exclusion of the study by Klersy et al. 

(112) remains unjustified. Notwithstanding, it is fair to recognize that the paper by 

Goehler et al. (129) was not superseded by the current review, as its focus was not 

restricted to early warning systems and to the outpatient setting. 

Lessons learned 

It was beyond the objectives of our review to provide a final recommendation as to 

which model approach should be preferred. Modelling is an ad hoc exercise which 

greatly depends on research objectives, target population, health technologies 

evaluated, and availability of data. However, it has been advocated that standardized 

disease-specific models should be developed as a way of decreasing structural 

uncertainty amongst models used for the economic evaluation of that same disease 

(130). In the case of heart failure taking into account the time parameter is paramount 

in order to monitor the eventual progression of the disease. Accordingly, Markov and 

discrete event simulation models seem more appropriate for modelling in the field of 

heart failure management. Notwithstanding the technical issues that may arise in the 

development of these models, these are usually well understood by clinicians and they 

benefit of feeding on traditional epidemiological survival data such as annual rates, 

Kaplan-Maier curves, time-to-event distributions (129). We should be sceptical 
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towards the use of decision trees in HF management modelling. In a field that deals 

with a chronic disease, one that may develop over several decades, these trees would 

turn out to be over-simplistic, lest they become prohibitively complicated. 

In the case of Markov modelling, two different types of health states were used: 

disease progression state (severity of disease, i.e. NYHA class) or health care provision 

state (hospitalisation status). Albeit dependant on patient-reported outcomes, NYHA 

class is widely accepted by cardiologists as an accurate measurement of disease 

severity (12). Thus, given that HF is a multi-dimensional disease lacking a unique 

biomarker for measuring disease severity, it seems more appropriate to model early 

warning systems for the management of heart failure – which could be best evaluated 

by focussing on the deterioration patient health status – using NYHA class as Markov 

states accounting for disease severity rather than using the number of previous 

hospitalisations as a proxy. Nonetheless, it should be taken into account that this may 

not always be possible due to the outcomes measured in the randomized controlled 

trials (RCTs) that originate the cost-effectiveness analysis or that are used as data 

sources for the study. In the particular case of the object of our review, it appears to 

have been the case for Morimoto et al. (116) and Moertl et al. (115) choosing 

hospitalisation status as health states and for Miller et al. (114) opting for using NYHA 

classes in its structure. 

Still regarding the constraints imposed by RCTs on economic evaluations, one of the 

core issues in modelling has to do with the extrapolation of the treatment effect from 

the RCT period to the time horizon of our evaluation. Extrapolation mainly depends 

on the outcomes measured in the RCT and which of these outcomes will be used to 

estimate the difference in efficiency between the treatment and the comparator. 

However, if patient-level data is available, extrapolation by means of survival analysis 

– using both parametric and non-parametric models – is preferred. Alternatively, if 

only counts for hospitalisations and/or NYHA class are available, transition 

probabilities should be calculated. 

Finally, some considerations about modelling hypothetical scenarios when no hard 

data is available or when the right comparator is absent. In this situation – assuming 

that decision trees are not viable alternatives for modelling early warning systems in 

the management of HF – hazard ratios for hospitalisation and/or mortality should be 

employed. This is both valid for Markov models and discrete event simulation models. 

Further, in discrete event simulation modelling it is possible to explore the impact of 

changes in specific patient characteristics on the outcomes of the model. In the 

particular case of early warning systems, this feature of discrete event simulation 

modelling is expected to be of vast interest. Since the observed variation in the 

collected data for individual patients is what will be responsible for triggering alarms 
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and follow-up actions, explaining this variation in terms of its cost-effectiveness will 

be crucial for determining the threshold for raising eventual alarms. 

Limitations 

The present study acknowledges two major limitations. The first derives from the fact 

that only models based on published full-text articles were assessed. Additional 

information (in particular, technical modelling reports) via direct communication with 

the authors was not requested. Since full-text papers seldom display all available 

information relating to their models, it is possible that one or more items that might 

be of interest remain unreported. This may directly lead to bias on the scoring of the 

Philips checklist. Handels et al. (131) reported this problem while reviewing the 

economic evaluations of interventions for the early diagnosis of Alzheimer’s disease 

and related disorders. Those authors suggest to overcome this lack of information by 

including extensive appendixes, and they point to Getsios et al. (132) and, in a 

different field, to Van Gestel et al. (133) as valid alternatives for publications of 

decision-analytical models. 

The aforementioned second limitation relates to the definition of early warning 

systems. This concept covers a plethora of health technologies and their associated 

interventions, with the concomitant inter-variability within technologies. To 

overcome this limitation a sensitive search strategy was adopted in order to enhance 

the retrieval probability of relevant studies. 

Recommendations 

Keeping an eye on the main flaws so far identified in the current models, two main 

points should be stressed. 

Firstly, we posit that further research on early warning systems, a field with a huge 

potential, waits to be done. A comprehensive and well acknowledged definition for 

early warning systems is highly desirable, as they are certainly about to become a 

conspicuous fixture in health research, reflecting the strong need to move from 

curative care to preventative care. 

And secondly, we point to the desirability for authors making technical information 

regarding the models more explicit in their publications. As Rennie and Luft (134) 

point out, in contradistinction to clinical studies, which tend to focus on the 

consequences of an intervention, economic evaluations demand more reporting space 

for additional items like resource use, costs, preference related information, and cost-

effectiveness results. Their lacking – often a consequence of the limited word count 

available for paper publication – is a major drawback for editors, reviewers, and 

researchers wishing to scrutinize the studies' features. The Consolidated Health 
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Economic Evaluation Reporting Standards (CHEERS) statement, published by 

Husereau et al. (135), provides recommendations, in the form of a checklist, to 

optimize reporting of health economic evaluations. The use of that checklist for the 

sake of transparency and for the simplification of interpretations and comparisons 

should be strongly recommended. 

Conclusions 

A systematic review of decision-analytical models used in the economic evaluation of 

early warning systems for the management of chronic heart failure patients was 

conducted, retrieving seven modelling studies. Some variability was found with 

regards to their general characteristics and methodological quality. Particularly, some 

quality features were not properly addressed in the reviewed studies or insufficient 

information was available in order to assess them appropriately. 

Further research waits to be done, starting preferentially with the development of a 

comprehensive definition of early warning systems and with the extension of work to 

other chronic diseases, chronic obstructive pulmonary disease (COPD) and diabetes 

being the foremost candidates. Furthermore, future modelling exercises should 

describe in detail any competing theories regarding model structure and disease 

progression. Models should also be more precise with regards to the identification of 

key parameters and the use of expert opinion, and should ensure that the four types of 

uncertainty (methodological, structural, heterogeneity, and parameter) are properly 

assessed. Finally, the Consolidated Health Economic Evaluation Reporting Standards 

(CHEERS) checklist should be adopted for reporting the methods and findings of 

future economic evaluation studies for the sake of clear-sighted interpretation and 

comparison of the studies under consideration. 
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Expert commentary 

Early warning systems may be defined as health technologies that consist mainly of 

three differentiating elements: (i) monitoring and collection of clinical data (e.g., vital 

signs, biomarkers, self-reported health status); (ii) a framework allowing for the 

identification of patterns and trends in these data, indicating significant changes in the 

health status of the patients; and (iii) the establishment of pre-determined conditions 

– such as the existence of statistically uncommon patterns in the data, threshold 

values or ranges for specific parameters within the collected data, or the presence of a 

particular combination of signs and symptoms – that trigger an alarm and follow-up 

actions. 

The current body of evidence concerning health and economic outcomes of early 

warning systems is inconclusive. The complexity of these devices – as a result of their 

widespread applications and potentialities – makes them a challenging research topic 

that has yet to receive enough attention by the scientific community. New research 

methods for collecting, analysing and interpreting data about early warning systems 

are required. 

Modelling techniques have become quintessential in the economic evaluation of new 

health technologies. Although it can be argued that the results of these studies are not 

the single motive for making decisions on the adoption of innovative technologies, 

they are certainly a criterion to which decision-makers pay substantial attention. For 

this reason, it is key to develop methodologies for health economic modelling in the 

field early warning systems that take into account the specific characteristics of these 

systems, particularly the monitoring and collection of clinical data. While monitoring 

systems become more complex and allow for more frequent and repeated 

measurements, a challenge is posed for health economic modelling. Data generated by 

these measurements implies that modelling techniques take into account individual 

patient characteristics, as well as their changes over time. Discrete event simulation is 

a type of modelling used in health technology assessment that allows for using patient 

characteristics as determinants for health and economic outcomes. Due to the 

technical challenges in their development and their huge demand for data, these 

models are not common practice in health technology assessment research. However, 

the findings of this research substantiate the use of discrete event simulation models 

in cost-effectiveness studies in heart failure in general – because of the multi-

dimensional characteristics of the disease – and in early warning systems in 

particular, as it seems to be the best methodological approach for assessing the impact 

of the variation of individual patient characteristics on patient outcomes both in terms 

of costs and effects. 
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Five-year view 

Health policy is increasingly driven by evidence published in economic evaluations 

and other evidence-based studies, thereby resulting in higher requirements for the 

methodologies used in these studies. Economic evaluations that do not include any 

kind of decision-analytic modelling are now seldom published in peer-reviewed 

journals. 

Early warning systems and other interventions relying on technology to facilitate 

preventive medicine are now in vogue in the most developed health care systems in 

the world. The future of these technologies will be dictated by the upcoming 

innovation in this field, the empowerment of patients – by involving them in their own 

health care –, and the acceptability of innovative monitoring techniques by health care 

professionals and patients. However, as it seems unquestionable that the rise in 

chronic disease prevalence will increase the demand for innovative solutions, early 

warning systems are expected to play a great role in shaping the future of health care. 

Further, they are expected to expand both in number and in their technical features. 

In the next 5 years, readers can expect to see more studies focusing on the cost-

effectiveness of early warning systems. As the scientific community must strive for 

generating transparent and reliable evidence that leads decision-makers into making 

right choices regarding the allocation of resources in health care, it is crucial to 

develop more robust methods for modelling in this field. For this purpose, modellers 

must combine and adapt lessons learned from previous modelling endeavours and 

create a culture of scientific openness and cooperation. Furthermore, understanding 

modelling approaches used in early warning systems for the management of heart 

failure can make way to the use of these models in other chronic diseases like diabetes 

and chronic obstructive pulmonary disease. 
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Key issues 

 The most frequently used methodological approaches in decision-analytic 

modelling do not seem adequate for the assessment of the cost-effectiveness of 

new emerging technologies like early warning systems 

 Describing the different approaches used in published decision-analytic models 

for the management of heart failure management using early warning systems is 

expected to provide concise and useful insight to inform the future development 

of models in this field. 

 Variability was found with regards to the general characteristics and 

methodological quality of reviewed decision-analytic models; some quality 

features were not properly addressed in the reviewed studies or insufficient 

information was available in order to assess them appropriately. 

 Future modelling exercises should describe in detail any competing theories 

regarding model structure and disease progression. Models should also be more 

precise with regards to the identification of key parameters and the use of expert 

opinion, and should ensure that the four types of uncertainty (methodological, 

structural, heterogeneity, and parameter) are properly assessed. 

 The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 

checklist should be adopted for reporting the methods and findings of future 

economic evaluation studies for the sake of clear-sighted interpretation and 

comparison of the studies under consideration. 

 In order to fully grasp the potential value of early warning systems for patients 

and patient outcomes, modelling studies should take patient characteristics into 

account. In this instance, discrete event simulation models should be preferred.  
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Appendices 

Appendix 2.1 – EMBASE search strategy 

1. 'heart failure'/exp 

2. ((cardi* OR heart*) NEAR/3 (fail* OR insuffic* OR incompeten*)):ab,ti 

3. 1 OR 2 

4. 'economic evaluation'/exp 

5. 'quality adjusted life year'/exp 

6. (cost* NEAR/3 (effective* OR benefit* OR utilit* OR minimi*)):ab,ti 

7. ((economic* OR pharmacoeconomic*) NEXT/1 evaluation*):ab,ti 

8. (value* NEAR/2 (money OR monetary)):ab,ti 

9. ((decision* OR 'individual patient' OR 'individual patients' OR cohort) NEXT/3 
model*):ab,ti 

10. markov*:ab,ti 

11. 'decision tree':ab,ti 

12. 'decision trees':ab,ti 

13. (('discrete event' OR 'discrete events' OR patient) NEXT/1 simulat*):ab,ti 

14. ('quality adjusted' NEAR/3 ('life year' OR 'life years')):ab,ti 

15. qaly*:ab,ti) 

16. OR/4-15 

17. 3 AND 16 

18. 'early diagnosis'/exp 

19. 'prevention'/exp 

20. 'prediction'/exp 

21. 'preventive health service'/exp 

22. ‘case management’/exp 

23. ‘clinical protocol’/exp 

24. ‘patient care planning’/exp 

25. 'disease course'/exp 

26. 'clinical pathway'/exp 

27. 'home care'/exp 

28. 'outpatient'/de 

29. 'outpatient care'/de 

30. 'ambulatory care'/exp 
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31. ‘patient monitoring’/exp 

32. 'community care'/exp 

33. ‘hospital admission’/exp 

34. ‘hospital readmission’/exp 

35. 'telehealth'/exp 

36. 'telemetry'/exp 

37. 'telephone'/exp 

38. ‘teleconsultation’/exp 

39. 'health program'/exp 

40. ((earl* NEAR/3 (warn* OR diagnos* OR detect* OR intervent* OR alarm*)):ab,ti 

41. ((warn* OR detect* OR alarm* OR monitor*) NEAR/3 (system*)):ab,ti 

42. ((implantable or wearable) NEAR/3 (system* OR sensor*)):ab,ti 

43. prevent*:ab,ti 

44. predict*:ab,ti 

45. ‘case management’:ab,ti 

46. (clinical NEAR/3 protocol*):ab,ti 

47. (‘patient care' NEAR/3 planning*):ab,ti 

48. ((disease* OR clinical*) NEAR/3 (course* OR pathway* OR management*)):ab,ti 

49. progress*:ab,ti 

50. deteriorat*:ab,ti 

51. prognos*:ab,ti 

52. innovati*:ab,ti 

53. ((home OR communit* OR domicilliar* OR ambulator* OR remote* OR patient* OR 
outpatient* OR tele) NEAR/3 (care OR monitor* OR management OR consultat*)):ab,ti 

54. ((hospital* OR patient* OR voluntar*) NEAR/3 (admission* OR readmission*)):ab,ti 

55. Telehealth:ab,ti 

56. Ehealth:ab,ti 

57. 'mobile health':ab,ti 

58. mhealth*:ab,ti 

59. telephone*:ab,ti 

60. telemetr*:ab,ti 

61. teleconsult*:ab,ti 

62. telemonitor*:ab,ti 

63. ((health OR healthcare) NEAR/3 program*)):ab,ti 
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64. OR/18-63 

65. 17 AND 64 

66. ([animals]/lim NOT [humans]/lim) NOT ([conference abstract]/lim OR [letter]/lim OR 
[note]/lim OR [conference paper]/lim OR [editorial]/lim OR [conference review]/lim) AND 
[english]/lim 

67. 65 NOT 66 

 

Appendix 2.2 – Excluded studies, with reasons. 

Author, year Reason for exclusion 

1. Adlbrecht, C; et al., 2011 Not an early warning system, no decision-analytical model 
is present 

2. Bentkover, JD; et al., 2003 Not an early warning system, not a cost-effectiveness 
study 

3. Bocchi, EA; et al., 2013 Conference abstract 

4. Burri, H; et al., 2013 Included; it should be formally excluded because 
population under study concerned patients with cardiac 
implantable electric devices, and was not restricted to the 
ones diagnosed with heart failure 

5. Cano Martin, JA; et al., 2014 Not an early warning system 

6. Chan, DC; et al., 2008 Not an early warning system 

7. Chen, Q; et al., 2000 Not heart failure, not an early warning system, no 
decision-analytical model is present 

8. Cui, Y; et al., 2013 No decision-analytical model is present 

9. Gohler, A; et al., 2008 Not an early warning system, not outpatient setting 

10. Graves, N; et al., 2009 Not an early warning system 

11. Hailey, D; Yu, P., 2013 No decision-analytical model is present 

12. Heidenreich, PA; et al., 2004 Not an early warning system, not outpatient setting 

13. Henderson, C; et al., 2013 No decision-analytical model is present 

14. Henderson, C; et al., 2013 No decision-analytical model is present (same study as 
13.) 

15. Inglis, SC; et al., 2006 Not a cost-effectiveness study 

16. Milburn, AB; et al., 2014 Not a cost-effectiveness study 

17. Noel, HC; et al. 2004 Not an early warning system, no decision-analytical model 
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is present 

18. Roth, A; et al., 2006 Not a cost-effectiveness study 

19. Thokala, P; et al., 2013 Decision-analytical model is the same as the one 
presented in the included study: Pandor, A; et al., 2013 

20. Thokala, P; et al., 2013 Conference abstract (refers to study 19.) 

21. Zanaboni, P; et al., 2013 No decision-analytical model is present 

 

Appendix 2.3 – Narrative description of reviewed studies 

Burri et al. 2013. Burri et al. (111) performed a cost-consequence analysis (a variation 

of the cost-effectiveness approach that provides costs and outcomes in disaggregated 

form) assessing the long-term costs and consequences of using remote cardiac 

implantable electric devices management in patients implanted with implantable 

cardioverter defibrillators and cardiac resynchronization therapy defibrillators for 

either primary or secondary prevention. The authors used a Markov model with a 

time horizon of 10 years and a cycle length of 1 year. Four main health states were 

included: Well, Poststroke, Post-ADHF, and Dead as an absorbing state. In every 

Markov cycle and health state (except ‘Dead’), the probabilities of experiencing the 

clinical and technical events were applied. The role of modelling was to inform 

decisions in the absence of hard data. Twelve consequences were examined in the 

model: scheduled and unscheduled FU visits, battery replacements, lead malfunctions, 

atrial fibrillation/flutter (AF), lead-related inappropriate shocks, non-lead-related 

inappropriate shocks, stroke, hospital admission for acute decompensated heart 

failure (ADHF), sustained ventricular arrhythmia (SVA), appropriate shocks triggered 

by SVA, and death. Deterministic sensitivity analysis of model parameters was 

performed and presented with a tornado diagram. The main conclusion of this study 

was that the model establishes HM as an economically viable technology when applied 

within the UK NHS system. 

Klersy et al. 2011. Klersy et al. (112) assessed the cost-effectiveness and the cost-utility 

of remote patient monitoring when compared with the usual care approach based 

upon differences in the number of hospitalizations, estimated from a meta-analysis of 

randomized clinical trials. The authors used a decision tree and budget impact model 

with a time horizon of 1 year. The decision tree in both usual care and RPM patients 

considered two options: (i) the patient is hospitalized for HF (event); or (ii) the 

patient is not hospitalized for HF (event free) during follow-up. The budget impact 

model simulated the economic impact of a change in the approach of the care pathway 

of a theoretical population of HF patients followed-up for 1 year with an RPM 



Chapter 2 

55 

implementation rate ranging from 0 to 50%. The role of modelling consisted in 

synthesizing head-to-head comparisons where relevant trials do not exist. The 

authors came to the conclusion that the novel cost-effectiveness data coupled with the 

demonstrated clinical efficacy of remote patient monitoring should encourage its 

acceptance amongst clinicians and its consideration by third-party payers. 

Laramée et al. 2013. Laramée et al. (113) calculated the cost-effectiveness of three 

strategies for optimising medical therapy in patients with chronic heart failure: 

management guided by serial measurement of circulating natriuretic peptide 

concentration by a specialist, management guided by clinical assessment by a 

specialist, and usual care in the community. For the purpose of informing decisions in 

the absence of hard data, the authors built a decision tree. The decision tree for 

intervention was sub-divided in True HF and No HF, which respectively sub-divided in 

BNP above threshold, echo positive and BNP below threshold, HF missed, and BNP 

above threshold, echo negative and BNP below threshold, no echo. The authors 

concluded that the optimisation of medical therapy in CHF guided by serial natriuretic 

peptide measurements by a specialist is cost-effective – at a threshold of £20 000 per 

QALY and only for specific subgroups of patients – when compared with both medical 

therapy guided by specialist’s clinical assessment and usual care in the community.  

Miller et al. 2009. Miller et al. (114) performed a cost-utility analysis using a Markov 

model to extrapolate from the results of an 18-month clinical trial to estimate the 

long-term impact of systolic heart failure disease management when compared with 

usual care. The model had a lifetime time horizon and a 6-month cycle length. Patients 

represented in the model can transition among 3 disease states based on NYHA class 

(class I, class II, and a grouping of classes III and IV), with a possible transition to 

death from each of these states. The results of the study show that discounted lifetime 

program and medical costs were $4850 higher in the disease management group and 

that the intervention had a long-term discounted cost-effectiveness of $43,650/QALY. 

Deterministic sensitivity analysis was performed as a way of assessing uncertainty. 

Moertl et al. 2013. Moertl et al. (115) assessed the cost-utility of NT-proBNP-guided 

intensive patient management on top of multidisciplinary care, when compared with 

multidisciplinary care alone or usual care. The authors used a Markov model with a 

20-year time horizon and a 1-month cycle length to extrapolate the results of a 18-

month clinical trial. The model simulated disease progression from HF using the 

number of previous HF hospitalizations as a proxy for disease progression. Health 

states within the model were representative of the number of previous HF 

hospitalizations with the assumption of greater risks of subsequent hospitalizations 

and mortality the greater the number of previous hospitalizations. The study 

concluded that NT-proBNP-guided intensive heart failure patient management in 

addition to multidisciplinary care was the most cost-effective strategy, as it was 



Chapter 2 

56 

dominant over both multidisciplinary care alone or usual care. Probabilistic sensitivity 

analysis was performed to show that the probabilities for NT-proBNP-guided 

intensive heart failure patient management in addition to multidisciplinary care being 

the most cost-effective strategy were 92% at a threshold value of Austrian €40,000 

and 93% at a threshold value of Canadian $50,000. 

Morimoto et al. 2004. Morimoto et al. (116) used a Markov model for informing 

decisions in the absence of hard data and assessing the cost-utility of chronic heart 

failure management with B-type natriuretic peptide measurement when compared to 

HF management without B-type natriuretic peptide measurement. The model had a 

10-year time horizon a 3-month cycle length. Patient enter the model in the state of 

"no additional hospitalization for CHF" and every 3-month cycle can remain in the 

same health state or move along 4 other health states: "1st additional hospitalization 

for CHF", "2nd additional hospitalization for CHF", "3rd additional hospitalization for 

CHF", or "4th or more additional hospitalizations for CHF". From every of the five 

health states patients can move to health state "dead". Baseline analysis of this study 

revealed dominance of the group with B-type natriuretic peptide measurement. 

Deterministic sensitivity analysis was the only type of uncertainty assessment 

performed in this study. 

Pandor et al. 2013 Pandor et al. (117) determined the cost-effectiveness of home 

telemonitoring or structured telephone support strategies when compared with usual 

care for adult patients who have been recently discharged (within 28 days) from acute 

care after a recent exacerbation of HF. The authors developed a comprehensive 

Markov model synthesizing head-to-head comparisons where relevant trials do not 

exist, and informing decisions in the absence of hard data. The model had with a 30-

year tome horizon and a cycle length of 1 month. Two different states were 

considered: (a) alive at home and (b) dead. In each period the patients who were alive 

were under the risk of an average number of monthly rehospitalisations; each patient 

then accrued lifetime QALYs and health care costs according to their hospitalisation 

and treatment status. The model was subject to scenario analysis for costs, 

probabilistic sensitivity analysis for all model parameters (10,000 simulations), and 

expected value of perfect information (EVPI) analysis. The study concluded that home 

telemonitoring during office hours was the most cost-effective strategy with an 

estimated incremental cost-effectiveness ratio (ICER) of £11,873 per quality-adjusted 

life-year (QALY) compared with usual care. 
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Abstract 

Background: Empirical identification of the direct impact of hospitalisation in the 

change in utility could provide an interpretation for some of the unexplained variance 

in quality of life responses in clinical practice and clinical trials and provide assistance 

to researchers in assessing the impact of a hospitalisation in the context of economic 

evaluations. This study had the goal of determining the impact of nonfatal 

hospitalisations on the quality of life of a cohort of patients previously diagnosed with 

heart failure by using their quality of life measurements before and after 

hospitalisation. 

Methods: The impact of hospitalisation on health-related quality of life was estimated 

by calculating the difference in utility measured using the EQ-5D-3L in patients that 

were hospitalised and had records of utility before and after hospitalisation. The 

variation in differences between the utilities pre and post hospitalisation was 

explained through two multiple linear regression models using (1) the individual 

patient characteristics and (2) the hospitalisation characteristics as explanatory 

variables. 

Results: The mean difference between health-related quality of life measurement pre 

and post hospitalisation was found to be 0.020 [95% CI: -0.020, 0.059] when 

measured with the EQ-5D index, while there was a mean decrease of -0.012 [95% CI: -

0.043, 0.020] in the utility measured with the visual analogue scale. Differences in 

utility variation according to the primary cause for hospitalisation were found. 

Regression models showed a statistically significant impact of body mass index and 

serum creatinine in the index utility differences and of serum creatinine for utilities 

measured with the visual analogue scale.  

Conclusion: Knowing the impact of hospitalisation on health-related quality of life is 

particularly relevant for informing cost-effectiveness studies designed to assess health 

technologies aimed at reducing hospital admissions. Through using patient-level data 

it was possible to estimate the variation in utilities before and after the average 

hospitalisation and for hospitalisations due to the most common causes for hospital 

admission. These estimates for (dis)utility could be used in the calculations of 

effectiveness on economic evaluations, especially when discrete event simulations are 

the employed modelling technique.  
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Background 

Heart failure (HF) is a condition characterized by typical symptoms (e.g., 

breathlessness, ankle swelling and fatigue) and signs (e.g., elevated jugular venous 

pressure, pulmonary crackles and peripheral oedema) caused by a structural and/or 

functional cardiac abnormality, resulting in a reduced cardiac output and/or elevated 

intracardiac pressures at rest or during stress (12). HF is a major health concern 

associated with significant morbidity, mortality, and reduced quality of life for 

patients. From a medical perspective, the goals of managing patients with HF consist 

in improving their clinical status, functional capacity, and quality of life, preventing 

hospital admission, and reducing mortality (10, 12). Understanding the relationship 

between all these goals of HF therapy is of vital importance for informing the 

development of clinical practice guidelines and for approving or recommending new 

therapeutic interventions for HF. 

Previously published studies indicate that quality of life or health-related quality of 

life (QoL or HRQoL, respectively; henceforth used interchangeably) in patients with 

HF is greatly impaired when compared to the general population (23, 24, 27). The 

New York Heart Association (NYHA) functional classification – a system for classifying 

patients according to the severity of their symptoms – has been shown to be a strong 

independent predictor of QoL for patients with HF (27). However, since NYHA 

functional class is only assessed during clinical visits and provides a relatively 

simplistic way of classifying the extent of heart failure based on patients’ limitations 

during physical activity, the underlying determinants of reduced quality of life in 

patients with HF remain hardly distinguishable (136), particularly HF-related events 

that are expected to have an impact on patient utility (e.g., hospitalisation) (137). 

Economic evaluations published in the literature have used an estimated disutility for 

hospitalisation equivalent to the decrease in utility between a particular NYHA class 

and the one immediately worse (138). In view of the high incidence of 

(re)hospitalisation in patients suffering from HF, in absence of a robust method for 

calculating the (dis)utility resulting from a hospitalisation, it becomes essential to 

explore the relationship between hospitalisation and quality of life. From a theoretical 

viewpoint it may be assumed that there is a relationship between hospitalisation and 

utility, although there is insufficient or unclear reporting of evidence about the impact 

on utility caused by the hospitalisation of HF patients, both in the magnitude of the 

effect and the duration of this same effect (117). 

Current practice in economic evaluations aimed at estimating quality-adjusted life 

years (QALYs) consists in measuring utility at specific points in time and linearly 

interpolate these values so that they reflect a larger time period for the subjects under 

analysis. In others words, using the QALY model as the measure of effectiveness in 



Chapter 3 

61 

economic evaluations implies missing temporary changes in utility, particularly when 

these changes are due to disease-related events. For instance, when having access to 

two consecutive utility measurements with the same value – one before and other 

after a particular event –, using the QALY model leads to an implicit assumption that 

the utility of that same patient was constant throughout both time points and that the 

event that took place had no influence in the QoL of that patient, even though this 

assumption is unlikely to hold in an event such as a hospitalisation (139, 140). In this 

sense, empirical identification of the direct impact of hospitalisation on the change in 

utility could provide an interpretation for some of the unexplained variance in QoL 

responses in clinical practice and clinical trials, as well as it may provide assistance to 

researchers in designing trials aimed at assessing patient-reported outcomes. 

This study had the goal of determining the impact of nonfatal hospitalisations on the 

QoL of a cohort of patients previously diagnosed with heart failure by using their QoL 

measurements before and after hospitalisation. 
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Methods 

Data 

We used the data from the Trans-European Network-Home-Care Management System 

(TEN-HMS) trial for our study. This trial investigated the impact of using home 

telemonitoring, nurse telephone support (NTS), or usual care (UC) in hospital 

admissions, hospital days, and rates of mortality. Details of the inclusion and exclusion 

criteria, follow-up, and results of the study have been reported elsewhere (126). In 

brief, patients who were ready for discharge or who were recently discharged after an 

hospital admission due to heart failure were evaluated for inclusion conditional on the 

permission by their primary care physician. Inclusion criteria for patients consisted of 

a hospital admission due to or complicated by worsening heart failure lasting more 

than 48 hours within the last six weeks, persisting symptoms of heart failure, LV (left-

ventricular) ejection fraction <40%, LV end-diastolic dimension >30 mm/m (height), 

and being medicated with furosemide at a dose ≥40 mg/day or equivalent (e.g., ≥1 mg 

of bumetanide or ≥10 mg of torasemide). In addition, patients should have at least one 

of the following indicators of further increase in risk: (1) unplanned cardiovascular 

admission lasting more than 48 hours within the previous 2 years; (2) LV ejection 

fraction <25%; or (3) treatment with furosemide at a dose of ≥100 mg/day or 

equivalent. Patients younger than 18 years of age who were considered incapable of 

complying with home telemonitoring or who were awaiting revascularisation, cardiac 

resynchronisation, or heart transplantation were excluded. 

Theoretical framework 

The health-related quality of life in heart failure depends on the specific 

characteristics of a given patient, such as the disease status, gender, comorbidities, 

age, among others (24). Events that may alter any of the aforementioned 

characteristics are expected to have an indirect impact on HRQoL. Because it results 

from a temporary deterioration of the health status of the patient or a permanent 

change in health status deriving from the progression of the disease, being 

hospitalised is expected to have an effect in HRQoL. 

In practice, utility measurements of HF patients are taken periodically, during clinical 

visits to the physician, and they are not always performed when particular events 

related to disease progression take place (e.g., pulmonary embolism, tachyarrhythmia, 

hospitalisation). Hence, while the global trend in HRQoL can be summarised, the 

specific impact of the event may be concealed, leaving many associations that can be 

hypothesised. For instance, in the period before the event, QoL may be decreasing as a 

result of a decline in the health status of the patient – which may in part explain 

hospitalisation –, but after the event QoL may improve again. As a result, the 
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difference between the last utility measurement pre-event and the first measurement 

post-event could be zero or even show an increase in QoL. Alternatively, QoL may be 

stable when a very sudden decline in health triggers the event. After this event, QoL 

may improve again but it may not get back to the level it was before the decline 

happened. In this particular situation a decrease between the last pre-event utility 

measurement and the first post-event utility measurement would be recorded. 

Using the data from the TEN-HMS trial we will try to answer our research question by 

analysing differences between QoL before and after hospitalisation. In this way we 

will be able to infer on the hypothesis that there is a difference in utilities resulting 

from the hospitalisation event. This approach entails that for every considered 

hospitalisation there is a period of time pre and post event that may vary for every 

observation and that may result in a different magnitude of the utility change between 

both measurements. Moreover, the particular characteristics of the hospitalisation – 

length of stay and whether the patient was admitted to the intensive care unit – are 

also likely to have an influence on the variation of HRQoL. Figure 3.1 provides a 

schematic representation of the framework that will be used for testing the hypothesis 

that hospitalisation impacts HRQoL and the determinants that may play a role in the 

measured variation. 

 

Figure 3.1 – Schematic representation of HRQoL and its determinants 

Measurement of the health-related quality of life 

In the TEN-HMS trial health-related quality of life was measured using the three-level 

EQ-5D questionnaire (henceforth EQ-5D-3L), which consists of a descriptive system 

and a visual analogue scale (VAS) (141, 142). The validity and reliability of the EQ-5D 

tool as an outcome measure within the cardiovascular area have been previously 

asserted (143). More specifically, it has shown satisfying psychometric properties in 

cardiac rehabilitation (144). 

For this study we calculated utilities by applying the utility weights previously 

identified for the Netherlands to the answers given to the EQ-5D-3L descriptive 

system questionnaire (utility values found this way will be referred to as index 

utilities, as opposed to VAS utilities) (145). 

The EQ-5D-3L in the TEN-HMS trial was administered at baseline and it was repeated 

at 4, 8, 12, 16, 20, and 24 months, during scheduled clinical visits. 
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Hospitalisation 

There were sixty different causes for admission identified in the dataset. From these, 

hospitalisations could be classified into three major groups: (1) due to heart failure, 

(2) other cardiovascular, or (3) noncardiovascular. Information regarding the number 

of days spent in hospital, whether the patient was admitted to the ICU, and if the 

patient died during hospitalisation were also available from the data. 

Statistical analyses 

HRQoL pre and post hospitalisation (base case) 

In order to assess the impact of hospitalisation on HRQoL, we took the available EQ-

5D-3L measurements immediately before and after hospitalisation. We then 

calculated the difference in utility measured for each individual patient – both using 

index and VAS utilities –, followed by the average utility difference for all patients who 

were hospitalised and had records for both measurements. 

Sensitivity analyses 

Four sensitivity analyses were performed. First, we excluded patients who 

experienced more than one hospitalisation between the EQ-5D-3L assessments of 

interest. Second, we only considered the hospitalisations for which the reason for 

admission was either heart failure or other cardiovascular event. Third, we stratified 

patients into consecutive groups for those who completed the EQ-5D-3L within X days 

of the non-fatal hospitalisation (for X = 20, 40, 60, 80, 100), in order to determine 

whether the time interval between the event and the subsequent HRQoL assessment 

had any effect on the magnitude of the utility change. And finally, we performed an 

analysis in which patients that died after hospitalisation and before completing the 

following HRQoL assessment were assigned a value of 0 for their utility measurement. 

Utility variation by primary admission cause 

In order to infer on the impact of the most frequent events that can lead to 

hospitalisation on utilities of HF patients, we used the methods from the base case 

analysis individually for each of the ten most common reasons for primary admission 

described in the dataset. 

Impact of the characteristics of the patient and of the hospitalisation in the 

variation in HRQoL 

We aimed at explaining the variation in differences between the utilities pre and post 

hospitalisation through two multiple linear regression models. The first used 

individual patient characteristics (measured at the same moment as utilities) as 

explanatory variables: body mass index, systolic and diastolic blood pressures, 
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haemoglobin, serum sodium, and creatinine; the second used hospitalisation 

characteristics as the explanatory variables: length of hospital stay, number of days 

between the measurement before hospitalisation, number of days elapsed between 

the considered hospitalisation and the subsequent utility measurement, and a binary 

variable for the admission to the intensive care unit (ICU). 

All statistical analyses were conducted using the programming language R (146). 
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Results 

Baseline data 

The demographic and clinical characteristics at baseline for the total population (n = 

426) and the sub-population which has been hospitalised at least once can be found in 

Table 3.1. From the total population included in the study, 270 individuals (63.4%) 

experienced at least one hospitalisation (total number of hospitalisations = 583); the 

data from these patients were used in the analyses. 

The average age of included patients was 67.1 years old and there is a 4:1 ratio of men 

over women in this population. The great majority of patients have comorbidities, 

especially previous myocardial infarction and hypertension. Previous myocardial 

infarction is the main primary cause for HF in 63.3% of the cases, followed by 

idiopathic dilated cardiomyopathy (20.0%). Higher utilities at baseline (with higher 

standard deviation) were recorded for index utilities when compared to VAS utilities 

(0.669 ± 0.246 vs. 0.537 ± 0.189, respectively). 

Table 3.1 – Baseline Characteristics 

Variable Total population 
Hospitalised 
population 

Number 426 270 

Hospitalised at least once (%)  270 (63.4) 270 (100) 

Mean age, years (SD) 67.1 (13.1) 67.1 (13.2) 

% patients age ≥70 years 48.1 48.5 

% Women 22.5 19.6 

Lives alone (%) 113 (26.5%) 69 (25.6%) 

Lives with partner or friend (%) 313 (73.5%) 201 (74.4%) 

Primary cause of heart failure (%)   

Coronary disease 254 (59.6%) 171 (63.3%) 

Hypertension 27 (6.3%) 15 (5.6%) 

Idiopathic dilated cardiomyopathy 95 (22.3%) 54 (20.0%) 

Alcohol-related 11 (2.6%) 4 (1.5%) 

Valve-related 28 (6.6%) 20 (7.4%) 

Other 10 (2.3%) 6 (2.2%) 

Comorbidities (%)   

Previous myocardial infarction 241 (57%) 163 (60%) 
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Valve disease 

/mitral regurgitation 

156 (37%) 

/138 (32%) 

101 (37%) 

/82 (30%) 

Chronic or paroxysmal atrial fibrillation 192 (45%) 127 (47%) 

Hypertension 200 (47%) 123 (46%) 

Stroke, any 39 (9%) 29 (11%) 

Chronic lung disease 103 (24%) 69 (26%) 

Diabetes, any 149 (35%) 94 (35%) 

Investigations (SD)   

Weight (kg) 76.7 (16.7) 77.1 (16.6) 

Body mass index (kg/cm2) 26.2 (4.7) 26.3 (4.8) 

Systolic blood pressure (mm Hg) 114.2 (19.3) 113.1 (19.7) 

Diastolic blood pressure (mm Hg) 69.3 (11.3) 69.1 (11.3) 

Haemoglobin (g/dl) 13.0 (2.1) 12.9 (2.0) 

Serum sodium (mmol/l) 137.5 (5.0) 137.3 (5.1) 

Serum creatinine (µmol/l) 138.7 (54.0) 143.7 (58.7) 

Mean LVEF (%) 26.0 (7.5) 26.1 (7.7) 

% with LVEF <25% 50.2 47.4 

NT proBNP (pg/ml), 

median [IQR] 

365.5 

[152.3 to 796.5] 

393.0 

[177.5 to 871.0] 

Utility – Index (SD) 0.687 (0.242) 0.669 (0.246) 

Utility – VAS (SD) 0.538 (0.192) 0.537 (0.189) 

Abbreviations: IRQ, interquartile range; LVEF, left ventricular ejection fraction; SD, standard 
deviation. 

 

Statistical analyses 

HRQoL pre and post hospitalisation (base case) 

The mean difference between the HRQoL measurement pre and post hospitalisation 

was found to be 0.020 [95% CI: -0.020, 0.059] for index utilities, and -0.012 [95% CI: -

0.043, 0.020] for VAS utilities. There were no striking differences between the shape 

of the density curves of the utility variation when measured with either the EQ-5D-3L 

index or the VAS (cf. Figure 3.2). 
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Figure 3.2 – Distribution of the difference between measurements pre and post hospitalisation for index and VAS utilities 

Sensitivity analyses 

The first sensitivity analysis consisted of excluding patients who had more than one 

hospitalisation but did not die before the following HRQoL assessment. The analysis 

provided consistent results when compared to the primary analysis: utility variation 

of 0.000 [95% CI: -0.081, 0.081] with index utilities and -0.019 [95% CI: -0.084, 0.046] 

with VAS. Secondly, restricting the analysis to hospitalisations that were due to 

cardiovascular conditions alone also does not change results of QoL variation 

substantially, with a calculated increase in utility of 0.023 [95% CI: -0.016, 0.062] for 

index utilities and a decrease of -0.009 [95% CI: -0.041, 0.023] for VAS. Thirdly, 

stratifying patients according to the number of days elapsed between hospitalisation 

and the subsequent utility measurement, despite the large variance, shows that 

differences in utility measured with the VAS are noticeably smaller in absolute terms 

when compared to index utility differences (see Figure 3.3). And finally, when 

assigning 0 to the utility score of patients who died after the hospitalisation, there was 

a significant decrease in the utilities pre and post hospitalisation of -0.172 [95% CI: -

0.222, 0.122] with the EQ-5D index and -0.133 [95% CI: -0.171, -0.096] for VAS. 
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Figure 3.3 – Stratification of patients according to number of days between hospitalisation and utility measurement 

Utility variation by primary admission cause 

There were 456 records (78.22% of total number of hospitalisations) among the ten 

most common reasons for primary admission. The two causes with higher positive 

impact on the utility variation were respiratory/chest infection and ventricular 

tachycardia, whereas the causes with the highest negative impact on utilities were 

atrial fibrillation and myocardial infarction. Similarly to what was observed for the 

base case analysis, the calculated utility variations before and after hospitalisations 

for most of the primary admission causes registered high standard errors. The 

summarised results are presented in Table 3.2. 

Table 3.2 – Utility variation by primary admission cause 

Primary admission 
cause 

n (% total hospitalisations) 
Utility variation (standard error) 

Index VAS 

Atrial Fibrillation 12 (2.06) -0.102 (0.213) 0.010 (0.184) 

Cardiovascular 
investigation 

13 (2.23) 0.031 (0.046) -0.125 (0.250) 

Heart failure 226 (38.77) 0.014 (0.069) -0.024 (0.060) 

Myocardial 
Infarction 

14 (2.40) -0.123 (0.075) -0.175 (0.181) 
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Other 
gastrointestinal 
cause 

25 (4.29) 0.070 (0.173) -0.018 (0.105) 

Other not listed 87 (14.91) 0.041 (0.093) 0.018 (0.076) 

Respiratory; Chest 
infection 

22 (3.77) 0.106 (0.186) -0.062 (0.085) 

Stable Angina 13 (2.23) 0.032 (0.215) -0.148 (0.212) 

Unstable Angina 31 (5.32) -0.068 (0.106) 0.008 (0.157) 

Ventricular 
Tachycardia 

13 (2.23) 0.300 (0.334) 0.185 (0.219) 

Total 456 (78.22)*   

* From a total number of 583 hospitalisations among sixty admission causes 

 

Impact of the characteristics of the patient and of the hospitalisation in the 

variation in HRQoL 

The descriptive statistics of the patient characteristics measured during the quarterly 

clinical visits and the results of the regression models used to assess the impact of 

these characteristics on the differences in utility pre and post hospitalisation are 

presented in Table 3.3. The model showed a statistically significant impact (α = 0.05) 

of body mass index and serum creatinine in the index utility differences. For VAS 

utilities only serum creatinine was shown to explain the differences observed in 

statistically significant (α = 0.05) manner. 

Concerning the hospitalisation characteristics, none of these explanatory variables 

were shown to have a statistically significant (α = 0.05) relationship with the variation 

in utility for both index and VAS utilities. The results for this model are summarised in 

Table 3.4. 
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Table 3.3 – Descriptive statistics of patient characteristics and their impact on utility pre and post hospitalisation 

  

Variable 

Descriptive statistics (mean [standard 
deviation]) 

Regression analysis Index Regression analysis VAS 

Pre 
hospitalisation 

Post 
hospitalisation 

Mean of 
Differences 

Coefficient 
estimate 

Standard 
error 

p-value 
Coefficient 

estimate 
Standard 

error 
p-value 

Intercept - - - 1.34 x 10-2 2.39 x 10-2 0.5748 2.12 x 10-2 1.87 x 10-2 0.259 

Body mass 
index 
(kg/cm2) 

26.4 (5.9) 23.9 (9.9) -2.5 (8.9) 1.73 x 10-2 7.33 x 10-3 0.0198* 7.45 x 10-4 5.77 x 10-3 0.897 

Systolic blood 
pressure (mm 
Hg) 

116.7 (21.3) 118.4 (22.6) 1.2 (21.5) 2.49 x 10-4 1.39 x 10-3 0.8579 -1.86 x 10-4 1.07 x 10-3 0.862 

Diastolic blood 
pressure (mm 
Hg) 

69.2 (10.9) 69.5 (11.5) 0.3 (14.2) 8.66 x 10-4 2.24 x 10-3 0.6991 2.01 x 10-4 1.73 x 10-3 0.908 

Haemoglobin 
(g/dl) 

8.8 (6.3) 8.8 (6.1) -0.0 (2.5) -1.77 x 10-3 9.38 x 10-3 0.8510 -1.10 x 10-3 7.45 x 10-3 0.882 

Serum sodium 
(mmol/l) 

134.6 (19.3) 133.4 (22.7) -2.5 (26.5) 5.88 x 10-5 1.44 x 10-3 0.9674 7.60 x 10-4 1.13 x 10-3 0.503 

Serum 
creatinine 
(µmol/l) 

136.6 (64.4) 139.5 (58.3) 1.1 (55.2) -9.70 x 10-4 4.52 x 10-4 0.0339* -8.70 x 10-4 3.55 x 10-4 0.016* 

* p-value < 0.05 
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 Table 3.4 – Descriptive statistics of hospitalisation characteristics and their impact on utility variation pre and post hospitalisation 

Variable 

Descriptive statistics Regression analysis Index Regression analysis VAS 

Mean 
Standard 
deviation 

Coefficient 
estimate 

Standard 
error 

p-value 
Coefficient 
estimate 

Standard 
error 

p-value 

Intercept - - -9.11 x 10-3 9.24 x 10-2 0.922 9.93 x 10-2 6.40 x 10-2 0.122 

# days before 
hospitalisation 

52.7 39.0 -3.02 x 10-4 7.78 x 10-4 0.698 6.56 x 10-4 5.42 x 10-4 0.227 

# days after hospitalisation 74.8 41.5 3.23 x 10-4 7.67 x 10-4 0.674 -9.15 x 10-4 5.21 x 10-4 0.081 

Length of stay (days) 13.7 24.9 -1.30 x 10-3 1.64 x 10-3 0.429 -1.2 x 10-3 1.23 x 10-3 0.309 

Intensive care (%)* 5.69 - 7.76 x 10-2 1.01 x 10-1 0.445 1.24 x 10-1 7.63 x 10-2 0.107 

* dummy variable 
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Discussion 

Quantifying the impact of hospitalisation on QoL is particularly relevant for informing 

cost-effectiveness studies designed to assess health technologies primarily aimed at 

reducing admissions, especially when compared to technologies aimed at reducing the 

decline of the patient health status. To the best of our knowledge, this is one of the 

first studies to address the impact of hospitalisation in HRQoL of heart failure 

patients. In view of readmission being a common event for these patients (147, 148) – 

with the first few weeks after discharge from hospital being the highest risk period; 

between 20-30% of patients are readmitted within 30 days, rising to 50% at 6 months 

(149) –, it seemed relevant to have an estimate of the impact of this event on the 

HRQoL of HF patients, thereby overcoming the use of utility decrement estimates 

based on the assumption that patients progress to the immediately worse NYHA class 

after hospitalisation (138). Using patient-level data we have calculated an empirical 

estimate for the difference between HRQoL before and after hospitalisation. 

In this study we found a slight difference between the HRQoL measured before and 

after a hospitalisation: an increase in index utilities of 0.020 [95% CI: -0.020, 0.059] 

and a decrease of -0.012 [95% CI: -0.043, 0.020] for VAS utilities. Even though there is 

a discrepancy between the directions of this change, the small magnitude of the effect 

– further substantiated by the relatively large confidence interval around the mean 

and the similarity between the density curves of the two methods – indicates that 

there is no significant evidence of a difference between utility pre and post 

hospitalisation when using either of the utility elicitation methods. Nonetheless, there 

are two possible explanations for the difference between index and VAS utilities: (i) 

VAS utilities tend to be lower than index utilities for the same individuals (see Table 

3.3); and (ii) changes in index utilities measured with the EQ-5D-3L are prone to 

“jumps”, as they are only possible through a change in the patient self-assessment of 

his/her health state within the three possible levels – no problems, some problems, 

and extreme problems – for each of the five health dimensions. The five level EQ-5D 

(EQ-5D-5L) has since been introduced and it has proven to be a superior tool than EQ-

5D-3L with respect to various measurement properties, enabling improvements in 

sensitivity and precision in health status measurement and the resulting utilities 

(150). 

The findings for the base case analysis are further substantiated by the sensitivity 

analyses, except for the one that consisted of attributing 0 to the value of the utility 

post hospitalisation in patients who either died in hospital or before having an 

available measurement after the event. This analysis resulted in a decrease of -0.172 

[95% CI: -0.222, 0.122] for the index utility and -0.133 [95% CI: -0.171, -0.096] for the 

VAS utility. 
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However, it is crucial to note that hospitalisations in heart failure patients are 

heterogeneous and, therefore, the impact of these hospitalisations on QoL is likely to 

depend on the underlying clinical cause for admission. For instance, a hospitalisation 

resulting from a temporary deterioration in the health of a patient, typical in 

revolving-door patients, may lead to an improvement in QoL measured before and 

after hospitalisation, whereas a stroke or other disabling event is likely to show the 

opposite. Further, it may be difficult to attribute hospitalisation to a single cause or to 

a single disease factor in a disease like heart failure, especially when considering all 

the comorbidities that are frequently associated with the disease. The small effect 

encountered for the base case analysis might be due to the offset of hospitalisations 

caused by different underlying problems in HF patients. 

The results found when analysing the HRQoL pre and post hospitalisation by primary 

cause for hospital admission seem to suggest that it is possible to distinguish the 

impact on QoL for different types of hospitalisation (see Table 3.2). In that analysis, 

hospitalisations due to respiratory/chest infection and ventricular tachycardia 

showed an improvement in QoL when considering the index utilities measured before 

and after admission, while hospital admissions attributed to atrial fibrillation and 

myocardial infarction showed a negative variation in index utilities measured before 

and after admission. These results appear to be in line with the hypothesis postulated 

in the previous paragraph. 

The regression analyses for explaining the observed variation in utilities before and 

after hospitalisation were inconclusive concerning the characteristics of the 

hospitalisation. However, the difference in body mass index (only for index utilities) 

and serum creatinine (both for index and VAS utilities) pre and post hospitalisation 

showed a significant effect on the utility variation, albeit no informed explanation for 

the mechanism of this effect can be provided, as it was not covered by the scope of this 

study. 

Although international guidelines are clear in prioritising quality of life in the 

management of patients with HF (10, 12), their perception on their quality of life is 

not always prone to a straightforward assessment in a trial setting (151). Bosworth et 

al. (152) showed that psychosocial aspects and patient uncertainty about their 

prognosis are important components of quality of life among HF patients. Similarly, 

Heo et al. (153) found quality of life in patients with HF to be a multidimensional, 

subjective concept, affected by a variety of factors that do not only reflect HF 

symptoms and limitations in their daily life due to those symptoms, but also their 

active pursuit of happiness and relationships with others. Other factors such as 

anxiety, general distress, or depression have been shown to decrease QoL amongst HF 

patients (25, 154), whilst interventions aimed at improving patient self-care proved to 

have positive impact on QoL (155). Following on these thoughts, it can be argued that 
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hospitalisation is a source of distress for patients, who would therefore experience a 

decrease in HRQoL. In fact, a study by Harrison et al. (156) showed significant 

improvements in HRQoL associated with lesser use of emergency rooms – even 

though one can also argue on inverse causality, i.e. that fewer visits to the emergency 

rooms may be due to better health and thus higher HRQoL. Another study, by Lewis et 

al. (137), found that myocardial infarction survivors experiencing a nonfatal 

cardiovascular event (hospitalisation for heart failure, recurrent myocardial 

infarction, stroke, or sudden death/cardiac arrest) had a significant worsening of their 

HRQoL when compared to the ones who did not experience such event, suggesting 

that reducing nonfatal cardiovascular events might affect longitudinal changes in 

HRQoL. 

Having an accurate estimate of the utility variation attributed to hospitalisation in HF 

patients would be a great addition to the economic evaluation arsenal. In fact, there 

are discrete event simulation models published in the cost-effectiveness literature 

that use “hospitalisation” as an “event” (157). Especially for these cases, a good 

estimate of the (dis)utility of a hospitalisation would be of great value. 

Limitations 

The variation between utilities pre and post hospitalisation showed a different 

magnitude from what was hypothesised and the value found for that variation was 

surrounded by a lot of uncertainty. There are some possible explanations that can be 

identified in the scope of the limitations of this study. 

First, the patient population included in the analysis was already in a very advanced 

stage of the disease: (1) coping with chronic disease has been described to have a 

positive influence in the QoL perception of the ill patient (158) and (2) the fact that 

these patients have been previously hospitalised – as this was one of the inclusion 

criteria of the trial – may desensitise them to subsequent hospitalisations. Secondly, 

the measurement of HRQoL is not done at a particular moment related to the 

hospitalisation; in order to be comparable, the utility measurement should be done at 

admission, discharge, or, preferably, both – the mean number of days before the 

HRQoL measurement before hospitalisation is 52.7 and after hospitalisation is 74.8; 

both with large standard deviations (cf.   
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Table 3.4). The results of the third sensitivity analysis should also be discussed in this 

context: in spite of the lack of statistical significance, results in Figure 3 seem to 

suggest that the magnitude of the utility difference is higher when the HRQoL is 

measured closer to the hospitalisation date. Thirdly, we did not have information that 

would allow for adjusting for other factors that might have affected changes in HRQoL, 

including changes in medications and/or any surgical procedures done during 

hospitalisation. And finally, the EQ-5D-3L is an utility measurement tool that assesses 

global health status and that may not be as responsive as a disease-specific instrument 

like the Minnesota living with heart failure questionnaire (MLHFQ) (159). 

Recommendations for future research 

Paying attention to the main issues that have been discussed so far, a few points 

should be stressed. 

Some standardisation regarding the moments at which HRQoL is measured is 

desirable. This concept should be applicable not only in a controlled setting but also in 

current clinical practice. Conducting EQ-5D questionnaires or using other tools for 

measuring utilities may generate data that could turn out to be important in the 

development of guidelines for the management of heart failure. Special attention 

should be paid to the variance observed in HRQoL from clinical trials and the clinical 

practice. Some possible explanations for this variance are: (1) diseases with multiple 

comorbidities, where the trial population is often not representative of the real 

patient population, and (2) the Hawthorne effect, i.e. the mere attention paid by 

clinical trial personnel to study subjects, which may have beneficial effects on the QoL 

of participating trial patients (160, 161). 

In the particular case of home telemonitoring – from which the population in this 

study originated – daily measurements of HRQoL could be performed. Considering 

most telemonitoring settings it is not expected that these measurements would 

constitute an increased burden for patients. Yet, the generation of longitudinal utility 

data would allow for investigating QoL as a predictor for hospitalisation. Health 

deterioration could be captured by trends in the data regarding patient-reported 

HRQoL. The analysis of these data could potentially result in the development of 

clinical decision rules or diagnostic algorithms that could avoid unnecessary 

hospitalisations, leading to potential cost savings and better health outcomes in the 

management of heart failure. 

Considering that disease-specific instruments for HF (e.g., MLHFQ) can be more 

informative on patient perceived health status, a formal link between the outcomes of 

these questionnaires and a measure of utility should be established. In this way 

researchers could have access to more accurate information on patient-reported 
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outcomes without compromising utility measurements that are normally used for 

economic evaluations. 

And finally, HF-related research should focus on the determinants of HRQoL in heart 

failure patients. Although NYHA is a widespread classification of the severity of HF 

symptoms, the current capabilities for data collection and data generation are 

immense. They should be explored in order to open up possibilities for new 

classifications that could better suit the need of efficient management of heart failure 

patients. 
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Conclusions 

Knowing the impact of hospitalisation on health-related quality of life is particularly 

relevant for informing cost-effectiveness studies designed to assess health 

technologies aimed at reducing hospital admissions. Through using patient-level data 

it was possible to estimate the variation in utilities before and after the average 

hospitalisation and for hospitalisations due to the most common causes for hospital 

admission. These estimates for (dis)utility could be used in the calculations of 

effectiveness on economic evaluations, especially when discrete event simulations are 

the employed modelling technique. 
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Background 

Heart failure (HF) is the number one cause for hospitalisation in adults over 65 years 

of age in the United States (US) (162). Hospitalisation in heart failure is a consequence 

of acute (decompensated) heart failure [A(D)HF], a clinical condition characterised by 

a rapid onset or worsening of symptoms and/or signs of HF that requires urgent 

evaluation and treatment, typically leading to an urgent hospital admission (10, 12). 

Every year more than 1 million patients are hospitalized with a primary diagnosis of 

heart failure, costing Medicare over $17 billion (163). The readmission rate for these 

patients is considerable, with 8.4% of patients being readmitted within 30 days of 

discharge, 13.4% within 60 days, and 16.7% within 90 days (164). In recent years 

major cardiology associations have been calling for the development of better 

prediction techniques that could lead to earlier diagnosis and treatment, thus 

improving health outcomes of ADHF (165, 166). 

Current HF management programmes are based on active surveillance of signs and 

symptoms of ADHF, along with medication-related and disease-specific education to 

optimise treatment. Alternative models relying on information communication 

technology for self-monitoring and for remote control signs and symptoms control via 

advanced telemonitoring technology (e.g., electronic transfer of physiological data 

measured by the patient) have been tested recently (167, 168). The data generated by 

these technologies permits their use as predictors of specific outcomes, which can 

then be used for developing predictive models assisting medical personnel in their 

decision-making process (65-68). After implementation and testing in a clinical 

setting, those models can be translated into clinical decision rules for clinical practice 

(69). However, some of these rules lack rigorous assessment of their predictive 

accuracy and/or their potential to improve current decision-making (169). 

In the specific case of home telemonitoring (HTM) for HF, evidence shows that data-

driven approaches looking at trends and patterns of recorded parameters change 

seems to improve the accuracy of detecting disease deterioration when comparing to 

clinical decision rules (170-173). For that reason, and because a large number of 

parameters can be measured with HTM, it is expected that advanced algorithms with 

better performance measures (e.g., sensitivity and specificity) will likely result in time 

efficiencies and improved clinical decision making through the generation of alerts in 

a manner that is intuitive and that can be used by clinicians with a higher degree of 

confidence (174). Diagnostic algorithms are mathematical relationships that use a 

wide range of collected data for outputting the likelihood of an event (e.g. 

hospitalisation or death) and use this output for prioritising patients with regards to 

their treatment or, alternatively, through raising an action-triggering alarm if the 

probability of having the event exceeds a pre-defined threshold. 



Chapter 4 

82 

This chapter describes the concept of an ensemble algorithm for estimating the risk of 

HF-related hospital admissions using an ambulatory telehealth programme combining 

clinical software and in-home remote monitoring technology. The algorithm intends 

to provide clinical professionals with a global risk score and to use this score to help 

defining follow-up actions based on evidence-based thresholds. 
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Methods 

Telehealth programme (intervention) 

The telehealth programme (henceforth referred to as intervention) is a remote 

monitoring technology that measures vital signs and inputs from symptom surveys 

(shortness of breath, oedema, and fatigue), combined with a clinical software available 

for data monitoring and assessment by a clinical team. All measurements and surveys 

are planned to be filled in daily by the patients and remotely transmitted to the 

clinical software installed in the health care provider facilities. 

Data 

Sites 

The data for the development of the algorithm were collected from two large non-

profit health care systems in the US where the intervention was implemented, which 

generated two distinct datasets containing the same elements. 

Data elements: vitals 

The data on vitals comprise daily measurements taken during the morning of body 

weight, systolic blood pressure, diastolic blood pressure, heart rate, and blood oxygen 

saturation. Each raw measurement record includes a patient identification and a time 

stamp. 

Data elements: surveys 

The data on surveys consists of a score derived from the answers given by patients to 

multiple choice questionnaires on oedema, fatigue, shortness of breath, and activity 

status administered remotely. Similarly to the vitals data, they were collected daily. 

Data elements: outcomes 

Outcome data were derived from electronic medical records of the sites from which 

data were collected. There were no data on emergency department visits or deaths; 

readmissions were the only type of outcome for which data were available. 

The feature set 

The feature set consists of the data – raw or transformed – that are used as inputs for 

the models that constitute the algorithm. The following raw data were considered: (i) 

age (years), (ii) gender (male/female), (iii) date of enrolment for current 

telemonitoring engagement, (iv) living arrangement (alone/with a partner), (v) 

number of past telemonitoring engagements, (vi) patient diagnoses, (vii) systolic 

blood pressure (mmHg), (viii) diastolic blood pressure (mmHg), (ix) body weight 
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(pounds), (x) heart rate (beats per minute), (xi) peripheral capillary oxygen saturation 

(percentage), (xii) answer to oedema question of symptom survey, (xiii) answer to 

fatigue question of symptom survey, (xiv) answer to shortness of breath question of 

symptom survey, and (xv) answer to activity question of symptom survey. Some of 

these raw data elements were directly used as features in the algorithm, while other 

features used in the algorithm were calculated by transforming the raw data with a 

wide range of arithmetic operations (mean and standard deviation for determined 

periods of time, deviation of measurement from baseline value, trend scores 

calculated through linear regression, etc.). 

Design and development of the algorithm 

Prediction window 

The algorithm intends to use measurement data from the intervention and turn them 

into accurate alarms to flag patients in need of further attention from a healthcare 

provider. It uses the full data on the feature set and it calculates a risk score for being 

hospitalised within determined number of days called the prediction window. For 

instance, a 30-day prediction window means that the risk score predicted by the 

algorithm is the probability of a hospitalisation happening in the upcoming thirty 

days. During the development of the algorithm, various prediction windows were 

tested. 

Solo versus ensemble algorithm 

A solo algorithm uses the data in the feature set for calculating risk scores based on 

single regression models (e.g., logistic regression), while ensemble algorithms 

combine the outcome of different predictive models (layer0 models) into a final risk 

score. The latter approach provides a clear advantage when the models are fed with 

different feature subsets, when the models are based on different regression 

techniques, or both. 

The ensemble algorithm presented in this chapter results from dividing the feature 

vector into different subsets (“surveys”, “vitals”, “advanced”, and others) and from 

training the model per feature subset using the least absolute shrinkage and selection 

operator (LASSO) technique (175). The LASSO technique is used for improving the 

prediction accuracy and interpretability of regression models by altering their fitting 

process in order to select only a subset of the provided covariates for being used in the 

final model. LASSO was applied to each layer0 model in order to prevent overfitting 

and to eliminate those features which were not informative in predicting patient 

deterioration and hospitalisation. 
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Additionally, the ensemble algorithm can further introduce another layer of prediction 

between the output of layer0 models and the final score – the layer1 model (referred 

to as a meta-learner) (176). 

Figure 4.1 presents a graphical overview of the architecture of the solo and the 

ensemble algorithms. 

 

Figure 4.1 – Graphical overview of the architecture of a solo (left) and ensemble (right) algorithms 

Comparison to a Standard Protocol 

At the time of the algorithm development there was an available set of decision rules 

(henceforth referred to as the Standard Protocol) from one of the sites used in the 

data collection. The Standard Protocol used blood pressure, pulse, weight, and blood 

oxygen saturation measurements for generating a risk profile (low, medium, or high) 

for each patient on any given observation day. A comparison between the sensitivity, 

specificity, and positive predictive value (PPV) of the Standard Protocol and the 

algorithm can be done at the three operating points of the receiver operating 

characteristic (ROC) curve of the algorithm at which the specificity is the same as the 

one for the three risk profiles with the Standard Protocol (0.90, 0.76, and 0.53 for 

high, medium, and low risk, respectively). 

Therapeutic threshold 

The main objective of the algorithm is to give an early indication (e.g., raising an 

alarm) indicating whether the patients should be screened, or, in other words, flag 

when the risk score calculated by the algorithm exceeds a pre-defined risk threshold 

for acting clinically. As such, there is a need to rationally define the threshold at which 

action should be taken. This issue can be tackled with the therapeutic threshold 

concept (177). 

The therapeutic threshold concept starts with a decision between administering a 

treatment and withholding it: in our case, screening or not screening based on an 

alarm raised from the algorithm output. Regardless of this decision, let us take any 
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given patient who has an unknown probability 𝑝 of having the disease and a 

probability of 1 − 𝑝 of not having it: in our case, it is represented by the ground truth 

of being or not being hospitalised. Thus, considering the decision to screen as the 

treatment and the probability of being hospitalised as the disease, there are four 

possible outcomes: (a) screening + hospitalisation; (b) screening + no hospitalisation; 

(c) no screening + hospitalisation; and (d) no screening + no hospitalisation. 

For each of the four possible outcomes, we can assign a value (𝑉) in any relevant unit 

(utility, remaining life-years, monetary units, etc.). The expected value for outcome (a) 

can thus be represented by 𝐸𝑉𝑎 =  𝑝. 𝑉𝑎. Similarly, the expected value of screening can 

be represented by 𝐸𝑉𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑝. 𝑉𝑎 + (1 − 𝑝). 𝑉𝑏 , while the expected value of not 

screening would be represented by 𝐸𝑉𝑛𝑜 𝑠𝑐𝑟𝑒𝑒𝑛  =  𝑝. 𝑉𝑐  +  (1 − 𝑝)𝑉𝑑 . Applying these 

principles, one can decide whether to screen or not to screen by choosing the course 

of action with the higher expected value. The indifference point for treating is found 

when 𝐸𝑉𝑠𝑐𝑟𝑒𝑒𝑛 = 𝐸𝑉𝑛𝑜 𝑠𝑐𝑟𝑒𝑒𝑛 . Working on this equation and solving it for 𝑝 leads to 

𝑝 =
(𝑉𝑑 – 𝑉𝑏) 

(𝑉𝑎–𝑉𝑐+𝑉𝑑–𝑉𝑏)
, where 𝑝 is the probability of hospitalisation at the indifference point, 

or in other words, the threshold for the hospitalisation probability at which it is 

indifferent to screen or not to screen. 

In the particular case of the analysis of the therapeutic threshold of the algorithm, 

monetary units were used for 𝑉. Assuming that screening correctly identifies the 

patients who would have been hospitalised, it seems reasonable to rename the 

outcomes as follows: (a) planned hospitalisation, (b) screening and no hospitalisation, 

(c) unplanned hospitalisation, and (d) no screening and no hospitalisation (see Figure 

4.2 for the schematic representation of the corresponding decision tree for the 

therapeutic threshold using the algorithm). 

For calculating the value of planned and unplanned hospitalisations, the length of stay 

in hospital was used as a proxy. We included all studies identified  in the review by 

Inglis et al. (178) where the mean number of days in hospital and number of 

hospitalisations for both home telemonitoring (planned hospitalisation) and usual 

care (unplanned hospitalisation) were reported or could be calculated (126, 179-186). 

The length of stay average was subsequently calculated for both treatment 

alternatives and weighted it with the number of hospitalisations recorded in each 

study. These values were multiplied by the daily cost of hospitalisation for Medicare 

beneficiaries with heart failure (adding the costs of screening for the value of the 

planned hospitalisation) (164). The costs of screening consist of the average costs 

reported by Medicare facilities for the Healthcare Common Procedure Coding System 

code G0406, which correspond to a 15-minute follow-up telehealth consultation (187, 

188). The value of the outcome not screening and no hospitalisation is considered to 

be $0. 
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Figure 4.2 – Decision tree when facing an alarm triggered by the algorithm 
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Results 

Design and development of the algorithm 

The final base case of the ensemble algorithm consists of twenty layer0 models and a 

prediction window of 5 days. Given the restricted availability of data, the outputs of 

layer0 models are aggregated without any layer1 model. The final risk score is 

therefore the simple average of all outputs from layer0 models, i.e. the average of the 

risk scores predicted by the different logistic regressions. 

The average area under the receiver operating characteristic (AuROC) for the 

ensemble algorithm is 0.81 (± 0.01 standard error) for a prediction window of 5 days. 

Table 4.1 shows the predictive performance of the ensemble model varying the length 

of the prediction window. 

Table 4.1 – Predictive performance of the ensemble algorithm with different prediction window length 

Window length (days) Mean AuROC Standard error 

1 0.82 0.01 

2 0.82 0.02 

3 0.81 0.01 

5 0.81 0.01 

10 0.78 0.02 

 

The predictive performance of the Standard Protocol is characterised by an AuROC of 

0.55. The comparison between the sensitivity, specificity, and positive predictive value 

(PPV) of the algorithm and the Standard Protocol at the three operating points of the 

Standard Protocol (low, medium, and high risk) as reference points is shown in Table 

4.2. 

Table 4.2 – Comparison of the sensitivity, specificity, and PPV between the algorithm and the Standard Protocol 

Risk 

Sensitivity Specificity PPV 

Algorithm 
Standard 
Protocol 

Algorithm 
Standard 
Protocol 

Algorithm 
Standard 
Protocol 

High 0.39 0.19 0.90 0.90 0.024 0.020 

Medium 0.67 0.35 0.76 0.76 0.018 0.016 

Low 0.91 0.52 0.53 0.53 0.013 0.012 
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Therapeutic threshold 

The average daily costs of HF-related hospitalisation for Medicare beneficiaries with 

heart failure found were $2,069.45, and the calculated average weighted length of stay 

in hospital was 7.72 days for home telemonitoring and 7.89 days for usual care (see 

Table 4.3), resulting in total costs for a planned hospitalisation (𝑉𝑎) of $16,023.55 and 

for an unplanned hospitalisation (𝑉𝑏) of $16,324.87. The estimated average costs for 

screening (i.e. a 15-minute follow-up telehealth consultation; 𝑉𝑐) were estimated at 

$39.97 and the cost of not screening (𝑉𝑑), as per the described methodology, was 

deemed $0. Through applying these values to the indifference point equation, using 

costs as the outcome, one reaches a probability of indifference of 0.117, or, in other 

words, a patient should be screened if his/her probability of being hospitalised as 

calculated by the algorithm is higher than 11.7%. 
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Table 4.3 – Calculation of the weighted average days in hospital with and without treatment 

Study 
Average days in 
hospital (home 
telemonitoring) 

Average days 
in hospital 

(usual care) 

# hospitalisations 
(home 

telemonitoring) 

# hospitalisations 
(usual care) 

Weighted average 
days in hospital 

(home 
telemonitoring) 

Weighted 
average days in 
hospital (usual 

care) 

Balk 2008 et al. 
(179) 

7.4 7.9 103 96 1.80 1.79 

Dendale 2012 
et al. (180) 

2.5 4.6 64* 65.6* 0.38 0.71 

Koehler 2011 
et al. (181) 

5.3 4.9 31 36 0.39 0.42 

Lyngå 2012 et 
al. (182) 

7.5 7.7 70 70 1.24 1.28 

Soran 2008 et 
al. (183) 

10.0 9.3 29 36 0.68 0.79 

Vuorinen 2014 
et al. (184) 

0.7 1.4 8 13 0.01 0.04 

Woodend 2008 
et al. (185) 

2.7 3.8 28.52* 28.91* 0.18 0.26 

Cleland 2005 et 
al. (126) 

14.5 15.5 67 33 2.29 1.21 

Mortara 2009 
et al. (186) 

13.5 13.3 24 44 0.76 1.38 

Average 7.12 7.59   7.72 7.89 

Difference -0.47   -0.16 

*decimal numbers result from the # hospitalisation being calculated using the reported rate for hospitalisation 
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Discussion 

This chapter aimed at describing an ensemble algorithm to estimate the risk of HF-

related hospital admissions using data generated with a home telemonitoring system 

and to determine the therapeutic threshold for raising an alarm for prompting the 

screening of the monitored patients. There is already literature published about risk-

prediction models for ADHF, both in the form of clinical prediction scores (189, 190) 

and algorithms (170-173, 191). 

The dissemination of telemonitoring technologies encompasses the generation of 

large amounts of data that will inevitably confront health professionals with the best 

way of using them in order to make correct clinical decisions, creating a problem that 

can be referred to as information overload. To overcome this issue and manage 

healthcare information effectively, there is a need to adapt existing systems for 

filtering information or to create ones that respond to the challenges of healthcare 

communication in the digital age (192). The activities carried out during the algorithm 

development allow for shedding some light on the relevance of collecting 

telemonitoring data on a daily basis to predict adverse events. It became apparent that 

in order to build a reliable predictive model there is a need for collecting high quality 

data as well as recording reliable information on the ground truth data points, 

especially with regards to the type and date of the event to be predicted. On this 

matter, the development of an ensemble algorithm proves a valid alternative for 

overcoming the aforementioned issues. Still on the topic of data generation and data 

collection, it is worth mentioning that a validated algorithm for a technology such as 

telemonitoring, where data are constantly generated and can be fed to the model for 

recalibration, has a great chance of continuously improving its predictive accuracy 

through machine learning. 

The ensemble algorithm presented allows for overcoming the main constraint found 

in using a simple logistic regression model in the available dataset, i.e. the need to feed 

the model with a complete feature vector in order to generate a risk score. More 

specifically, it dealt with the problem regarding the level of completeness of the data, 

both at an observation level (e.g., any day in which the patient does not measure a 

vital sign) and at a patient level (e.g., the protocol of a certain patient not including the 

measurement of a particular vital sign for the entire monitoring period), which 

resulted in a highly reduced number of complete observation days. 

The algorithm shows improved predictive performance when compared to the 

Standard Protocol, which suggests that using the algorithm can improve the decisions 

made by clinical teams in order to avoid hospitalisation of patients with HF. The 

predictive parameters of the algorithm, however, depend on the operating point 
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chosen as well as the prediction window used in the analysis. As expected, the mean 

AuROC increases as the prediction window’s length decreases. This can be explained 

by a shorter prediction window only labelling the days closer to the event as positives 

(i.e. observation days when deterioration occurs), making the signs of deterioration 

more pronounced. However, it should be borne in mind that the final choice in terms 

of window length is driven also by the prospective predictive performance of the 

model and the possibility of taking action in case of an alarm – thus the 5-day 

prediction window. 

The therapeutic threshold analysis aimed at defining a threshold for raising an alarm 

based on the monetary values attributed to the outcomes deriving of screening the 

patients and whether or not these same patients would be hospitalised. Although this 

can provide an evidence-based value for the threshold, this approach would also 

estimate different thresholds if one would use other units for the values of the 

outcomes. The full value of the algorithm should be assessed by taking into account 

that different operating points of the algorithm lead to different rates of true and false 

positives and true and false negatives. Thus, the right operating point of the algorithm 

is subject to the costs and benefits of the false positives and false negatives, and the 

trade-off between these two groups. Since the daily calculation of the outcome of the 

algorithm can be considered a diagnostic test, it should be properly assessed through 

a full cost-effectiveness analysis in which all costs and outcomes of using the 

algorithm should be included. 

Limitations 

One limitation of the presented algorithm relates to using hospital readmission as the 

only outcome measure. The data used for training the algorithm could be extended to 

other outcomes that result from heart failure deteriorations, such as emergency 

department visits and death. Still related to the scope of the presented algorithm, the 

ensemble algorithm provides a risk score reflecting the likelihood of being readmitted 

to the hospital within 5 days for HF-related reasons and it does not consider the 

broader spectrum of all-cause readmissions. 

Another limitation derives from not including any information concerning 

interventions performed while patients were telemonitored in the predictive model 

(medication changes, modifications of the diet, activity level changes, etc.). All of these 

could have prevented adverse events, thereby leading to changes in the patients’ 

deterioration pattern that cannot be tracked by the models included in the algorithm, 

as none of the features used in the dataset was able to provide information on this 

matter. 
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The algorithm was developed on HF-patient data and should be applied on patients 

with HF who are monitored with the technology under analysis. Performance of the 

algorithm on the other patient groups who are eligible to use telemonitoring 

technologies (e.g., COPD patients) cannot be guaranteed. 

Recommendations for future research 

Future research on this topic should be aimed at investigating other types of feature 

data, mainly body mass index, ethnicity, socio-demographic, and economic factors. 

Additionally, there should be a particular focus on disease-specific parameters that 

have been shown to have an impact on hospitalisation for patients with HF (193), such 

as left ventricular ejection fraction (194) and NT-proBNP (195, 196). 

One key aspect of the implementation of predictive modelling is how the model output 

is embedded in the work flow of the professionals and how clinical outcomes can be 

improved through the use of the model. In other words, the model should support 

decisions through making use of the available information and providing a concise 

description of the clinical status of the patient. As such, the risk score should not be an 

additional source of information that could hinder decision-making, but rather an easy 

interpretable tool that provides clear indication on follow-up actions to the health 

professional. In this sense, different solutions could be investigated. For instance, 

raising a red flag for deteriorating patients and displaying their risk score of the last 

few days, sorting patients according to their risk score by means of prioritising clinical 

intervention, or creating a tiered system for alarms (e.g., low, medium, and high risk). 

Accordingly, the involvement of skilled professionals in the design of the user 

interface for the algorithm is highly desirable, as clinical processes and goals of 

different health care providers may differ (197). 

Conclusions 

The ensemble algorithm appears to be a tool with high potential for improving the 

clinical decision-making and reducing the readmission of patients with HF under 

home telemonitoring programmes. The predictive value of the algorithm was 

demonstrated by the significant increase in the AuROC when compared to the 

Standard Protocol. 

The therapeutic threshold analysis determined that the threshold for raising an alarm 

should be set to when the output calculated by the algorithm is higher than 0.117. 

However, the added value of the algorithm in the clinical setting should be 

investigated through a full cost-effectiveness analysis that could properly assess the 

costs of implementing and using the technology versus the anticipated effectiveness 

resulting from the early detection of disease deterioration and the subsequent 

reduction of hospitalisations. 
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Abstract 

Objectives: Developing and validating a discrete event simulation model that is able 

to model heart failure patients managed with usual care or an early warning system 

(with or without a diagnostic algorithm) and to account for the impact of individual 

patient characteristics in their health outcomes. 

Methods: The model was developed using patient-level data from the TEN-HMS 

study. It was coded using R and validated along the lines of the Assessment of the 

Validation Status of Health-Economic decision models tool (AdViSHE). The model 

includes 20 patient and disease characteristics and generates 8 different outcomes. 

Model outcomes were generated for the base-case analysis and used in the model 

validation. 

Results: Patients managed with the early warning system, when compared to usual 

care, experienced an average increase of 2.99 outpatient visits and a decrease of 0.02 

hospitalisations per year, with a gain of 0.81 life years (0.45 quality-adjusted life 

years) and increased average total costs of 11,249€. Adding a diagnostic algorithm to 

the early warning system resulted in a 0.92 life year gain (0.57 quality-adjusted life 

years) and increased average costs of 9,680€. These patients experienced a decrease 

of 0.02 outpatient visits and 0.65 hospitalisations per year, while avoided being 

hospitalised 0.93 times. The model showed robustness and validity of generated 

outcomes when comparing them to other models addressing the same problem and to 

external data. 

Conclusions: This study developed and validated a unique patient-level simulation 

model that can be used for simulating a wide range of outcomes for different patient 

subgroups and treatment scenarios. It provides useful information for guiding 

research and for developing new treatment options by showing the hypothetical 

impact of these interventions on a large number of important heart failure outcomes.  
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Introduction 

Decision analytical models (henceforth models) are key instruments in the toolbox of 

health economists. Models are the resource by which researchers represent the 

complex reality in a more simplistic and comprehensible manner or by which 

experiments that are infeasible or impracticable are simulated (93). In the health 

economic context, through exploring hypothetical scenarios and alternative treatment 

strategies in order to identify the most efficient allocation of healthcare resources, 

models are used to inform decisions when significant real-world data are not available 

(198). 

Heart failure (HF) is a complex clinical syndrome that results from any structural or 

functional impairment of ventricular filling or ejection of blood (10, 11). HF is 

characterised by typical symptoms such as breathlessness, ankle swelling, and fatigue 

and signs like elevated jugular venous pressure, pulmonary crackles and peripheral 

oedema (12). The main disease severity indicator used to describe HF is based on 

measurement of the left ventricular ejection fraction, which results in a distinction 

between HF with preserved, mid-range, and reduced ejection fraction – each with 

different underlying aetiologies, demographics, co-morbidities and response to 

therapies (13). The New York Heart Association (NYHA) functional classification is an 

alternative classification system that is used to describe the severity of symptoms and 

exercise intolerance, providing useful and complementary information about the 

presence and severity of the disease, and thus guiding patient pathways in HF 

treatment (14). HF is a major health concern associated with significant morbidity, 

mortality, and reduced quality of life for patients. From a medical perspective, the 

goals of managing patients with HF consist in improving their clinical status, 

functional capacity, and quality of life, preventing hospital admissions and reducing 

mortality (39-41).Early warning systems (EWS) in the context of health care are 

timely surveillance systems that collect clinical information in order to anticipate 

health deterioration and trigger prompt intervention, thus improving prognosis and 

treatment outcomes (58). Broadly speaking, EWS consist of three main elements: (i) 

monitoring and collection of clinical data (e.g. vital signs, biomarkers, self-reported 

health status); (ii) a framework allowing for the identification of patterns and trends 

in these data, indicating significant changes in the health status of the patients; and 

(iii) the establishment of pre-determined conditions – such as the existence of 

statistically uncommon patterns in the data, threshold values or ranges for specific 

parameters within the collected data, or the presence of a singular combination of 

signs and symptoms – that trigger an alarm and follow-up actions (59). 

Diagnostic algorithms (DA) are predictive mathematical relationships that use a wide 

range of data collected by EWS for calculating the likelihood of an event (e.g. 
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hospitalisation or death). These algorithms are used for assisting medical personnel in 

their decision-making process (65-68) by translating their output into clinical 

decision rules for clinical practice, for instance, by prioritising patients according to 

their likelihood of having an event or by raising an action-triggering alarm if the 

probability of having that event exceeds a pre-defined threshold (69). 

A previous systematic literature review of models used in the economic evaluation of 

EWS for the management of HF patients found that all published models were either 

decision trees or Markov models (59). However, due to the specific features of EWS in 

the context of HF, the flexibility for modelling complex systems provided by discrete 

event simulation (DES) models makes them arguably better option for the assessment 

of the (cost)-effectiveness of EWS (133, 199-202). DES or patient-level models (both 

terms will be used interchangeably henceforth) are a type of model that has been 

increasingly used in the health economics field, not only because of the advances in 

computing technology and dedicated software but also because of their flexibility and 

potential for modelling complex diseases (199-201, 203). One of the main advantages 

of DES modelling is the ability to use individual patient characteristics as explanatory 

variables for predicting disease pathways of simulated patients. In order to compare 

the cost-effectiveness of treatment strategies targeted at changing individual patient 

characteristics, DES models accounting for those characteristics and outputting a wide 

variety of (intermediate) outcomes are desirable. However, in order to be useful tools 

for decision-making regarding the problem at hand, DES models must accurately 

reflect disease pathways and their management (204). 

The two main objectives of this study were: (i) developing a DES modelling 

framework for patients with HF managed with EWS – with and without a DA – that is 

able to model patients across the whole treatment pathway until death, taking into 

account the evolution and impact of individual patient characteristics in the outcomes 

of each individual patient, and (ii) justifying the model structure chosen and validating 

the model through the use of the AdViSHE questionnaire and the model outcomes 

generated in the base-case analysis.  
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Methods 

Starting population of the model 

The starting population of the model consisted of the patients who participated in the 

Trans-European Network – Home-Care Management System (TEN-HMS) study (126). 

This trial investigated the impact of using home telemonitoring (HTM; n = 168), nurse 

telephone support (NTS; n = 173), and usual care (UC; n = 85) in hospital admissions, 

hospital days, and rates of mortality. Patient-level data from the trial were used in the 

construction and validation of the model. 

The simulated model population consisted of a set of randomly drawn patients (with 

replacement) from the database containing the patient-level data of the starting 

population. Table 5.1 shows the baseline characteristics of the starting population and 

of the simulated model population for 1,000 patients. 

Table 5.1 – Patient and disease characteristics of the starting population and of the simulated model population of 1,000 
patients 

 Baseline characteristics of 
the starting population 

(TEN-HMS study) 

Simulated model 
population for 1,000 

patients 

Sample size 426 1,000 

Ejection fraction (EF), % (mean) 25.06 24.86 

Age, years (mean) 67.56 67.76 

Systolic blood pressure (SBP), mm 
Hg (mean) 

114.24 114.53 

Body mass index (BMI), kg/m2 
(mean) 

26.17 25.94 

Creatinine, µmol/l (mean) 135.71 136.49 

NYHA class 1, % 18.5 17.5 

NYHA class 2, % 43.4 42.8 

NYHA class 3, % 31.0 33.3 

NYHA class 4, % 7.1 6.4 

Gender (male), %  77.5 75.8 

Smoker, % 12.2 11.9 

Diabetes, % 35.0 37.3 

Chronic obstructive pulmonary 
disease (COPD), % 

24.4 21.2 

Recent diagnosis, % 43.9 41.8 
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No beta-blocker medication, % 37.3 36.7 

No ACE inhibitor medication, % 18.5 17.5 

Myocardial infarction, % 56.8 56.2 

Chronic atrial fibrillation, % 26.3 27.8 

Abbreviations: ACE, angiotensin-converting enzyme; BMI, body mass index; COPD, chronic 
obstructive pulmonary disease; EF, ejection fraction; NYHA, New York Heart Association; SBP, 
systolic blood pressure. 

 

Three interventions were considered in the model: (i) UC – patient management plan 

implemented by the patient’s primary care physician, (ii) EWS (EWS without a DA) – 

proxied by HTM (described in detail in the TEN-HMS original publication (126)), and 

(iii) EWS+DA (EWS with a DA) – intervention (ii) with the addition of a DA (described 

in the following section). 

Conceptualisation of early warning systems and the diagnostic 

algorithm for the management of heart failure 

We conceptualised the EWS and the DA for the management of HF in the model from a 

clinical perspective, i.e. we have not simulated their impact in the actual pathogenetic 

process of the disease but rather how they manifest in clinical practice through their 

impact on each of the events considered in the model. In the scope of HF, the EWS 

collects clinical information such as vital signs, biomarkers, inputs from surveys, etc. – 

daily in our case – and uses it for changing the chance of death and/or hospitalisation. 

The effect of the EWS is captured by the difference of time-to- hospitalisation and 

time-to-death of HTM (the EWS in the context of our analysis) when compared to UC. 

The additional effect of the DA is captured by the possibility of avoiding 

hospitalisations as described in the following paragraphs. 

In our instance, the DA is a mathematical feature that uses clinical data for calculating 

the likelihood of hospitalisation and raises an action-triggering alarm if the probability 

of being hospitalised exceeds a pre-defined threshold. It is added to the EWS as a way 

of automatically analysing the collected data in the EWS. In this framework, we can 

interpret the alarm as a diagnostic test: if an alarm is raised, the test is positive; if not, 

the test is negative. We can then consider the event of interest (hospitalisation) as 

“having disease/condition” and not being hospitalised as “not having 

disease/condition”. 

The interpretation of the statistical measures of the performance of a binary 

classification test in the context of the model can be described as follows: (i) when the 

simulated event is a hospitalisation, the sensitivity represents the probability of 

correctly detecting that hospitalisation. The final probability of avoiding a 
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hospitalisation can be achieved by multiplying the sensitivity of the test by the 

probability of avoiding a hospitalisation in the case of having correctly predicted it 

(e.g. assuming the sensitivity of the alarm is 0.8 and that 80% of the correctly 

predicted admissions can be avoided, then 0.8 x 80% = 64% is the overall probability 

of avoiding a hospitalisation). (ii) Regardless of the simulated event, there are as many 

diagnostic tests (alarm/no alarm) as there were days elapsed between the previous 

event and the current one. The model calculates the number of false positives (alarms 

for which there were no hospitalisation) in that period through multiplying the 

number of elapsed days by the false positive rate (FPR) of the DA (e.g. if there were 45 

days between the previous and the current events and the FPR of the DA is 0.40, there 

were 18 false alarms during the period between both events). 

Model structure 

The main elements of the model are entities, attributes, events, procedures, outcomes, 

and relationships. The entity is the modelling representation of the patient (hereafter 

treated in the masculine form). Attributes are the characteristics of that patient, which 

can either be fixed throughout the simulation (e.g. previous history of myocardial 

infarction) or change over time (e.g. age). Events are relevant moments in the 

simulation that are recorded for reconstructing the clinical history of the entity; the 

model determines which event will happen next by calculating the lowest time-to-

event of competing events. Procedures are the means by which the model processes 

events, following a decision-analytical logic that simulates the clinical pathway of the 

entity. During each procedure, attributes of the entity are re-evaluated, updated, and 

outcomes are generated and recorded. Outcomes are the elements that aggregate the 

information generated by the model and that allow for drawing conclusions from the 

performed simulations. Relationships are the model elements that link entities, 

attributes, events, procedures, and outcomes together through mathematical and/or 

logical terms defined in the model’s code. 

For ease of description of the model flow, elements are enclosed within <>, each with 

a subscript, depending on the type of element we are referring to (Ent, entity; A, 

attribute; E, event; Proc, procedure; O, outcome). At the start of simulation, a 

<patient>Ent is randomly drawn (with replacement) from the database containing the 

patient-level data of the starting population (patients participating in the TEN-HMS 

trial). Attributes are assigned to <patient>Ent based on the patient characteristics 

found at baseline in the dataset and calculates the time-to-event for each of the 

following competing events: <outpatient.visit>E, <hospitalisation>E, and <death>E. 

Time-to-event depends on the individual attributes of the <patient>Ent at the time of 

the simulation. The lowest time-to-event determines which event will be processed 

next. The event is renamed as a procedure and a decision-analytical logic for each of 
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the different procedures determines the pathway of the patient. In 

<outpatient.visit>Proc, time, costs, life years, and quality-adjusted life years (QALYs) 

are recorded, the selected attributes are updated, and the updated <patient>Ent goes 

back to <next.event>Proc. For <hospitalisation>Proc, the model starts by determining 

whether <hospitalisation>E was avoided (<avoided.hospitalisation>E, which is an 

intermediate outcome conditional on <hospitalisation>E that can only happen in the 

EWS+DA intervention). If so, <patient>Ent moves to <outpatient>Proc; if not, the model 

records time, costs, life years, and QALYs before determining if the <patient>Ent dies in 

hospital (<death.in.hospital>E, which is also an intermediate outcome conditional on 

<hospitalisation>E). If he does, <patient>Ent moves to <death>Proc; if not, the model 

updates attributes and the <patient>Ent goes back to <next.event>Proc. In <death>Proc 

the model follows these sequential steps: (i) recording time, costs, life years, and 

QALYs, (ii) updating attributes, (iii) computing total outcomes for the simulation, and 

(iv) removing <patient>Ent from the simulation (see Figure 5.1 for a diagrammatic 

representation of the model structure). 

Each <patient>Ent created in the model runs through the simulation three times – one 

for each of the interventions under analysis. 

Patient attributes and regression equations 

A study by Pocock et al. (33) identified the following as significant independent 

predictors of mortality in HF patients: age, ejection fraction, NYHA class, serum 

creatinine, diabetes, not prescribed beta-blocker, systolic blood pressure, body mass 

index, time since diagnosis, smoking status, chronic obstructive pulmonary disease 

(COPD), gender, and not prescribed ACE-inhibitor or angiotensin-receptor blockers. 

These variables were all present in our dataset and were used in the model to predict 

time-to-death. We also used these variables to predict time-to-hospitalisation, as it 

seems reasonable to assume that the pathophysiological mechanisms leading to death 

in HF are the same that lead to hospitalisations. Table 5.2 contains the summary and 

the definitions of the parameters used in the regression equations and in the model.  
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Figure 5.1 – Model structure (<avoided.hospitalisation>E, dashed in <hospitalisation>Proc, is only possible for EWS+DA) 
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Table 5.2 – Definition of parameters in the model 

Parameter Definition 

Patient attributes  

Intervention EWS = 1, UC = 0. 

Ejection fraction (EF) Ejection fraction (%). 

Age Age in years. Updated at every event. 

Systolic blood pressure (SBP) Systolic blood pressure in mmHg. 

Body mass index (BMI) BMI calculated as weight/height2 (kg/m2).  

Creatinine Serum creatinine in µmol/l. 

NYHA class New York Heart Association (NYHA) Classification I to IV 
(1, 2, 3, or 4). 

Gender Male = 1, Female = 0. 

Smoker Current smoker = 1, non-smoker = 0. 

Diabetes Diabetic = 1, non-diabetic = 0. 

Chronic obstructive pulmonary 
disease (COPD) 

COPD present = 1, no COPD = 0. 

Recent diagnosis Diagnosis < 18 months from baseline = 1, diagnosis > 18 
months from baseline = 0. 

Beta-blocker medication Without beta-blocker medication = 1, on beta-blocker 
medication = 0. 

Angiotensin-converting enzyme 
(ACE) inhibitor medication 

Without ACE inhibitor medication = 1, on ACE inhibitor 
medication = 0. 

Age x ejection fraction Variable describing the interaction between age and the 
ejection fraction through the product of these variables. 

Systolic blood pressure x ejection 
fraction 

Variable describing the interaction between systolic blood 
pressure and the ejection fraction through the product of 
these variables. 

Myocardial infarction Previous history of myocardial infarction. 

Chronic atrial fibrillation Previous history of chronic atrial fibrillation. 

Previous hospitalisation Number of hospitalisations that already occurred for the 
simulated patient. Updated at every event. 

Utility EQ-5D-3L utility measured at baseline. Updated with utility 
multipliers at every event. 

General model inputs (set by user)  

Number of patients Number of patients in the simulation. 

Parametric distributions Choice of parametric distribution – exponential, Weibull, 
log-normal, log-logistic, and Gompertz – for time-to-death 
and time-to-hospitalisation calculations. 
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Time to outpatient visit Time-to-outpatient visit. 

Utility multipliers Utility multipliers for updating patient utility at each 
outpatient visit and hospitalisation. 

Discount rates Yearly discount rates for costs and for health outcomes 
(life years and QALYs). 

Resource costs Yearly cost of maintenance treatment: composite costs 
associated with the intervention (different for UC and 
EWS). Alarm management costs: costs of a telephonic 
consultation. Event costs: individual costs for an outpatient 
visit, a hospitalisation, and death. 

DA characteristics  

Sensitivity Proportion of people who have the disease and are 
identified as having the disease, i.e. the probability of 
correctly detecting a hospitalisation. 

False positive rate Proportion of all the people who do not have the disease 
who will be identified as having the disease (= 1 - 
specificity). 

Avoid hospitalisation Probability of avoiding a hospitalisation in the case of 
having correctly predicted it. 

Number of events (intermediate 
outcomes) 

 

Outpatient visits Number of outpatient visits. 

Hospitalisations Number of effective hospitalisations. 

Avoided hospitalisations Number of avoided hospitalisation (only in the EWS+DA 
intervention). 

Deaths Mortality (split in hospital mortality and mortality from 
other causes). 

Model (final) outcomes  

Costs Total costs accrued during the simulation. 

Life years Life years accrued. Time spent in the simulation before 
death. 

QALYs QALYs accrued. QALYs are obtained by weighing life years 
with the utilities during simulation for each patient. 

Abbreviations: ACE, angiotensin-converting enzyme; BMI, body mass index; COPD, chronic 
obstructive pulmonary disease; DA, diagnostic algorithm; EF, ejection fraction; EWS, early 
warning system; NYHA, New York Heart Association; QALY, quality-adjusted life year; SBP, 
systolic blood pressure; UC, usual care. 
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Time-to-event calculations 

We estimated Kaplan-Meier (KM) curves for death and hospitalisation using the 

patient-level data for the UC and HTM populations of the TEN-HMS trial. We then 

fitted the most common parametric distributions – exponential, Weibull, log-normal, 

log-logistic, Gompertz, and generalised gamma – to the KM curves (see Appendix 5.1 

for further details). 

Time-to-outpatient visit (for both UC and EWS) is a model input that can be set by the 

user, as it may change according to the setting of the analysis, while 

<avoided.hospitalisation>E (see section on the conceptualisation of the DA for the 

details of its calculation) and <death.in.hospital>E (see section Death in hospital) are 

intermediate outcomes conditional on <hospitalisation>E. 

Death in hospital 

When a patient is hospitalised, there is a chance of dying in the hospital. For 

predicting it, we ran a logistic regression where the probability of dying in hospital is 

explained by age, gender, previous history of myocardial infarction and/or chronic 

atrial fibrillation, comorbidities (diabetes and/or COPD), and the number of previous 

hospitalisations (see Appendix 5.2 for further details on the regression model). 

Resource use and costs 

The model distinguishes between yearly cost of maintenance treatment' for UC and 

for EWS, costs related to the management of false positive alarms, and event costs 

(outpatient visit, hospitalisation, and death). Costs of maintenance treatment and 

alarm management depend on the time elapsed between simulated events and are 

continuously discounted, while event costs are accounted for at time of occurrence 

and are discretely discounted. 

Utilities 

Utility is a patient attribute assigned at the start of the simulation according to the 

NYHA class at baseline. The mean utility values per NYHA class used were reported 

elsewhere (205) (0.88, 0.71, 0.61, and 0.49 for NYHA classes I, II, III, and IV, 

respectively). Every time an outpatient visit or a hospitalisation is processed, the 

patient utility is updated via a multiplier. For instance, if the utility at start of the 

simulation is 0.80 and the multiplier for hospitalisation is 0.85, the updated utility of 

that patient after being hospitalised is 0.80 x 0.85 = 0.68, which remains the utility for 

the patient until the next event is processed. The decrease in utility in the simulation 

is limited to the utility found for NYHA class IV. 
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Model outcomes 

The following outcomes are calculated from the model: number of events per type 

(referred to as intermediate outcomes), total costs, total life years, total QALYs, and 

incremental cost-effectiveness ratios (ICERs). 

The costs in the model are calculated through adding the discrete costs for each event 

(outpatient visit, hospitalisation, and death) and the cost of maintenance treatment for 

the intervention. Life years correspond to the elapsed time between the creation of 

the patient and his death and consequent removal from the simulation. QALYs are 

obtained through weighing life years with patient utilities over time. The ICERs were 

calculated as the difference in the total average costs per patient divided by the 

difference in the average number of QALYs per patient (€/QALY) between two 

alternative treatment options. 

Since outcomes are recorded for each simulated patient, the model allows for 

extracting the individual patient history for every simulation. See Table 5.2 for a 

summary of the parameters used in the model. 

Base-case analysis 

The base-case number of simulations in the deterministic analysis was set to 1,000 

patients, as this number gave stable results while keeping the running time 

reasonable. For the base-case analysis, the Weibull distribution was used for 

extrapolating time-to-death and the log-normal distribution for extrapolating time-to-

hospitalisation. Distributions were chosen according to the recommendations issued 

by the Decision Support Unit commissioned by The National Institute for Health and 

Clinical Excellence (NICE) (206) (details can be found in Appendix 5.1). The time-to-

outpatient visit was set to 0.234 years (≈ every 2.8 months) for UC and 0.141 years (≈ 

every 1.7 months) for EWS, following the data reported in the TEN-HMS study (126). 

The utility multipliers were set to 1 for an outpatient visit (assuming no utility 

changes resulting from an outpatient visit) and 0.82 for hospitalisation, which 

corresponds to the decrease in utility resulting from a transition from NYHA class 3 to 

4 that was found in a previous study estimating QALY weights based on NYHA 

functional class in an elderly population with HF (207). The sensitivity of the DA was 

set to 0.96 and the false positive rate to 0.54, representing the Youden-point of the 

ROC curve provided by the manufacturer. The probability of avoiding a hospitalisation 

in the case of having correctly predicted it was set to 0.5, as reported elsewhere (208). 

A summary of input costs and respective sources is presented in Table 5.3. The costs 

are reported in euros and adjusted to 2020 rates based on the Dutch consumer price 

index (209). The costs presuppose a healthcare perspective, since it is likely that in 

the Netherlands there will be health care insurers that will decide upon the 
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availability of EWS to patients (81). Costs and health outcomes were discounted at 

4.0% and 1.5%, respectively, according to Dutch guidelines (210). 

Table 5.3 – Input costs in base-case analysis 

Item Estimate (€) Source 

UC outpatient visit 46.33 iMTA costing tool (211) 

EWS outpatient visit 44.63 iMTA costing tool (211) 

Hospitalisation 4,937.36 Stevanovic 2014 (212) 

Death 1 
Assumption (set to 1 for allowing 
PSA) 

Management of false positive alarm 18 iMTA costing tool (211) 

UC cost of maintenance treatment 
per year 

705.71 Grustam 2018 (205)  

EWS cost of maintenance treatment 
per year 

2,621.70 Grustam 2018 (205) 

Abbreviations: EWS, early warning system; iMTA, Institute for Medical Technology 
Assessment; PSA, probabilistic sensitivity analysis; UC, usual care 

 

Probabilistic sensitivity analysis 

In addition to the patient heterogeneity stemming from the variation in the patient 

population at baseline, the model includes two other types of uncertainty: (i) 

stochastic uncertainty, which is the uncertainty owing to the randomness of drawing 

values from probability distributions during the simulation and (ii) parameter 

uncertainty, which is the uncertainty associated with the coefficients of the regression 

equations and with the remaining model input parameters. 

Accounting on the above, the probabilistic sensitivity analysis was implemented as a 

double loop: an inner loop in which a pre-determined number of patients are sampled 

with replacement from the baseline population, and an outer loop in which values of 

the input parameters of the model are randomly drawn. This approach is similar to 

other published and validated patient-level simulation models (213). 

Model development, coding, and validation 

The model was developed using R software (214) and it consists of four R files: (i) the 

survival analyses, (ii) the logistic regression model for calculating the probability of a 

patient dying in hospital, (iii) the model functions, which can be seen as the model 

engine, and (iv) the model script where the user can define the model inputs, run the 
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model, and output results. The full code can be found on GitHub 

(https://github.com/fernandoalbuquerquealmeida/EWS_HF_DES_model). 

We used the Assessment of the Validation Status of Health-Economic decision models 

tool (AdViSHE) for having a structured view on the main topics regarding the 

validation of the model (215).  

https://github.com/fernandoalbuquerquealmeida/EWS_HF_DES_model
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Results 

Base-case analysis 

Table 5.4 shows the average model results per patient over lifetime. UC patients 

experienced on average 3.61 outpatient visits per year and 1.69 hospitalisations per 

year, with an average cost of 17,191€ over 2.07 life years (1.19 QALYs). 43.2% of 

these patients died in hospital and the remaining 56.8% died from other causes. 

Patients treated with the EWS experienced on average 6.60 outpatient visits per year 

and 1.67 hospitalisations per year, with an average cost of 28,440€ over 2.88 life 

years (1.64 QALYs). 61.5% of them died in hospital and 38.5% from other causes. 

Patients who had the DA added to the EWS lived on average 3.80 years (2.21 QALYs) 

with an average cost of 38,120€ over that period. During that same period, patients 

experienced 6.58 outpatient visits per year, 1.02 hospitalisations per year, and 

avoided being hospitalised 0.93 times per year. 47.4% of them died in hospital and 

52.6% from other causes. 

Table 5.4 – Model results for the base-case analysis 

Average outcomes per 
patient 

UC EWS EWS+DA 

Events (per year)    

Outpatient visits 3.61 6.60 6.58 

Hospitalisations 1.69 1.67 1.02 

Avoided hospitalisations - - 0.93 

Death type    

Death in hospital, % 43.2 61.5 47.4 

Death (other), % 56.8 38.5 52.6 

Final outcomes    

Total costs, € 17,191 28,440 38,120 

95% confidence interval* [13,390 – 22,904] [20,898 – 34,036] [28,799 – 45,197] 

Total life years 2.07 2.88 3.80 

95% confidence interval* [1.58 – 2.89] [2.32 – 3.85] [2.96 – 5.05] 

Total QALYs 1.19 1.64 2.21 

95% confidence interval* [0.94 – 1.72] [1.37 – 2.27] [1.79 – 3.07] 

ICERs**    

EWS vs. UC, €/QALY 25,367 

EWS+DA vs. UC, €/QALY 20,522 
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EWS+DA vs. EWS, €/QALY 16,794 

Abbreviations: DA, diagnostic algorithm; EWS, early warning system; ICER, incremental cost-
effectiveness ratio; PSA, probabilistic sensitivity analysis; QALY, quality-adjusted life year; UC, 
usual care. 

* The 95% confidence intervals lower and upper bounds are the 5th and 95th percentiles, 
respectively, resulting from a PSA with an inner loop of 200 patients and an outer loop of 200 
iterations. 

** EWS is extendedly dominated by EWS+DA. 

 

Model validation 

The validation of the model outcomes found a slightly higher mortality for the 

simulated population when compared to the available data from the TEN-HMS trial 

(126): 52.8% and 40.8% in our simulation versus 51.0% for UC and 34.0% for EWS at 

day 450 in the trial. The percentage of estimated deaths in our simulation was also 

slightly higher than what would be predicted using the model published by Pocock et 

al. (33). The percentage of deaths after one year in our population estimated by the 

Kaplan-Meier method was 37.8% for UC and 23.8% for EWS. A population with these 

1-year probabilities of death in the model estimated by Pocock et al. (33) would have 

a 3-year probability of death between 69.2 and 72.5% for UC and 49.0 and 52.3% for 

EWS. The estimated probabilities of death after three years in our simulation were 

77.5% and 65.4%, respectively. In spite of this observation, it should be stressed that 

comparing mortality with the figures published by Pocock et al. (33) should not yield 

exactly the same results, as the considered populations are not exactly the same, both 

in terms of the patient characteristics at baseline, which are predictors of their 

survival, and the sample size generating the results. It is still worthwhile mentioning 

that the direction of the impact of the predictors for mortality in our model was the 

same as observed by Pocock et al. (33) for all variables except smoking and time of 

diagnostic. In our model, smoking was associated with a lower probability of dying 

(although with almost no effect), as well as the time since first diagnosis of HF time 

being lower than 18 months (see Appendix 5.1 for further details). 

There were 1.69 hospitalisations per life year in the UC population and 1.67 

hospitalisations per life year in the EWS population observed in the model. These 

hospitalisation rates were about one third higher than those observed in the TEN-

HMS trial (126) (1.25 and 1.22, respectively for UC and EWS). The increased 

hospitalisation rates can be partly explained by the additional survival considered in 

the model when compared to the TEN-HMS trial, especially when weighing in the fact 

that increased age reduces time-to-hospitalisation, and by the lower time-to-

outpatient visit used in the base-case analysis when compared to the input used for 

selecting the parametric model (see Appendix 5.1 for further details). 
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When comparing the outcomes of the model to other models addressing similar 

problems, we found comparable deterministic results to the ones found by Grustam et 

al. (205). It should be noted, however, that their study did not estimate the (cost)-

effectiveness of EWS+DA. The comparisons between total costs, life years, and QALYs 

for UC and EWS are shown in Table 5.5. 

Table 5.5 – Outcome comparison with Grustam et al. (28) 

Outcome Present study Grustam et al. (205) % difference 

Total costs EWS 28,440 € 27,186 € 4.61% 

Total costs UC 17,191 € 14,414 € 19.27% 

Total LYs EWS 2.88 4.02 -28.36% 

Total LYs UC 2.07 2.71 -23.62% 

Total QALYs EWS 1.63 2.93 -44.37% 

Total QALYs UC 1.19 1.91 -37.70% 

Abbreviations: EWS, early warning system; QALY, quality-adjusted life year; LY, life year; UC, 
usual care. 

 

For a systematic overview on the topics related to the model validation, please consult 

the filled in AdViSHE questionnaire (Online Appendix 5.1). 
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Discussion 

This study aimed at developing a health economic patient-level simulation model for 

HF that included a wide variety of HF patient characteristics and that simulated 

changes in these characteristics and their subsequent impact on a broad set of 

outcomes. The modelling framework should be able to model patients managed with 

an early warning system, with or without the use of a diagnostic algorithm. 

We had access to a comprehensive patient-level dataset generated in the TEN-HMS 

study (126) that contained the critical factors for prognosis as identified previously by 

Pocock et al. (33). The limitations of the database consisted of the relatively small 

sample size, the inevitable missing data on some of the variables, and referring to 

2005 (126), which can overlook the changes in clinical practice that occurred ever 

since (216). However, it ought to be mentioned that patient-level simulation 

modelling in R has the clear advantage of allowing the adaptation of the code for using 

other available databases – as long as they include the patient and disease 

characteristics used in the model – for estimating the regression equations and/or for 

performing an external validation of the model results without changing the core 

model structure. 

In total, we included 20 patient and disease characteristics and 8 different outcomes 

in the model, which allowed for an adequate description of HF patients across their 

treatment pathway until death. These characteristics make our model unique, as to 

the best of our knowledge there are not any previously published models in HF that 

are able to take into account individual patient characteristics for generating suitable 

outcomes for our target population (59). Disease pathways and health outcomes in HF 

– alike other chronic diseases – are strongly influenced by the individual 

characteristics of the patients (12, 33, 217-219). It is therefore crucial that the type of 

model chosen allows for recording the individual patient experience and the variation 

of their individual characteristics over time. In this regard, Markov models have three 

critical shortcomings when compared to patient-level simulations: (i) the definition of 

health states may preclude considering inter-patient variability, (ii) the fixed cycle 

length does not allow for exploring the effects of changing the frequency of events that 

impact individual patient characteristics (e.g. outpatient visits), and (iii) the “lack of 

memory” regarding the treatment history of a patient when in fact the treatment 

options of chronic patients normally depend on the previous treatment sequencing 

and experiences with those treatments (220). Conversely, DES models can address a 

wide range of problems, as health economic modelling using events is a more flexible 

approach than using health states. Further, DES models use patient attributes, which 

can change over time and affect time-to-event calculation, to properly model 

competing risks. Since the DES models approach patients individually, they are a 
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better alternative for dealing with heterogeneous populations. DES models are 

perceived as a better option for conveying the message to non-modelling experts, as 

consist of a more compact representation of the conceptual model, avoiding, for 

instance, the problem of overcomplicated Markov chains through state explosion. 

Further, in the eventuality of limited data, DES models also provide a substantial 

advantage, as the inadequacy of the data is not built into the structure of the model; 

the simulation can be designed to properly reflect the problem under analysis and 

carry out exploratory analyses with limited data and best-guess estimates (221-224). 

So, although there is a need of a detailed and comprehensive database for estimating 

the regression equations governing the time-to-event calculations, after the 

development and validation of the model, which was the goal of our study, it is 

possible to test a wide variety of scenario and perform subgroup analyses by changing 

the settings of the model and/or the simulated model population. 

Building on the specific features of DES modelling, it is of the utmost importance to 

stress the ability of our model to estimate health outcomes for the EWS+DA 

intervention, with particular attention to its DA feature. In an EWS setting, clinical 

information is usually assessed by a clinical team who is prompted to act based on 

clinical decision rules defined for specific combinations of the monitored parameters 

as well as the assessment of the clinical picture at any given time. However, evidence 

shows that data-driven approaches like DAs looking at trends and patterns of 

recorded parameters change seems to improve the accuracy of detecting events when 

compared to clinical decision rules (171, 173, 225, 226). When taking into account the 

conceptualisation of the DA (see Methods section), since the model only needs a figure 

for sensitivity and specificity for accounting for the DA, it easily allows for analysing 

the (cost)-effectiveness of the EWS+DA intervention at any given point the receiver 

operating characteristic (ROC) curve of the DA. In other words, the model permits 

judging on the best operating point for the DA in order to optimise the cost-

effectiveness of the intervention, which is crucial for making informed decisions on 

the adoption of a particular DA. Additionally, we can think of our model as a bridge 

between cost-effectiveness and the huge potentialities of artificial intelligence and 

machine learning for improving the quality of those decisions. Not only by reducing 

uncertainty through the continuous incorporation of big data collected by the EWS 

and/or other data sources, but also by constantly improving the DA prediction 

capabilities through machine learning, thereby determining the best follow-up actions 

from the results of the DA (70, 71). We can further envision a more comprehensive 

model to which our model is only but a piece that is generating the cost-effectiveness 

results. Going one step deeper, we can think of the cost-effectiveness results 

themselves as another piece of information used by the DA for improving its 

predictions. 
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Although it reflects the disease pathways in HF and uses home telemonitoring (HTM) 

as an example of an EWS, the model was developed in order to be easily adaptable for 

other type of EWS interventions used in chronic disease management. For instance, 

the time-to-outpatient visit, which can be easily changed in the model by the user, can 

be set according to the specific treatment guidelines for any given population 

suffering from a chronic disease. In our case, the EWS had an effect in both time-to-

hospitalisation and time-to-death. However, other events can be considered when 

conceptualising the model for other chronic diseases; the logic used for modelling 

hospitalisation and death in our model can be repeated for as many events as needed. 

Focusing on the DA, it should be noted that this feature affected the outcomes of the 

simulated patient by avoiding hospitalisations (having an impact in costs and health 

outcomes). Avoiding hospitalisations, in turn, affects the disease pathways of the 

simulated patient and has an impact on recorded outcomes. This logic can be used 

with other EWS for events a DA is intended to avoid in the management of any other 

chronic disease. 

Concerning the validation of the model, the face validity of the conceptual model was 

underpinned by the opinions of both experts in the field of health economic modelling 

and a multidisciplinary team of experts in the field of clinical technical solutions 

development for HF. All the performed tests revealed that our model was robust and 

able to generate health outcomes comparable to those estimated by other models 

addressing similar problems and those obtained from empirical data. On the 

comparison to other models, it should be stressed that we found fewer life years and 

QALYs than Grustam et al. (205). In their study, the authors assumed that the 

transition probabilities measured in the time frame of 240 to 450 days in the original 

study continue unaltered for 20 years. Given the average age of the patients included 

in the model (67 years old) and their very poor health state, it seems unlikely that 

their transition probabilities would remain the same for the following 20 years. 

Therefore, the fewer QALYs found in our study are a consequence of the higher 

mortality that was found using the parametric survival modelling approach that we 

took and the assumption that there is a utility change similar to the one observed for a 

change to the next worse NYHA class from a hospitalisation, which occurs more 

frequently than the health state transitions in the study by Grustam et al. (205). The 

AdViSHE questionnaire proved to be a useful tool in the process of model validation, 

both for guiding in the model development and for identifying areas for improvement 

(see Online Appendix 5.1). On that note, there are a few shortcomings of the model 

that ought to be discussed. 

Although the model allows for updating patient characteristics at the occurrence of 

each event, we did not have information on the evolution of some patient 

characteristics and we could not update patient attributes accordingly. Conceptually it 
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would be ideal to have equations describing the trends of the patient characteristics, 

eventually with a link to changes in the medication that could be modelled during the 

outpatient visit procedure. 

The model outcomes are representative for the group of patients who participated in 

the TEN-HMS trial, which are mainly severe HF patients that have been previously 

hospitalised. It ought to be said that HF patients enrolled in clinical trials of EWS 

usually have similar characteristics to the TEN-HMS patients and, as such, results 

could be projected for those patients using the model. However, since regression 

equations were estimated using the database obtained from the TEN-HMS trial, 

extrapolation of the results to the general HF population should be done with care. It 

would be interesting to re-estimate the model equations using real world evidence for 

a more representative HF population in order to assess whether there are significant 

differences in estimated outcomes. In doing so, the model would be able to be used for 

a larger proportion of HF patients – for example, a HF population with milder 

symptoms and treated in primary care – who could also be candidates for an EWS. 

However, it should be noted that building a DES model is an extensively data-

demanding exercise that requires a wide range of patient-level data for building and 

validating the model. Unfortunately, patient-level data are not widely available, 

particularly in the real world setting, and they tend to be characterised by a lot of 

missing data, which leave the developer with a dilemma on how to handle those 

without biasing the outcomes of the model (227-231). 

Further on the issue of data, in our particular case, we did not have information that 

would allow us to determine the impact of patient characteristics in outpatient visits. 

If we would have been able to do so, we could have incorporated in the model a 

relationship between patient characteristics and outpatient visits, which could result, 

for instance, in a change in medication. The change in medication in turn could impact 

the disease pathways in the model and, as a consequence, the outcomes of simulated 

patients. This would arguably be of added value from a conceptual point of view and 

for the sake of increased face validity of the model in the eyes of the layperson in 

health economics – as it is often the case of some decision-makers. 

We also regret not having access to another database with patient-level data, which 

would have been worthwhile for increasing the sample size of our data inputs (thus 

reducing uncertainty) and for validating the model through assessing outcomes using 

alternative input data. Yet again, data availability and the real world hardly go hand-

in-hand. 

In conclusion, the developed model is a unique patient-level simulation model that 

includes many of the patient and disease characteristics that are considered important 

for prognosis and/or treatment of HF patients. The model can be used for simulating a 
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wide range of outcomes for different patient subgroups. More specifically, the model 

can provide useful information for guiding research and for the development of new 

treatment options, with a particular focus on early warning systems and the 

operationalisation of diagnostic algorithms, by showing the possible impact of these 

interventions on a large number of important HF outcomes. 
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Appendices 

Appendix 5.1 – Survival analyses and time-to-event calculations 

Appendix 5.1 presents the results concerning the survival analyses for death and 

hospitalisation. The detailed explanation of the performed analyses is only presented 

for time-to-death (Appendix 5.1-A). The interpretation of the time-to-hospitalisation 

analyses (Appendix 5.1-B) is briefly described and it should to be complemented by 

the explanations presented in the time-to-death analyses considering hospitalisation 

as the survival event of interest instead of death. 

Appendices 5.1-A and 5.1-B present information on the following analyses: (1) 

Kaplan-Meier estimates, (2) survival curves difference (log-rank or Mantel-Haenszel 

test and Peto & Peto modification of the Gehan-Wilcoxon test), (3) Cox proportional 

hazards model, (4) parametric survival modelling, and (5) time-to-event estimates 

derivation from parametric survival models. 

Appendix 5.1-A – Time-to-death 

1. Kaplan-Meier estimates 

The Kaplan–Meier (KM) estimate is a non-parametric statistic used to estimate the 

survival function through measuring the fraction of patients who have not 

experienced an event of interest at each point in time since the start of follow-up. 

Suppose that events occur at 𝐷 distinct times 𝑡1 < 𝑡2 < ⋯ 𝑡𝐷 , at time 𝑡𝑖  there are 𝑑𝑖  

events (e.g. deaths), and 𝑟𝑖  is the number of individuals who are at risk (of death) at 

time 𝑡𝑖 . Then, the quantity 𝑑𝑖 𝑟𝑖⁄  is an estimate of the probability (𝑝𝑖) that an individual 

who survives to just before time 𝑡𝑖  experiences the event at that time. 

The complement of 𝑝𝑖  (𝑝�̂� = 1 − 𝑑𝑖 𝑟𝑖⁄ ) is the estimated probability of surviving day 𝑖 

given survival until day 𝑖. The survival probability at time 𝐷 is thus calculated through 

the formula �̂�(𝐷) = 𝑝1̂ × 𝑝2̂ × … × 𝑝�̂� . Plotting the survival probabilities calculated at 

all data points for which there is an observed event or censoring (i.e. observation that 

ended before occurrence of the event) results in the survival function. 

The Kaplan-Meier method makes no (parametric) assumptions on the shape of the 

underlying survival or hazard curves. The resulting graph resembles a two-

dimensional downward staircase starting at survival probability 1 (when all patients 

are alive) and dropping over time according to the events observed during follow-up. 

Censoring is represented in the KM graph by a vertical dash on the curve representing 

the survival function. The KM estimate for death for the usual care (UC) and the early 

warning system (EWS) interventions is presented in Figure 5.2. 
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Figure 5.2 – Kaplan-Meier estimates for death (time in days) 

2. Survival curves difference 

The purpose of the survival curves difference analyses is to test whether two survival 

curves are statistically different, i.e. if one intervention is better than the other in 

terms of survival probability. Thus, considering that the “survival” event is death, in 

our example, EWS is better than UC if the survival time with EWS is larger than 

survival time with UC. For carrying out this test, we define the null hypothesis as no 

difference in survival probabilities: 𝐻0: 𝑆𝐸𝑊𝑆(𝑡) = 𝑆𝑈𝐶(𝑡) and we run global tests 

comparing the two curves over the whole time range. 

We used both the log-rank or Mantel-Haenszel test and the Peto & Peto modification 

of the Gehan-Wilcoxon test. 

a. log-rank or Mantel-Haenszel test 

The log-rank or Mantel-Haenszel test is based on the comparison of observed number 

of events (𝑂) in index group with the expected number of events (𝐸) if the null 

hypothesis were true. For each event time point, a 2 x 2 table is made and the 

expected no of events in the index group is determined (see Table 5.6). 
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Table 5.6 – 2x2 table for number at risk and number of events for UC and EWS 

Group Number at risk Number of events 

EWS 𝑟𝐸𝑊𝑆 𝑑𝐸𝑊𝑆 

UC 𝑟𝑈𝐶  𝑑𝑈𝐶  

Total 𝑟𝐸𝑊𝑆 + 𝑟𝑈𝐶  𝑑𝐸𝑊𝑆 + 𝑑𝑈𝐶  

 

Expected events in the EWS group at event time point 𝑡 are given by  𝐸𝐸𝑊𝑆 =
𝑟𝐸𝑊𝑆(𝑑𝐸𝑊𝑆+𝑑𝑈𝐶)

𝑟𝐸𝑊𝑆+𝑟𝑈𝐶
 . The analogue is also true for the UC group. 

𝐸 is the sum of all these expected numbers over all time points (2x2 tables). The log-

rank test statistic is obtained by summing the 𝜒2 statistics of the 2x2 tables over all 

event time-points and it is given by 𝑍 =
𝑂𝑡𝑜𝑡−𝐸𝑡𝑜𝑡

𝑠𝑑𝑡𝑜𝑡
. 

Under 𝐻0, 𝑍 follows a standard normal distribution. Often 𝑍2 is given, which follows a 

𝜒2 distribution with 1 degree of freedom under 𝐻0. Since we are dealing with 

differences, it does not matter which is the reference group and which is the index 

group, as 𝑍2 will remain the same. 

The actual values of the time-points are irrelevant – only their ordering (rank test) –, 

as the log-rank test is formally identical to the Mantel-Haenszel test for a series of 2x2 

tables. The log-rank test has optimal power in case the ratio of the hazards is constant 

over time, but it has little or no power if hazards cross. Table 5.7 presents the results 

of the test. 

Table 5.7 – log-rank or Mantel-Haenszel test for death 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

UC 85 33 23 4.31 6.24 

EWS 167 42 52 1.91 6.24 

Chisq = 6.2 on 1 degrees of freedom, p = 0.01 

 

The results show a statistically significant difference between the survival curve of UC 

and EWS, i.e. a difference in survival for both interventions considered. 

b. Peto & Peto modification of the Gehan-Wilcoxon test 

The Gehan-Wilcoxon test is a variation of the log-rank test statistic and it is derived by 

applying different weights at consecutive failure times. Peto-Peto modifications are 

characterised by nonparametric generalised maximum-likelihood estimates of the 

survival function for interval-censored data; they are useful in early differences and 

more robust in situations where many observations are censored. 
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The combined approach of these methods is most sensitive to early differences (or 

earlier time points) between survival, while the previously described log-rank is most 

powerful under proportional hazards. The Peto & Peto modification of the Gehan-

Wilcoxon test is therefore also used to assess whether the effect of the treatment on 

survival is strongest in the earlier phases of administration and if it tends to be less 

effective over time. Table 5.8 shows the results of the test. 

Table 5.8 – Peto & Peto modification of the Gehan-Wilcoxon test for death 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

UC 85 28.1 19.6 3.71 6.28 

EWS 167 35.2 43.7 1.66 6.28 

Chisq = 6.3 on 1 degrees of freedom, p = 0.01 

 

The results reveal a statistically significant difference between the survival curve of 

UC and EWS, i.e. a difference in survival between the considered interventions. 

3. Cox proportional hazards model 

We are dealing with survival data and we have previously showed a non-parametric 

way of estimating the survival curve. We have also discussed the problem of testing 

whether two (or more) survival curves are equal (log-rank test and the Peto & Peto 

modification of the Gehan-Wilcoxon variation) and thus inferring on the effect of any 

given intervention. Now we will focus on the quantification of the effect of covariates 

on survival. 

In other words, we would like to have an effect size of the intervention, not only a P-

value, when comparing two survival curves. Additionally, we would like to study the 

effect of continuous covariates (e.g. age) and dichotomous covariates (e.g. gender) on 

survival. We are interested at looking at several covariates at the same time. 

The postulated problem is linked with regression analysis in its general sense, i.e. the 

set of statistical processes used for estimating the relationship between a dependent 

variable (outcome variable) and one or more independent variables (covariates or 

explanatory variables). The statistical relationship between the covariates and the 

outcome variable is studied though regression models. The type of regression model 

depends on the distribution of the outcome variable given the covariates. 

In the particular case of an outcome variable being survival data, we frequently use a 

regression model referred to as a Cox proportional hazards model for quantifying the 

impact of the covariates on survival. We will now formalise it mathematically: 
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 In the Cox proportional hazards model, if ℎ1(𝑡) is the hazard rate of treatment A 

and ℎ2(𝑡) is the hazard rate of treatment B, then the ratio of these hazards – the 

hazard ratio – is 𝐻𝑅(𝑡) =
ℎ2(𝑡) 

ℎ1(𝑡) 
. 

 Since ℎ1(𝑡) and ℎ2(𝑡) both depend on time, 𝐻𝑅(𝑡) also depends on time. The 

proportional hazards assumption that gives name to the model states that 𝐻𝑅(𝑡) 

does not depend on time and it is a constant. 

 If 𝑍 is the covariate referring to the intervention and we define 𝑍 = 0 as the usual 

care (UC) and 𝑍 = 1 as the early warning system (EWS), then ℎ0(𝑡) is the hazard 

rate corresponding to the reference category (UC) – also called baseline hazard. 

Then the model is defined by ℎ(𝑡|𝑍) = ℎ0(𝑡)exp (𝛽𝑍), where: 

o 𝑍 = 0: ℎ(𝑡|𝑍 = 0) = ℎ0(𝑡) exp(𝛽0) = ℎ0(𝑡)  – hazard rate of UC (Z = 0); 

above called ℎ1(𝑡); 

o 𝑍 = 1: ℎ(𝑡|𝑍 = 1) = ℎ0(𝑡) exp(𝛽1) = ℎ0(𝑡)exp (𝛽) – hazard rate of EWS 

(Z = 1); above  called ℎ2(𝑡); 

o and the hazard ratio is given by 
ℎ(𝑡|𝑍=1)

ℎ(𝑡|𝑍=0)
=  

ℎ0(𝑡)exp (𝛽)

ℎ0(𝑡)
= 𝑒𝑥𝑝(𝛽). 

 The relationship between the covariate and the hazard is given by the expression: 

ℎ(𝑡|𝑍) = ℎ0(𝑡)exp (𝛽𝑍). 

 The relationship between the covariate and the hazard is given by the expression: 

𝐻(𝑡|𝑍) = 𝐻0(𝑡)exp (𝛽𝑍). 

 And the relationship between the covariate and the survival function is given by 

the expression: 

𝑆(𝑡|𝑍) = exp(−𝐻(𝑡|𝑍)) = exp(−𝐻0(𝑡) exp(𝛽𝑍)) = 𝑆0(𝑡)exp (𝛽𝑍). 

a. Parameter estimation 

We fist estimated the hazard ratio between the interventions by fitting a Cox 

proportional hazards model where the intervention was the only covariate (see 

results in Table 5.9). 

Table 5.9 – Cox proportional hazards regression model results for death (intervention only) 

covariate exp(coefficient) Standard error P-value 

intervention 0.563 0.233 0.014 

n = 252, number of events = 75 

Likelihood ratio test = 5.86 on 1 df, p = 0.015 
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The results of this model show a statistically significant hazard ratio between the EWS 

and UC of 0.563. In other words, a patient treated with the EWS has a 43.7% decrease 

on the hazard of dying when compared to the UC intervention. 

We subsequently estimated the impact of multiple covariates in survival through 

another regression model. A definition of the covariates used in the model is 

presented in Table 5.10. 

Table 5.10 – Covariates used in survival regression models for both death and hospitalisation 

Covariate Variable type Definition 

intervention Categorical EWS = 1; UC = 0 

ejection.fraction Continuous Ejection fraction (%) 

age Continuous Age (years) 

sbp Continuous Systolic blood pressure (mmHg) 

bmi Continuous Body mass index calculated as weight/height2 (kg/m2) 

creatinine Continuous Serum creatinine (µmol/l) 

(nyha.class)2 Categorical NYHA class 2 (Yes= 1; No = 0) 

(nyha.class)3 Categorical NYHA class 3 (Yes= 1; No = 0) 

(nyha.class)4 Categorical NYHA class 4 (Yes= 1; No = 0) 

gender Categorical Male = 1, Female = 0 

smoker Categorical Smoker = 1; Non-smoker = 0 

diabetes Categorical Diabetic = 1; Non-diabetic = 0 

copd Categorical COPD present = 1; No COPD = 0 

recent.diagnosis Categorical Diagnosis < 18 months = 1; Diagnosis > 18 months = 0 

no.beta.blocker Categorical 
Without beta-blocker medication = 1; On beta-blocker 
medication = 0 

no.ace Categorical 
Without ACE inhibitor medication = 1; On ACE inhibitor 
medication = 0 

age.ef Continuous 
Interaction between age and ejection fraction (product of 
variables above) 

sbp.ef Continuous 
Interaction between systolic blood pressure and ejection 
fraction (product of variables above) 
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Categorical variables in R are referred to as factors. In the results of the model shown in the R 
console, the covariate intervention is labelled as factor(intervention)1, meaning that the results 
for the coefficients are given for a value of 1 for the covariate intervention. 

For the purpose of running regression models in R, continuous variables should be normalised. 
Normalisation in R is referred to as scaling. In the results of the model shown in the R console, 
the covariate age is be labelled as scale(age), meaning that the results for the coefficients are 
referring to the normalised age variable. 

For the purpose of simplifying the results shown, factor and scale were omitted from the 
covariates. 

 

The Cox proportional hazards model with all covariates is thus defined by: 

ℎ(𝑡|𝑍𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 , … , 𝑍𝑠𝑏𝑝.𝑒𝑓) = ℎ0(𝑡) exp(𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑍𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 + ⋯ + 𝛽𝑠𝑏𝑝.𝑒𝑓𝑍𝑠𝑏𝑝.𝑒𝑓). 

The mathematical notation and the parameter estimation with increasing number of 

covariates can become overwhelming. Luckily, R does the latter calculations in the 

blink of an eye. The results of the regression model for death with all covariates are 

shown in Table 5.11. 

Table 5.11 – Cox proportional hazards regression model results for death (all covariates) 

Covariate exp(coefficient) Standard error P-value 

intervention 0.500 0.253 0.006 

ejection.fraction 0.192 1.107 0.136 

age 1.415 0.612 0.571 

sbp 0.354 0.394 0.008 

bmi 0.625 0.168 0.005 

creatinine 1.464 0.113 0.001 

(nyha.class)2 1.101 0.370 0.794 

(nyha.class)3 1.620 0.377 0.201 

(nyha.class)4 1.605 0.507 0.351 

gender 1.350 0.341 0.379 

smoker 0.870 0.483 0.774 

diabetes 1.330 0.272 0.295 

copd 1.186 0.284 0.547 

recent.diagnosis 0.748 0.268 0.279 

no.beta.blocker 1.614 0.259 0.064 

no.ace 1.139 0.288 0.652 

age.ef 1.599 1.184 0.692 
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sbp.ef 4.621 0.835 0.067 

n = 252, number of events = 75 

Likelihood ratio test = 84.17 on 18 df, p = 1.579 x 10-10 

 

It is particularly interesting to notice the value of the exp(coefficient) for each of the 

covariates in the model, as it determines the impact the covariate has on survival. If 

the exp(coefficient) for a particular variable is lower than one, the presence of a 

characteristic (for covariates coded as categorical variables) or the increase of its 

value (in the case of continuous variables; e.g. ejection fraction) decrease the risk of 

dying and result in an increased chance of survival. For instance, in our model, a 

patient treated with EWS and with increasing ejection fraction has a higher chance of 

survival than that same patient treated with UC and with decreasing ejection fraction. 

The inverse rationale can be used when exp(coefficient) is higher than one, i.e. older 

patients and patients with diabetes have an increased risk of dying and a lower chance 

of survival. 

b. Proportional hazards assumption test 

The proportional hazards (PH) assumption can be checked using statistical tests 

based on the scaled Schoenfeld residuals. The function cox.zph() provides a solution 

for testing the PH assumption for each covariate included in a Cox PH regression 

model fit. 

For each covariate, the function cox.zph() correlates the corresponding set of scaled 

Schoenfeld residuals with time, in order to test for independence between residuals 

and time. Additionally, it performs a global test for the model as a whole. 

The PH assumption is supported by a non-significant relationship between residuals 

and time and it is refuted by a significant relationship. The results of the cox.zph() 

function for both our models – with the intervention as the only covariate and with 

the full set of covariates – are shown in Table 5.12 and Table 5.13, respectively. 

Table 5.12 – Schoenfeld residuals of the Cox proportional hazards model covariates for death (intervention only) 

covariate chisq df P-value 

factor(intervention) 0.0488 1 0.825 

GLOBAL 0.0488 1 0.825 
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Table 5.13 – Schoenfeld residuals of the Cox proportional hazards model covariates for death (all covariates) 

covariate chisq df P-value 

factor(intervention) 0.0284 1 0.866 

scale(ejection.fraction) 0.1044 1 0.747 

scale(age) 7.4865 1 0.006 

scale(sbp) 0.2828 1 0.595 

scale(bmi) 4.0492 1 0.044 

scale(creatinine) 0.1788 1 0.672 

factor(nyha.class) 0.3724 3 0.946 

factor(gender) 0.3179 1 0.573 

factor(smoker) 0.0069 1 0.934 

factor(diabetes) 1.6573 1 0.198 

factor(copd) 1.5037 1 0.220 

factor(recent.diagnosis) 0.4389 1 0.508 

factor(no.beta.blocker) 1.1147 1 0.291 

factor(no.ace) 1.3210 1 0.250 

scale(age.ef) 1.0251 1 0.311 

scale(sbp.ef) 0.2819 1 0.595 

GLOBAL 23.5180 18 0.171 

 

From these results, we can observe that the test is not statistically significant for most 

of the covariates and that the global test is also not statistically significant (Table 

5.13). A lack of statistical significance is also observed in the test for the model with 

the intervention being the only covariate (Table 5.12). We can therefore assume that 

the proportional hazards assumption holds. 

 

c. Influential observations test 

To test for influential observations or outliers, we can visualize the dfbeta values using 

the function ggcoxdiagnostics()[in survminer package] by specifying the argument type 

= “dfbeta”. The function plots the estimated changes in the regression coefficients 

upon deleting each observation in turn. The results for our models are show in Figure 

5.3 and Figure 5.4. 
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Figure 5.3 – dfbeta residuals for the Cox proportional hazards model for death with intervention as the only covariate 

 

 

Figure 5.4 – dfbeta residuals for the Cox proportional hazards models for death (all covariates) 
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The index plots in Figure 5.4 show that comparing the magnitudes of the largest 

dfbeta values to the regression coefficients suggests that most of the observations are 

not much influential individually, even though some outliers (larger dfbeta values) can 

be spotted for some covariates. For the model with intervention as the only covariate, 

despite the scale of the graph changing our visual perception, the plot shown in Figure 

5.3 also suggests that most of the observations are not much influential individually. 

d. Log cumulative hazards 

In the following section we will describe the use of parametric survival modelling for 

extrapolating data beyond trial duration. The consideration of the observed hazard 

rates over time is vital for assessing suitability of different parametric models, as they 

incorporate different hazard functions. For instance, exponential models are only 

suitable if the observed hazard is approximately constant and non-zero, while Weibull 

and Gompertz models allow for the incorporation of monotonic hazards, and log-

logistic and log-normal models can incorporate non-monotonic hazards. 

Log-cumulative hazard plots are not only used to illustrate the hazards observed in 

the clinical trial, but they also allow for assessing whether the proportional hazards 

assumption is reasonable. 

Figure 5.5 shows an illustration of a log cumulative hazard plot for the Kaplan Meier 

curves previously shown in Figure 5.2. The graph demonstrates that there are no 

seemingly changes in the hazard during the trial duration and that hazards are 

reasonably proportional between the two treatment groups. This indicates that a 

single parametric model may be suitable to model survival, including a model using 

the exponential distribution. 
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Figure 5.5 – log cumulative hazards, by treatment (death) 

4. Parametric survival modelling 

Survival data is different from other types of continuous data in the sense that the 

endpoint of interest is often not observed in all subjects, as patients may be lost to 

follow-up or the event may not have occurred by the end of study follow-up. Given the 

extreme unlikeliness of having access to complete survival data from a trial – i.e. all 

included patients have experienced the event by the end of follow-up –, considering 

that decision-making supported by health economic evaluations often requires that 

health effects (and costs) of medical interventions is considered over lifetime, the 

extrapolation of survival data is required in order to usefully incorporate them in 

health economic models. 

Generally speaking, extrapolating survival data is achieved through the use of 

parametric models fitted to empirical time-to-event data. There is a wide range of 

parametric models available, each with its own characteristics that makes it suitable 

for different data sets. In our analysis, we fitted to our data the most commonly used 

parametric models in the context of health economic modelling: exponential, Weibull, 

Gompertz, log-logistic, log-normal, and generalised gamma. We modelled the 

intervention as a covariate since we have assumed that the proportional hazards 

assumptions holds based on the tests showed above. The graphical representation of 

the fitting of the parametric models to time-to-death data is shown in Figure 5.6.  
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Figure 5.6 – Fitting of parametric survival models to time-to-death 

Despite being the preferred method for incorporating survival data into health 

economic models, parametric models raise an issue on the validity of the extrapolated 

data. The main question becomes one of how to best make inferences about the tails of 

probability distributions given partial – or even completely absent – information. 

Special care must be taken in the common case where lifetime data are immature and 

non-censored observed values are only available on a small proportion of patients. As 

it is noticeable in Figure 5.6, extrapolations beyond trial duration using each of the 

considered parametric models can result in significantly different estimates for 

survival. These differences also get larger with increasing time. 

The choice of parametric model is one of the most discussed issues in health economic 

modelling, as it can have a large impact on cost-effectiveness estimates and on the 

decisions that could stem from these estimates. Suitability assessment of each of the 

fitted models can be done through a wide variety of methods, which are aimed at 

demonstrating whether the model provides a good fit to the observed data and if the 

extrapolated portion is clinically and biologically plausible. We will discuss the choice 

of the parametric model used in the base-case analysis subsequently.  



Chapter 5 

132 

a. Visual inspection 

The first step for judging how well a parametric survival model fits the clinical trial 

data consists in the visual assessment on how closely the graphical representation of 

the model follows the Kaplan Meier curves. Although this provides a simple method 

for choosing one model over another, it can be inaccurate and prone to unexplained 

variability. Further, a fitted model that follows the Kaplan-Meier curves closely may 

have an unlikely tail. This issue will be discussed in further detail later.  

In our case there are not many striking differences between the fit of parametric 

model curves to the Kaplan-Meier curves (see Figure 5.6). As such, no clear-cut 

decision on the better suitability of a particular parametric model should be made 

based on visual inspection alone. We must supplement or model choice with 

additional testing. 

b. Goodness-of-fit to the observed data 

The Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) 

are penalised-likelihood information criteria estimators that provide useful 

information on the relative fit of alternative parametric models for a given dataset. 

The AIC and the BIC consist of a goodness-of-fit term plus a penalty to control 

overfitting. In this way, they provide a standardised way of balancing sensitivity 

(having enough parameters to adequately model the relationships among variables in 

the population) with specificity (not overfitting a model or suggesting non-existent 

relationships) of parametric models. 

When analysing the AIC and the BIC results, we must take into account that since 

some parametric models have more core parameters (i.e. excluding covariates) than 

others – for instance, the exponential model only has one parameter while Weibull 

and Gompertz have two –, multi-parameter models are more penalised in comparative 

terms. Also, the use of additional parameters is more highly penalised by the BIC in 

comparison to the AIC. 

The results of the goodness-of-fit tests using the AIC and BIC for the parametric 

models used in our study are presented in Table 5.14. 

The lay interpretation of the AIC and the BIC is the following: the lower their value, 

the better the fit of the parametric model to the data.  
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Table 5.14 – Goodness-of-fit tests for parametric survival modelling of death 

Parametric model AIC BIC 

Exponential 1211.24 1218.30 

Weibull 1213.11 1223.70 

Log-normal 1209.07 1219.66 

Log-logistic 1211.77 1222.35 

Gompertz 1212.17 1222.76 

Generalised gamma 1210.82 1224.93 

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion. 

 

Judging by the small differences in AIC and BIC, one can conclude that the comparative 

goodness-of-fit of the alternative models to the trial data is minor. In fact, this 

corroborates the points made in the visual inspection of the curves, i.e. there are 

rather small differences between the parametric curves during the time for which 

there are trial data available. Again, it is worth emphasising that the AIC and the BIC 

only give indication about the model fit to the existing data. The extrapolation part 

must be taken into account using different methods. 

c. Clinical validity and external data 

As discussed previously, the visual inspection and the AIC/BIC tests share the crucial 

limitation of only being informative regarding the relative fit of the parametric models 

to the observed data. Despite containing useful insights, they do not provide 

information about the suitability of a parametric model for the time period beyond the 

duration of trial follow-up. In other words, the tests described in a. and b. only address 

the internal validity of the fitted models, but they do not allow for any consideration 

about the external validity of these models. 

While the internal validity of a parametric model may be especially informative when 

survival data are fairly complete and the extrapolated portion of the parametric model 

should contribute little to the overall mean area under the curve, when the survival 

data require meaningful extrapolation it is important to validate model predictions by 

assessing the plausibility of the extrapolated portions of the parametric survival 

models. This could be done through the use of external data and/or clinical expert 

opinion. 

External data used for judging upon the parametric model extrapolations could come 

from another clinical trial in a similar patient group with longer follow-up data or 

from long-term registry data for the relevant patient group. When these data are not 

available, the clinical validity of the long-term survival extrapolations could be 

informed by clinical expert opinion and biological plausibility. These approaches 

could and should be complementary. 
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As stated in our paper, we used patient-level data on the variables identified in the 

study by Pocock et al. 2013 as significant independent predictors of mortality in heart 

failure. This study included individual data on 39,372 patients with heart failure and it 

predicted 1-year and 3-year probabilities of death for different risk scores based on 

the independent predictors for mortality. As such, for each of those risk scores there is 

a correspondence between the 1-year and the 3-year probabilities of death, as shown 

in Figure 5.7. 

 

Figure 5.7 – Predicted 1-year and 3-year probabilities of death according to risk score (from: Pocock et al. 2013) 

Using the Kaplan-Meier method, the 1-year probability of death in our model 

population was estimated to be 0.378 for the UC intervention and 0.238 for the EWS 

intervention. As such, we can infer on the 3-year probability of death assuming that 

our observed mortality corresponds to a determined risk score. Using the results 

reported by Pocock et al. 2013, we can match between the 1-year and 3-year probability 

of death and assume that the 3-year probability of death for our model population 

would fall between 0.692 and 0.725 for the UC and between 0.490 and 0.523 for EWS. 

The matching between the dying probabilities is highlighted in Figure 5.7 for UC and EWS 

in solid and dash, respectively. 

We can then extract the predicted 3-year (1095.75 days) probability of death for each 

of the parametric survival models used for the UC and the EWS (see Table 5.15).  
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Table 5.15 – Estimated 3-year probability of death from the parametric survival models 

Parametric model UC EWS 

Exponential 0.734 0.520 

Weibull 0.721 0.508 

Log-normal 0.622 0.451 

Log-logistic 0.652 0.482 

Gompertz 0.650 0.445 

Generalised gamma 0.596 0.436 

 

From the results above, comparing to the predicted 3-year probability of death, it is 

fair to say that the parametric model that better estimates long-term survival (beyond 

available trial data) for the UC and the EWS is the Weibull (highlighted in bold in Table 

5.15). 

d. Conclusion 

Considering the inconclusive results from the visual inspection and the goodness-of-fit 

to the observed data, both not allowing for making a definite choice of one model over 

another, we relied on the results the clinical validity tests using external data for 

making the Weibull our choice of the parametric model for the base-case analysis. 

It should also be said that we did not have data access to long-term registry data for 

the relevant patient group beyond three years. From the results presented in Figure 

5.6, it is perceptible that survival beyond three years can change according to the 

model chosen. Clinical expert opinion could have been used for informing longer-term 

survival, even though this is extremely fragile evidence that should be used with 

extreme care. Therefore, in order to analyse the impact of the choice of different 

parametric models on the results of the cost-effectiveness model, sensitivity analyses 

should be used. 

5. From parametric survival models to time-to-event estimates 

a. Functions used in survival analysis and how to use them in R 

flexsurv is an available R package for fully-parametric modelling of survival data. The 

package main model-fitting function, flexsurvreg uses the familiar syntax of survreg 

from the standard survival package. 

In order to understand the use of R and its survival packages in our model, we must 

start by examining the most frequently used range of parametric survival 

distributions, their specifications in R, and the hazard shapes they support. We will 

then show how the flexsurv package is used for the parametric regression modelling of 

survival data. 
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The primary quantity of interest in survival analysis is the survival function, defined 

as the probability of survival beyond time 𝑡, 𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1 − 𝐹(𝑡), where 𝑇 is 

a random variable denoting the time at which the event occurs. The survival function 

is the complement of the cumulative distribution function (CDF), 𝐹(𝑡) =  ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
, 

where 𝑓(𝑡) is the probability density function (PDF). 

The hazard function, or the instantaneous rate at which an event occurs at time t given 

survival until time t is given by ℎ(𝑡) =  
𝑓(𝑡)

𝑆(𝑡)
. 

The survival function can also be expressed in terms of the cumulative hazard 

function, H(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 , 𝑆(𝑡) = 𝑒−H(𝑡). 

R functions for the parametric distributions commonly used in survival analysis are 

shown in Table 5.16. The default stats package contains functions for the PDF, CDF, 

and random number generation for many of the distributions, and additional 

functions for the distributions that are not covered by the stats package, as well as the 

hazard functions for all distributions, are provided by the flexsurv package. 

Table 5.16 – R functions for the parametric distributions used in survival analysis (232) 

 PDF CDF Hazard Random sampling 

Exponential stats::dexp stats::pexp flexsurv::hexp flexsurv::rexp 

Weibull 
(AFT) 

stats::dweibull stats::pweibull flexsurv::hweibull stats::rweibull 

Weibull 
(PH) 

flexsurv::dweibullPH flexsurv::pweibullPH flexsurv::hweibullPH flexsurv::rweibullPH 

Gompertz flexsurv::dgompertz flexsurv::pgompertz flexsurv::hgompertz flexsurv::rgompertz 

Gamma stats::dgamma stats::pgamma flexsurv::hgamma stats::rgamma 

Log-normal stats::dlnorm stats::plnorm flexsurv::hlnorm stats::rlnorm 

Log-logistic flexsurv::dllogis flexsurv::pllogis flexsurv::hllogis flexsurv::rllogis 

Generalised 
gamma 

flexsurv::dgengamma flexsurv::pgengamma flexsurv::hgengamma flexsurv::rgengamma 

 

b. Parametrisation of  distributions used in survival analysis in R 

The parameterisation of the above distributions in R is shown in Table 5.17. The 

parameter of primary interest (in flexsurv; by default, also the only parameter that is 

dependent on the covariates) is underlined; this is known as the location parameter 

and it typically determines the mean or location for each of the distributions. The 

other parameters are ancillary parameters that determine the shape, variance, or 

higher moments of the distribution. The ancillary parameters impact the hazard 

function, which can take a variety of shapes depending on the distribution: 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Exponential.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Exponential.html
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/hexp
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Exponential.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Weibull.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Weibull.html
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/hexp
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Weibull.html
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/WeibullPH
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/WeibullPH
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/WeibullPH
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/WeibullPH
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Gompertz
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Gompertz
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Gompertz
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Gompertz
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/GammaDist.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/GammaDist.html
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/hexp
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/GammaDist.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Lognormal.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Lognormal.html
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/hexp
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Lognormal.html
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Llogis
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Llogis
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Llogis
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/Llogis
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/GenGamma
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/GenGamma
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/GenGamma
https://www.rdocumentation.org/packages/flexsurv/versions/1.1.1/topics/GenGamma
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the exponential distribution only supports a constant hazard; 

 the Weibull, Gompertz, and gamma distributions allow for monotonically 

increasing and decreasing hazards; 

 the log-logistic and log-normal distributions support arc-shaped and 

monotonically decreasing hazards; and 

 the generalised gamma distribution allows for an arc-shaped, bathtub-shaped, 

monotonically increasing, and monotonically decreasing hazards. 

c. Parametric survival regression using flexsurv in R 

In flexsurv, survival models are fit to the data using maximum likelihood. Each 

parameter can be modelled as a function of covariates 𝑧, 𝛼𝑙 = 𝑔−1(𝑧𝑡𝛽), where 𝛼𝑙  is 

the 𝑙th parameter and 𝑔−1( ) is a link function (usually log ( ) if the parameter is 

strictly positive, and the identity function if the parameter is defined on the real line). 

By default, flexsurv only uses covariates to model the location parameter, although 

ancillary parameters can be supplied to flexsurvreg() using the anc argument. 

In our study we used flexsurvreg() for the estimating regression models using the 

exponential, Weibull (AFT), log-normal, log-logistic, Gompertz, and generalised 

gamma distributions (passing on the dist argument “exp”, “weibull”, “lnorm”, “llogis”, 

“gompertz”, and “gengamma”, respectively), without supplying ancillary parameters 

onto the function. 

 



 

 

1
3

8
 

C
h

ap
ter 5

 

 

Table 5.17 – Parametrisation of the distributions used in survival analysis (232) 

 PDF CDF Hazard Parameters 

Exponential 𝜆𝑒−𝜆𝑡   1 − 𝑒−𝜆𝑡  𝜆  rate = 𝜆 > 0 

Weibull (AFT)  𝑎

𝑏
 (

𝑡

𝑏
)

𝑎−1
𝑒

−(
𝑡

𝑏
)

𝑎

  1 − 𝑒
−(

𝑡

𝑏
)

𝑎

  
𝑎

𝑏
 (

𝑡

𝑏
)

𝑎−1
  

shape = 𝑎 > 0 

scale = 𝑏 > 0 

Weibull (PH)a 𝑎𝑚𝑡𝑎−1𝑒−𝑚𝑡𝑎
  1 − 𝑒−𝑚𝑡𝑎

  𝑎𝑚𝑡𝑎−1  
shape = 𝑎 > 0 

scale = 𝑚 > 0 

Gompertz 𝑏𝑒𝑎𝑡exp [−
𝑏

𝑎
(𝑒𝑎𝑡 − 1)]  1 − 𝑒𝑥p [ −

𝑏

𝑎
(𝑒𝑎𝑡 − 1)]  𝑏𝑒𝑎𝑡   

shape = 𝑎 𝜖 (−∞, ∞) 

rate = 𝑏 > 0 

Gammab 
𝑏𝑎

Γ(a)
𝑡𝑎−1𝑒−𝑏𝑡   

𝛾(𝑎,𝑏𝑡)

Γ(a)
  𝑓(𝑡)/𝑆(𝑡)   

shape = 𝑎 > 0 

rate = 𝑏 > 0 

Log-normal 1

𝑡𝜎√2𝜋
𝑒−

(𝑙𝑛 𝑡−𝜇)2

2𝜎2   Φ (
ln 𝑡− 𝜇

𝜎
)  𝑓(𝑡) /𝑆(𝑡)  

meanlog = 𝜇 𝜖 (−∞, ∞) 

sdlog = 𝜎 > 0 

Log-logistic 
(

𝑎

𝑏
)(

𝑡

𝑏
)

𝑎−1

(1+(
𝑡

𝑏
)

𝑎
)

2  
1

(1+(
𝑡

𝑏
)

𝑎
)
  1 −

(
𝑎

𝑏
)(

𝑡

𝑏
)

𝑎−1

(1+(
𝑡

𝑏
)

𝑎
)
  

shape = 𝑎 > 0 

scale = 𝑏 > 0 

Generalised gammac 
|𝑄|(𝑄−2)𝑄−2

𝜎𝑡Γ(𝑄−2)
exp [𝑄−2(𝑄𝑤 − 𝑒𝑄𝑤)]  {

𝛾(𝑄−2,𝑢)

Γ(𝑄−2)
 𝑖𝑓 𝑄 ≠ 0

Φ(w) 𝑖𝑓 𝑄 = 0
  𝑓(𝑡)/𝑆(𝑡)  

mu = 𝜇 𝜖 (−∞, ∞) 

sigma = 𝜎 > 0 

Q = 𝑄 𝜖 (−∞, ∞)  

a The proportional hazard (PH) model is a reparameterisation of the accelerated failure time (AFT) model with 𝑚 = 𝑏−𝑎. 

b Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥∞

0
𝑑𝑥 is the gamma function and 𝛾(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡

𝑥

0
 is the lower incomplete gamma function. 

c 𝑤 =
(log(𝑡)−𝜇)

𝜎
; 𝑢 = 𝑄−2𝑒𝑄𝑤 . 
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The output of flexsurvreg() for each of the parametric models above consists of the 

estimates for each of the parameters of the distribution (see column “Parameters” in 

Table 5.17) and for the coefficients of each of the covariates included in the model (see 

Table 5.10). The output of flexsurvreg() also provides the lower and upper 95% 

confidence intervals and standard errors for all the aforementioned estimates. These 

measures of dispersion are crucial for running the probabilistic sensitivity analysis. 

As an example, the results of the regression model transformed to the real line for the 

Weibull distribution is shown in Table 5.18. The details on how to obtain the location 

and the ancillary parameters from these results will be explained in the following 

section. 

Table 5.18 – Results from flexsurvreg() for the parametric survival model using the Weibull distribution for death 

Parameter/coefficient Estimate Lower 95% CI Upper 95% CI Standard error 

shape 0.127 -0.068 0.322 0.100 

scale 7.516 6.585 8.447 0.475 

intervention 0.626 0.178 1.074 0.229 

ejection fraction 1.441 -0.471 3.354 0.976 

age -0.303 -1.360 0.754 0.539 

sbp 0.902 0.209 1.596 0.354 

bmi 0.441 0.147 0.735 0.150 

creatinine -0.341 -0.534 -0.148 0.098 

nyha.class.2 -0.121 -0.758 0.516 0.325 

nyha.class.3 -0.460 -1.107 0.188 0.330 

nyha.class.4 -0.478 -1.353 0.396 0.446 

gender -0.260 -0.850 0.330 0.301 

smoker 0.130 -0.700 0.960 0.424 

diabetes -0.268 -0.734 0.198 0.238 

copd -0.119 -0.609 0.372 0.250 

recent.diagnosis 0.251 -0.213 0.714 0.237 

no.beta.blocker -0.438 -0.896 0.020 0.234 

no.ace -0.105 -0.601 0.391 0.253 

age.ef -0.411 -2.452 1.630 1.041 

sbp.ef -1.332 -2.784 0.119 0.741 
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n = 252,  Events: 75,  Censored: 177 

Total time at risk: 89965 

Log-likelihood = -563.6952, df = 20 

AIC = 1167.39 

 

d. Using parameter and coefficient estimates for calculating the moments of 

the distributions 

As an example, we will show how to calculate the moments of the Weibull parametric 

model for estimating death for any given patient. 

The function coef() applied to a flexsurv object returns a numeric vector β =

(β1, β2, … , βn), where β1, β2, … , βn are the estimates for the parameters and the 

coefficients of the covariates in the model, i.e. the sequence of numbers shown in the 

column “estimate” in Table 5.18. Also, in the context of the discrete event simulation 

we can create a numeric vector Z = (Z1, Z2, … , Zn), where Z1, Z2, … , Zn are the values 

for a the patient characteristics which match the covariates included in the parametric 

model (continuous variables must be normalised; see notes in Table 5.10). 

As previously discussed, we only used covariates to model the location parameter. 

Additionally, since both parameters in the Weibull distribution are bound to be 

positive, they are estimated on the log scale and must be transformed before they are 

passed on R functions for the parametric distributions. 

We can thus calculate the survival function for a patient with the characteristics 

described by vector Z though calculating the moments of the Weibull distribution as 

follows: 

 shape – the result of applying the natural exponential function to the shape 

estimate presented in the model results (see Table 5.18). Since shape is an 

ancillary parameter in the Weibull distribution it is not modelled using the 

covariates and it is unaffected by the patient characteristics. 

 scale – the result of applying the natural exponential function to the sum of the 

scale estimate presented in the model results (see Table 5.18) to the sum of 

products between the vector 𝑍 and the elements of the vector 𝛽 for the 

corresponding coefficient estimates for each of the patients characteristics in 𝑍. 

For example, a patient with the individual characteristics show in Table 5.19 would 

have the following moments for the Weibull distribution describing her survival 

function: 

𝒔𝒉𝒂𝒑𝒆 = exp (0.127) =  𝟏. 𝟏𝟑𝟓𝟒  
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𝒔𝒄𝒂𝒍𝒆 = exp (7.516 + 0 × 0.626 + 1.180 × 1.441 + (−0.643) × (−0.303) +

(−1.779) × 0.902 + (−1.447) × 0.441 + (−0.918) × (−0.341) + 0 × (−0.121) + 1 ×

(−0.460) + 0 × (−0.478) + 0 × (−0.260) + 0 × 0.130 + 0 × (−0.268) + 0 ×

(−0.119) + 0 × 0.251 + 1 × (−0.438) + 0 × (−0.105) + 0.563 × (−0.411) +

(−0.154) × (−1.332) = exp (6.557) = 𝟕𝟎𝟒. 𝟏𝟓𝟔𝟏  

Table 5.19 – Individual patient characteristics of a random patient 

Covariate Value Definition 

intervention 0 EWS = 1; UC = 0 

scale(ejection.fraction) 1.180 Ejection fraction (%); normalised 

scale(age) -0.643 Age (years); normalised 

scale(sbp) -1.779 Systolic blood pressure (mmHg) ; normalised 

scale(bmi) -1.447 
Body mass index calculated as weight/height2 (kg/m2) ; 
normalised 

scale(creatinine) -0.918 Serum creatinine (µmol/l) ; normalised 

(nyha.class)2 0 NYHA class 2 (Yes= 1; No = 0) 

(nyha.class)3 1 NYHA class 3 (Yes= 1; No = 0) 

(nyha.class)4 0 NYHA class 4 (Yes= 1; No = 0) 

gender 0 Male = 1, Female = 0 

smoker 0 Smoker = 1; Non-smoker = 0 

diabetes 0 Diabetic = 1; Non-diabetic = 0 

copd 0 COPD present = 1; No COPD = 0 

recent.diagnosis 0 Diagnosis < 18 months = 1; Diagnosis > 18 months = 0 

no.beta.blocker 1 
Without beta-blocker medication = 1; On beta-blocker 
medication = 0 

no.ace 0 
Without ACE inhibitor medication = 1; On ACE inhibitor 
medication = 0 

scale(age.ef) 0.563 
Interaction between age and ejection fraction (product of 
variables above); normalised 

scale(sbp.ef) -0.154 
Interaction between systolic blood pressure and ejection 
fraction (product of variables above); normalised 

All continuous variables are normalised, in order to be in the same scale as covariate estimates 

 

Please note that the procedure described above can be used for calculating the 

parameters for any of the distributions used in the survival analyses. However, there 

are crucial things to remember when calculating these parameters: 
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 The covariates are only used to model the location parameter (underlined in 

Table 5.17). The values for the covariates should only be used for calculating 

these parameters. 

 All parameters bound to be strictly positive (see column “Parameters” in Table 

5.17) are estimated on the log scale. In order to find the true value for the 

parameter that is used by the R functions, the estimates from flexsurvreg() must 

be converted using the natural exponential function. 

 Parameters that can take any real value do not need to be transformed in any way. 

For instance, when using the log-normal distribution, the meanlog parameter is 

by adding the coefficient found for meanlog to the sum of products between the 

patient characteristics and the corresponding coefficient estimates for each of 

those characteristics. 

e. Estimating time-to-event 

The graphical representation of the survival function using a Weibull distribution with 

parameters 𝑠ℎ𝑎𝑝𝑒 = 1.1354 and 𝑠𝑐𝑎𝑙𝑒 = 704.1561 – found in the example from the 

previous section – is plotted through the code curve((1-pweibull(x, shape=1.1354, scale 

= 704.1561)), xlim = c(0,3652.5), where xlim is the argument which determines that the 

x-axis, representing time in days, will have an interval between 0 and 3652.5 days (10 

years). The resulting plot is shown in Figure 5.8. Note this represents the survival 

function of a patient with the characteristics shown in Table 5.19. 

Time-to-event is estimated by replacing 𝑆(𝑡) in the survival equation (see column 

“CDF” in Table 5.17) by a random number drawn from a uniform distribution over the 

interval [0,1](𝑈(0; 1)) and solving it for 𝑡, where 𝑡 is time-to-death. R easily does it 

through using the code qweibull(runif (1), shape = 1.1354, scale = 704.1561), where 

runif(1) gives the random number between 0 and 1 that should replace 𝑆(𝑡) in the 

survival equation and qweibull computes the quantile function of the Weibull 

distribution. 

The example where 𝑆(𝑡) = 0.35 is shown graphically in dash in Figure 5.8. The 

intersection with the survival curve and the projection on the x-axis corresponds to 

the estimated time-to-death (734.96 days). The exact time-to-death is given by code 

qweibull(1-0.35, shape = 1.1354, scale = 704.1561). 
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Figure 5.8 – Plot of the survival function using the Weibull distribution with parameters set by the user 

It is worth mentioning that time-to-death calculations can be performed for any of the 

other discussed distributions, simply by replacing pweibull and qweibull with the 

corresponding functions for the parametric distributions as per Table 5.16, and by 

using the respective arguments for the parameters in those functions (see column 

“Parameters” in Table 5.17). 

f. Probabilistic sensitivity analysis 

Probabilistic sensitivity analysis was implemented as a double loop: an inner loop, in 

which a number of patients are sampled with replacement from the baseline 

population, and an outer loop, in which values of the input parameters of the model 

are randomly drawn. 

For each of the outer loop runs, it is necessary to consider the variability observed in 

the parametric regression models, for the parameters estimates and for the covariate 

coefficient estimates. 

All the steps for estimating time-to event are followed as described above, except for 

the numeric vector β = (β1, β2, … , βn), where β1, β2, … , βn are the estimates for the 

parameters and the coefficients of the covariates in the model. The vector β is 

extracted by the function mvtnorm::rmvnorm(1,coef(surv.model),vcov(surv.model)), 

where surv.model is a flexsurvreg object representing the survival model used in the 

calculations. This function belongs to the mvtnorm package and provides estimates for 
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a multivariate normal distribution taking into account the covariance matrix of the 

parameter and coefficient estimates. 

Appendix 5.1-B – Time-to-hospitalisation 

This appendix shows the survival analyses results for time-to-hospitalisation. As 

stated in the beginning of Appendix 5.1, the detailed description of the performed 

analyses can be found in Appendix 5.1-A. 

It is also worth mentioning that hospitalisation – the event of interest in these survival 

analyses – refers to the first hospitalisation, while subsequent hospitalisations are 

assumed to follow the same distribution as the first hospitalisation. 

1. Kaplan-Meier estimates 

The KM estimate for hospitalisation for the usual care (UC) and the early warning 

system (EWS) interventions is presented in Figure 5.9. 

 

Figure 5.9 – Kaplan-Meier estimates for hospitalisation 

2. Survival curves difference 

a. log-rank or Mantel-Haenszel test 

Table 5.20 presents the results of the log-rank or Mantel-Haenszel test for 

hospitalisation. 
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Table 5.20 – log-rank or Mantel-Haenszel test for hospitalisation 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

UC 85 54 50.2 0.283 0.412 

EWS 167 109 112.8 0.126 0.412 

Chisq = 0.4 on 1 degrees of freedom, p = 0.5 

 

The results do not show a statistically significant difference between the survival 

curve of UC and EWS, suggesting that there is no difference in hospitalisation patterns 

between the interventions. 

b. Peto & Peto modification of the Gehan-Wilcoxon test 

Table 5.21 shows the results of the Peto & Peto modification of the Gehan-Wilcoxon 

test. 

Table 5.21 – Peto & Peto modification of the Gehan-Wilcoxon test for hospitalisation 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

UC 85 37.3 34.3 0.257 0.513 

EWS 167 71.6 74.6 0.118 0.513 

Chisq = 0.5 on 1 degrees of freedom, p = 0.5 

 

The results do not show a statistically significant difference between the survival 

curve of UC and EWS, suggesting that there is no difference in hospitalisation patterns 

between the interventions. 

 

3. Cox proportional hazards model 

a. Parameter estimation 

We fist estimated the hazard ratio between the interventions by fitting a Cox 

proportional hazards model where the intervention was the only covariate (see 

results in Table 5.22). 

Table 5.22 – Cox proportional hazards regression model results for hospitalisation (intervention only) 

covariate exp(coefficient) Standard error P-value 

intervention 0.899 0.167 0.523 

n = 252, number of events = 163 

Likelihood ratio test = 0.4 on 1 df, p = 0.5255 
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The results of this model show a hazard ratio between the EWS and UC of 0.899. In 

other words, a patient who is treated with the EWS has a 10.1% decrease on the 

hazard of being hospitalised when compared to the UC intervention. The hazard ratio, 

however, is not statistically significant. 

We subsequently estimated the impact of multiple covariates in survival by running 

another regression model. The definition of the covariates used in the Cox 

proportional hazards model is presented in Table 5.10. The results of the regression 

model for hospitalisation are shown in Table 5.23. 

Table 5.23 – Cox proportional hazards regression model results for hospitalisation 

covariate exp(coefficient) Standard error P-value 

intervention 0.964 0.176 0.834 

ejection.fraction 3.436 0.635 0.052 

age 1.894 0.325 0.05 

sbp 1.063 0.265 0.817 

bmi 1.077 0.09 0.411 

creatinine 1.273 0.08 0.003 

(nyha.class)2 1.345 0.234 0.206 

(nyha.class)3 1.567 0.249 0.072 

(nyha.class)4 2.253 0.373 0.029 

gender 1.319 0.224 0.216 

smoker 1.063 0.278 0.827 

diabetes 1.02 0.175 0.908 

copd 1.126 0.189 0.53 

recent.diagnosis 0.8 0.174 0.199 

no.beta.blocker 1.713 0.176 0.002 

no.ace 0.691 0.225 0.1 

age.ef 0.275 0.622 0.038 

sbp.ef 0.855 0.572 0.784 

n = 252, number of events = 163 

Concordance= 0.64 (se = 0.022) 

Likelihood ratio test = 40.56 on 18 df, p = 0.002 

Wald test = 40.54 on 18 df, p = 0.002 

Score (logrank) test = 42.11 on 18 df, p = 0.002 
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In our model, there was a statistically significantly association between older patients, 

patients who were not on beta blocker treatment, and patients with higher levels of 

creatinine and an increased chance for being hospitalised. Although being treated with 

the EWS reduced the chance of being hospitalised when compared to the UC 

intervention, this relationship was not statistically significant. 

b. Proportional hazards assumption test 

The results of the cox.zph() function for our models are shown in Table 5.24 and Table 

5.25, for intervention as the only covariate and the full set of covariates, respectively. 

Table 5.24 – Schoenfeld residuals of the Cox proportional hazards model covariates for hospitalisation (intervention only) 

covariate chisq df P-value 

factor(intervention) 0.12 1 0.73 

GLOBAL 0.12 1 0.73 

 

Table 5.25 – Schoenfeld residuals of the Cox proportional hazards model covariates for hospitalisation 

covariate chisq df P-value 

factor(intervention) 0.170476102 1 0.679689027 

scale(ejection.fraction) 7.180377709 1 0.007370519 

scale(age) 0.025177383 1 0.873925862 

scale(sbp) 0.20188116 1 0.653206694 

scale(bmi) 0.246169044 1 0.619785583 

scale(creatinine) 0.464406238 1 0.49557188 

factor(nyha.class) 2.283562114 3 0.515677282 

factor(gender) 1.013978369 1 0.313951628 

factor(smoker) 0.622900127 1 0.429971618 

factor(diabetes) 1.316978403 1 0.251135054 

factor(copd) 0.87328747 1 0.350046803 

factor(recent.diagnosis) 0.483061493 1 0.487038849 

factor(no.beta.blocker) 0.53585546 1 0.464155452 

factor(no.ace) 2.078203506 1 0.149415939 

scale(age.ef) 5.292681555 1 0.02141522 

scale(sbp.ef) 5.234398519 1 0.022144464 

GLOBAL 19.01507495 18 0.390895718 
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From the results in Table 5.25 we can observe that the test is not statistically 

significant for most of the covariates and that the global test is also not statistically 

significant. A lack of statistical significance is also observed in the test for the model 

with the intervention being the only covariate (Table 5.24). We can therefore assume 

that the proportional hazards assumption holds. 

c. Influential observations test 

Figure 5.10 and Figure 5.11 show the results of the influential observations test for 

our models, for intervention as the only covariate and the full set of covariates, 

respectively. 

The above index plots show that comparing the magnitudes of the largest dfbeta 

values to the regression coefficients suggests that most of the observations are not 

much influential individually, even though some outliers (larger dfbeta values) can be 

spotted for some covariates in the model with the full set of covariates (Figure 5.11). 

 

Figure 5.10 – dfbeta residuals for the Cox proportional hazards model for hospitalisation with intervention as the only 
covariate 
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Figure 5.11 – dfbeta residuals for the Cox proportional hazards model covariates for hospitalisation 

d. Log cumulative hazards 

Figure 5.12 shows an illustration of a log cumulative hazard plot for the Kaplan Meier 

curves for hospitalisation previously shown in Figure 5.9. The graph demonstrates 

that there are no seemingly changes in the hazard during the trial duration and that 

hazards are reasonably proportional between the two treatment groups. This 

indicates that a single parametric model may be suitable to model survival, including 

an exponential model. 
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Figure 5.12 – log cumulative hazards, by treatment (death) 

4. Parametric survival modelling 

a. Visual inspection 

The graphical representation of the fitting of the exponential, Weibull, Gompertz, log-

logistic, log-normal, and generalised gamma models to time-to-hospitalisation data is 

shown in Figure 5.13 and Figure 5.14. Although we are using the intervention as a 

covariate and assuming proportional hazards, we are showing the graphs separately 

for the UC and for the EWS (Figure 5.13 and Figure 5.14, respectively), for the purpose 

of clarity. 

The visual inspection analysis suggests a worse fit of the exponential and the Weibull 

models to the data, as they do not seem to follow the noticeable flattening of the 

Kaplan-Meier curves at the end of trial follow-up. 
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Figure 5.13 – Fitting of parametric survival models to time-to-hospitalisation (UC) 

 

 

Figure 5.14 – Fitting of parametric survival models to time-to-hospitalisation (EWS) 
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b. Goodness-of-fit to the observed data 

The results of the goodness-of-fit tests for time-to-hospitalisation using the AIC and 

BIC are presented in Table 5.26. 

Table 5.26 – Goodness-of-fit tests for parametric survival modelling of hospitalisation 

Parametric model AIC BIC 

Exponential 2194.65 2261.71 

Weibull 2190.86 2261.45 

Log-normal 2187.67 2258.26 

Log-logistic 2188.74 2259.33 

Gompertz 2187.52 2258.11 

Generalised gamma 2188.61 2262.73 

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion. 

 

As suggested by the visual inspection, the higher values for the AIC and the BIC 

corroborate the worse fit of the exponential and the Weibull models to the observed 

data. The higher value for the generalised gamma in the BIC can be explained by the 

extra parameter used for defining this distribution. 

c. Clinical validity and external data 

The model using the Gompertz distribution reaches an early plateau (around that 

determines that approximately 20% of the patients are not hospitalised, which seems 

very unlikely. If a patient is not hospitalised, it should be because of the competing 

risk of dying and not because of the extrapolation of the survival curve. 

We could not find in the literature information for the first hospitalisation, as this 

would imply having access to patient-level data, which should come from a very 

similar population in order to be comparable. 

Since we used the time to first hospitalisation and we assumed that the time to a 

subsequent hospitalisation follows the same distribution – as subsetting the data for 

the patients who experienced two or more hospitalisations would lead to very low 

sample sizes –, we used the hospitalisation rate found in the trial and compared it to 

the hospitalisation rates found in the model for simulations ran for the same set of 

1000 patients using each of the parametric distributions used for the extrapolation of 

time-to-hospital and the Weibull distribution as the parametric distribution for time-

to-death. For this exercise, we set the time-to-outpatient visit to 1 year, as we would 

like to have a periodic update of the patient characteristics. The hospitalisation rate 

per follow-up year found in the trial for was 1.254 for UC and 1.218 for EWS; the 

results from the simulations can be found in Table 5.27. 
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Table 5.27 – Hospitalisation rates from simulations with different parametric distributions 

Parametric model 
Hospitalisation rate Difference from trial 

UC EWS UC EWS 

Exponential 1.270 1.266 1.23% 3.98% 

Weibull 1.282 1.288 2.20% 5.75% 

Log-normal 1.370 1.312 9.24% 7.75% 

Log-logistic 1.337 1.296 6.59% 6.46% 

Gompertz 1.299 1.326 3.53% 8.88% 

Generalised gamma 1.349 1.311 7.56% 7.70% 

 

d. Conclusion 

Considering the relatively small differences between the hospitalisation rates found in 

the simulations and the ones found in the trial, we relied on the considerations made 

in the visual inspection and the goodness-of-fit to the observed data for choosing the 

log-normal for the base-case analysis in our model, as it has the lower AIC and BIC 

values (after the Gompertz). However, in order to analyse the impact of the choice of 

different parametric models on the results of the cost-effectiveness model, sensitivity 

analyses should be used. 

Appendix 5.2 – Generalised Linear Model (logistic regression) for 

calculating the probability of dying in hospital 

A Generalised Linear Model (GLM) is a general type of regression model that can be 

applied to a very wide variety of response variables. GLMs are important because they 

provide a natural way to analyse certain types of data such as discrete data that might 

not be modelled well using linear regression. GLMs differ from linear models in three 

ways: 

 The distribution of the response is modelled using a distribution other than the 

normal distribution. 

 The variance of the response is not assumed to be constant but can vary as a 

function of the mean response. 

 The relationship between the mean response and the predictor variables is 

allowed to be non-linear. 

A GLM consists of two: (1) the link function and (2) the variance function. The link 

function describes how the mean response is modelled as a function of the 

explanatory variables, while the variance function specifies a certain form for the 

variances of the response variable. 



Chapter 5 

154 

The link function is nothing more than a transformation applied to the mean response 

on the left side of the regression model equation. In general, a GLM specifies the 

relationship between the mean response and explanatory variables (covariates) as: 

𝑔(𝜇) = 𝛽0 + 𝛽1𝑍1 + ⋯ + 𝛽𝑛𝑍𝑛 , where 𝑔 is the link function, 𝜇 the mean response, 

the 𝛽0 is the intercept coefficient, and 𝛽1, … , 𝛽𝑛  the coefficients for the covariables, 

which are represented by  𝑍1, … , 𝑍𝑛. Please note that the right side of the equation is 

the same for all regression models. 

One of the most commonly used GLMs is the logistic regression model, which is 

characterized by the following features: 

 The response variable 𝑌 is a binary indicator variable (takes on values 0 or 1). 

 The relationship between the mean and the variance of the response has the form: 

𝑣𝑎𝑟(𝑌) = 𝑝(1 − 𝑝), where 𝑝 = 𝑃(𝑌 = 1). 

 The relationship between 𝑝 and the predictor variables is based on the log-odds 

(also called logit) transformation: 𝑙𝑜𝑔
𝑝

1−𝑝
= 𝑥. 

The logistic regression model is used when the quantification of a treatment effect 

measure is done with an odds ratio, and it is widely used because the fitted values will 

always lie in the interval [0; 1], which is extremely handy when we are dealing with 

probabilities. 

To show the fact above, let 𝑙𝑜𝑔
𝑝

1−𝑝
= 𝑥. If so, then =

𝑒𝑥

1+𝑒𝑥 , which lies in (0,1) for all 

values of 𝑥 (see Figure 5.15). 

 

Figure 5.15 – Probability (p) as a function of the log-odds (x) 
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In order to simulate the probability of dying in hospital, a logistic regression model 

was used to estimate the log-odds for having the outcome (dying in hospital) 

depending on patient characteristics. The patient characteristics are the covariates 

used to explain the outcome (represented by β0 + β1Z1 + ⋯ + β𝑛Z𝑛 above). 

 

Table 5.28 presents the covariates used for explaining death in hospital. They were 

chosen because they represent the individual patient characteristics that were 

considered to have an effect on the probability of a given patient dying in hospital. 

Either because of their impact on the heart functionality (myocardial infarction and 

chronic atrial fibrillation), or because they are associated with a decrease in general 

health status of the patient – linked with the pathophysiology of the underlying 

disease (age, gender, and number of previous hospitalisations) or comorbidities 

associated with described complications in heart failure patients (diabetes and 

chronic obstructive pulmonary disease).  

Table 5.28 – Covariates used in the logistic regression for explaining death in hospital 

Covariate Variable type Definition 

age Continuous Age (years) 

gender Categorical Male = 1, Female = 0 

myocardial.infarction Categorical 
Previous history of myocardial infarction = 1; 
No previous history of myocardial infarction= 0 

chronic.atrial.fibrillation Categorical 
Previous history of chronic atrial fibrillation = 1; 
No previous history of chronic atrial fibrillation 
= 0 

diabetes Categorical Diabetes present = 1; No diabetes = 0 

copd Categorical COPD present = 1; No COPD = 0 

previous.hosp Continuous 
Number of previous hospitalisations simulated 
in the model 

Categorical variables in R are referred to as factors. In the results of the model shown in the R 
console, the covariate intervention is labelled as factor(gender)1, meaning that the results for 
the coefficients are given for a value of 1 for the covariate gender (i.e. male patient). 

For the purpose of simplifying the results shown, factor was omitted from the covariates. 

 

The model used can therefore be formalised by the expression: 𝑙𝑜𝑔
𝑝

1−𝑝
= 𝛽0 +

𝛽1𝑎𝑔𝑒 + 𝛽2𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛽3𝑚𝑦𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙. 𝑖𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛 + 𝛽4𝑐ℎ𝑟𝑜𝑛𝑖𝑐. 𝑎𝑡𝑟𝑖𝑎𝑙fibrillation +

𝛽5𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 + 𝛽6𝑐𝑜𝑝𝑑 + 𝛽7𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠. ℎ𝑜𝑠𝑝, where 𝑝 is the probability of dying in 

hospital. The results of this model are presented in Table 5.29.  
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Table 5.29 – Results of the logistic regression for estimating the probability of dying in hospital 

 Coefficient estimate Standard error P-value 

(Intercept) -3.822 0.383 < 0.001 

age 0.022 0.15 0.077 

gender -0.059 0.345 0.864 

myocardial.infarction 0.099 0.276 0.721 

chronic.atrial.fibrillation 0.196 0.273 0.472 

diabetes 0.143 0.26 0.582 

copd 0.314 0.265 0.235 

previous.hosp 0.290 0.253 0.251 

Deviance Residuals 

Min 1Q         Median 3Q Max 

-0.7689 -0.5723         -0.5084 -0.4223 2.4579 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 456.23 on 586 degrees of freedom 

Residual deviance: 447.91 on 579 degrees of freedom 

AIC: 463.91 

Number of Fisher Scoring iterations: 5 

 

The column “Coefficient estimate” represents the values of the different betas in the 

expression formalised above, and their exponentiated value can be interpreted as 

odds ratios. 

For calculating the log-odds of a specific patient, we can use the coefficients and the 

individual characteristics of a patient. For example, the log-odds for patient A, who is a 

60 year-old male without previous history of myocardial infarction and chronic atrial 

fibrillation, is diabetic, does not have COPD, and has not been hospitalised previously 

in the simulation are calculated as follows: 

𝑙𝑜𝑔
𝑝

1−𝑝
= −3.822 + 0.022 × 60 − 0.059 + 0.099 × 0 + 0.196 × 0 + 0.143 × 1 +

0.314 × 0 + 0.290 × 0 =  −2.418  

In order to obtain the probability of dying in hospital, we must covert the log-odds 

using the formula, 𝑝 =
𝑒𝑥

1+𝑒𝑥. Thus: 

𝑝 =
𝑒−2.418

1+𝑒−2.418 = 0.0818  

The probability of dying in hospital for patient A is 8.18%. 
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Please note that we can also get to this value in R through the code: 

predict(p.death.hosp, newdata = data.frame(age = 60, gender = 1, myocardial.infarction 

= 0, chronic.atrial.fibrillation = 0, diabetes = 1, copd = 0, previous.hosp = 0), 

type="response") 

0.08248722 

The slight difference between the two calculations has to do with rounding, as R does 

not round when using the function predict() and we rounded our coefficients to the 

third decimal place in our calculations above. 

As another example, please take patient B, who is 85 year-old female with previous 

history of myocardial infarction and chronic atrial fibrillation. She is diabetic, has 

COPD, and has not been hospitalised previously in the simulation. Her probability of 

dying in hospital is 23.37%, as shown by the result of the function predict() in R: 

predict(p.death.hosp, newdata = data.frame(age = 85, gender = 0, myocardial.infarction 

= 1, chronic.atrial.fibrillation = 1, diabetes = 1, copd = 1, previous.hosp = 0), 

type="response") 

0.2336884. 

The incorporation of the results of the logistic regression in the model is done through 

the following steps: 

1. Every time the model is processing the event hospitalisation, the patient 

characteristics at the time of simulation are extracted. 

2. The probability of dying in hospital is calculated for that patient using the 

characteristics extracted in 1 (see examples above). 

3. A random number is drawn from a uniform distribution over the interval [0, 1] 

using the function runif(). 

4. If the number generated in 3 is lower than the probability of dying in hospital 

found in 2, the simulated patient dies and death is the next processed event; if it is 

higher, the simulation continues as per the model structure. Using the examples 

above, if the number drawn in 3 would be 0.156543, patient A would not die in 

the simulation, unlike patient B, who would die, as 0.156543 < 0.2336884. 
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Online Appendix 5.1 – Assessment of the Validation Status of 

Health-Economic decision models tool (AdViSHE) 

Available at: 

https://drive.google.com/file/d/1GKsjtNznsLacTYS-

xgHgF_t2rLDiaBqu/view?usp=sharing 

 

https://drive.google.com/file/d/1GKsjtNznsLacTYS-xgHgF_t2rLDiaBqu/view?usp=sharing
https://drive.google.com/file/d/1GKsjtNznsLacTYS-xgHgF_t2rLDiaBqu/view?usp=sharing
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Abstract 

Background: Heart failure (HF) is a major health concern associated with significant 

morbidity, mortality, and reduced quality of life for patients. Home telemonitoring 

(HTM) facilitates frequent or continuous assessment of disease signs and symptoms, 

while it has been shown to improve compliance by involving patients in their own 

care and to prevent emergency admissions by facilitating early detection of clinically 

significant changes. Diagnostic algorithms (DAs) are predictive mathematical 

relationships that make use of a wide range of collected data for calculating the 

likelihood of a particular event happening and utilise this output for prioritising 

patients with regards to their treatment. 

Objective: Assessing the cost-effectiveness of HTM and a DA in the management of 

heart failure in the Netherlands. Three interventions were analysed: usual care (UC), 

HTM, and HTM+DA. 

Methods: A previously published discrete event simulation model was used. The 

base-case analysis was performed according to the Dutch guidelines for economic 

evaluation. Sensitivity, scenario, and value of information analyses were performed. 

Particular attention was given to the cost-effectiveness of the DA at various levels of 

diagnostic accuracy of event prediction and to different patient subgroups. 

Results: HTM+DA extendedly dominates HTM and it has a deterministic incremental 

cost-effectiveness ratio versus UC of €27,712 per quality-adjusted life year (QALY). 

The model showed robustness in the sensitivity and scenario analyses. HTM+DA had a 

96.0% probability of being cost-effective at a €80,000/QALY threshold. An optimal 

point for the threshold value for the alarm of the DA in terms of its cost-effectiveness 

was estimated. NYHA class IV patients were the subgroup with the worst cost-

effectiveness results versus UC, while HTM+DA was found to be the most cost-

effective for patients <65 years-old and for patients in NYHA class I. 

Conclusions: Although increased costs of adopting HTM and DA in the management 

of HF may seemingly be an additional strain on scarce health care resources, the 

results of this study demonstrate that, by increasing patient life expectancy by 1.28 

years and reducing their hospitalisation rate by 23% when compared to UC, the use of 

these technologies may be seen as an investment, as HTM+DA extendedly dominates 

HTM and is cost-effective versus UC at normally accepted thresholds in the 

Netherlands.  



Chapter 6 

162 

Introduction 

Heart failure (HF) is a major health concern associated with significant morbidity, 

mortality, and reduced quality of life for patients. Approximately 1–2% of the adult 

population in the West has HF and its prevalence rises above 10% for the population 

with 70 years of age and older (16). In 2019, the Dutch prevalence of HF was 

estimated to be 238,700, with an incidence of 37,400 new cases and a total of 7,264 

deaths due to HF (233). Accordingly, HF is responsible for elevated health care costs 

in the Netherlands: €817 million in 2017, corresponding to 8% of the costs for 

cardiovascular diseases and around 1% of the total health care expenditure for that 

year (233). From the total HF costs, 45% are attributable to care provided in the 

hospital and 43% are spent on care for the elderly (long-term institutional elderly 

care, assisted-living facilities for the elderly, and home care.) (233). 

Remote patient monitoring is a patient management approach defined as the use of 

information and communication technologies to monitor and transmit physiological 

data related to patient health status between geographically separated individuals 

(234). Home telemonitoring (HTM) is the particular case in which the monitoring and 

the transmission of data are done from the patients’ home. HTM facilitates frequent or 

continuous assessment of disease signs and symptoms, while it has been shown to 

improve compliance by involving patients in their own care and to prevent emergency 

admissions by facilitating early detection of clinically significant changes (235). The 

use of information and communication technologies in the management of chronic 

diseases has become increasingly important, especially since the COVID-19 pandemic, 

when routine care had to be postponed or replaced by remote alternatives. There is 

evidence showing that HTM can have a positive impact on both mortality and hospital 

admissions (101, 102, 236), while other studies question the effectiveness (103) and 

cost-effectiveness (237) of home-based monitoring systems. 

Diagnostic algorithms (DAs) can be defined as predictive mathematical relationships 

that make use of a wide range of collected data for calculating the likelihood of a 

particular event happening (e.g., death or hospitalisation). DAs use this output for 

prioritising patients with regards to their treatment and through raising alarms that 

trigger follow-up actions if the probability of having the event exceeds a pre-defined 

threshold. Evidence shows that data-driven approaches looking at trends and patterns 

of change in recorded parameters improve the accuracy of detecting disease 

deterioration when compared to clinical decision rules (171, 173, 225, 226). Coupled 

with the fact that large number of parameters associated with events in HF can be 

measured with HTM, it is expected that advanced algorithms with better diagnostic 

performance will result in time efficiencies in analysing the data generated with HTM 

systems and, in that way, improve clinical decision making through raising alerts in a 
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manner that can be intuitively used by clinicians with a high degree of confidence 

(174). However, health care funds are limited and we must deal with the decision of 

allocating scare resources to patient subgroups for which new interventions are most 

beneficial. 

The objective of this study was to assess the cost-effectiveness of HTM and a DA in the 

management of HF in the Netherlands. A base-case analysis was performed and 

structural and parametric uncertainty was assessed through scenario, sensitivity, and 

value of information (VOI) analyses. Further, we focused particularly on the 

assessment of the cost-effectiveness of the DA at different levels of diagnostic 

accuracy of event prediction, i.e. different points of its receiver operating 

characteristic (ROC) curve, as well as on the cost-effectiveness of the interventions 

under analysis for a wide range of patient subgroups. 
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Methods 

Model structure 

The patient-level discrete event simulation (DES) model used for the analysis was 

developed and described in detail elsewhere (238). Unlike other published health 

economic models for HF, this is a singular model that includes a wide range of patient 

characteristics and outcomes. The model consists of a series of regression equations 

describing the statistical associations between the patient characteristics and changes 

in intermediate and final outcomes over time. The time-to-event regression equations 

were estimated using the patient-level data of the Trans-European Network – Home-

Care Management System (TEN-HMS) study (126). The model simulates the time to an 

outpatient visit, hospitalisation and death. Intermediate outcomes generated from the 

model are the number of outpatient visits, hospitalisations, and avoided 

hospitalisations. Final outcomes are the total life years, quality-adjusted life years 

(QALYs), and costs. 

Each patient is simulated for the three interventions included in the cost-effectiveness 

analysis: (i) usual care (UC) – patient management plan implemented by the patient’s 

primary care physician (126), (ii) HTM (as described in the TEN-HMS original 

publication (126)), and (iii) HTM with the addition of a DA (HTM+DA). 

Model population 

In the base-case analysis, patients are randomly sampled (with replacement) from the 

entire population included in the TEN-HMS study (126). The baseline patient and 

disease characteristics of the model population are shown in Table 6.1. This patient 

population is assumed to be representative of the Dutch HF patient population. 

Table 6.1 – Baseline patient and disease characteristics of the model population 

 Baseline characteristics of the starting 
population 

Sample size 426 

Ejection fraction (EF), % (mean) 25.06 

Age, years (mean) 67.56 

Systolic blood pressure (SBP), mm Hg (mean) 114.24 

Body mass index (BMI), kg/m2 (mean) 26.17 

Creatinine, µmol/l (mean) 135.71 

NYHA class 1, % 18.5 

NYHA class 2, % 43.4 
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NYHA class 3, % 31.0 

NYHA class 4, % 7.1 

Gender (male), %  77.5 

Smoker, % 12.2 

Diabetes, % 35.0 

Chronic obstructive pulmonary disease 
(COPD), % 

24.4 

Recent diagnosis, % 43.9 

No beta-blocker medication, % 37.3 

No ACE inhibitor medication, % 18.5 

Myocardial infarction, % 56.8 

Chronic atrial fibrillation, % 26.3 

Abbreviations: ACE, angiotensin-converting enzyme; BMI, body mass index; COPD, chronic 
obstructive pulmonary disease; EF, ejection fraction; NYHA, New York Heart Association; SBP, 
systolic blood pressure. 

 

Dutch cost-effectiveness threshold 

The cost-effectiveness threshold in the Netherlands depends on the burden of disease 

as measured by the fraction of QALYs that people lose relative to the situation in 

which the disease had been absent (proportional shortfall) (239-241). The 

appropriate cost-effectiveness threshold, which represents the societal willingness-to-

pay (WTP) for an additional QALY for that specific patient population, can be 

calculated using the Institute for Medical Technology Assessment Disease Burden 

Calculator (242). 

Base-case analysis 

The base-case analysis was conducted in accordance with the Dutch guidelines for 

economic evaluations in healthcare (210). A societal perspective was adopted, which 

considered costs including all costs inside the healthcare sector, patient and family, 

and other sectors, regardless of who is paying for those costs, productivity losses 

assessed using the friction cost method (81), and future unrelated medical costs. All 

costs are reported in 2020 euros; where 2020 figures were not available, older costs 

were inflated using the general price index from the Dutch Central Bureau of Statistics 

(243). Health outcomes (effects) were presented in life years and QALYs and 

discounted at 4.0%, while costs were discounted at 1.5%. The analysis adopted a 

lifetime time horizon and the model was run for 1,000 patients. An overview of model 
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input parameters is presented in Table 6.2 and explained in detail in the following 

sections. 

Treatment effect of HTM (compared to UC) 

When compared to UC, HTM is modelled to increase time-to-hospitalisation and time-

to-death, while decreasing time-to-outpatient visit. 

The treatment effect of HTM on time-to- hospitalisation and time-to-death is modelled 

through the use of parametric models (exponential, Weibull, log-normal, log-logistic, 

Gompertz, and generalised gamma) fitted to empirical time-to- hospitalisation and 

time-to-death data (Kaplan-Meier curves) for HTM and UC from the TEN-HMS trial 

(126). The models assumed proportional hazards between HTM and UC. In the base-

case analysis, a Weibull distribution was used for extrapolating time-to-death and a 

log-normal distribution for extrapolating time-to-hospitalisation. The distributions 

were chosen according to the recommendations issued by the Decision Support Unit 

commissioned by The National Institute for Health and Clinical Excellence (206). The 

details of the survival analysis can be found in the original publication of the model 

(238). 

When a patient is hospitalised, there is a chance of dying in the hospital. For 

predicting it, we ran a logistic regression where the probability of dying in hospital is 

explained by age, gender, previous history of myocardial infarction and/or chronic 

atrial fibrillation, comorbidities (diabetes and/or COPD), and the number of previous 

hospitalisations. 

Time-to-outpatient visit is a parameter set by the user in the model. Since there is no 

periodic outpatient visit suggested in Dutch or international guidelines – as it is 

recommended that time to the next consultation is scheduled by the accompanying 

physician and based on the clinical status of the patient (11, 12) –, we assumed that 

the time-to-outpatient visit for the population under analysis is properly represented 

by the observations in the TEN-HMS study (126): 2.81 months for UC and 1.69 months 

for HTM-based interventions. This assumption is strengthened by the fact that 161 out 

of the 426 patients (37.8%) included in the TEN-HMS trial were treated in Dutch 

hospitals (126). 
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Table 6.2 – Model input parameters 

Parameter (source) 
 

Probabilistic sensitivity 
analysis 

Deterministic sensitivity analysis 

(95% confidence interval) 
 

Mean value SE Distribution Lower bound Upper bound Observations 

Model settings 
      

Discount rate (costs) (210) 4.0% N/A N/A 0% 8% Dutch EE guidelines 

Discount rate (effects) (210) 1.5% N/A N/A 0% 3% Dutch EE guideline 

Time horizon (210) Lifetime N/A N/A N/A N/A Dutch EE guidelines 

Treatment effect 
      

Time-to-death (distribution) (238) Weibull N/A N/A N/A N/A 
Uncertainty assessed in the 
scenario analyses 

Time-to-hospitalisation (distribution) 
(238) 

Log-normal N/A N/A N/A N/A 
Uncertainty assessed in the 
scenario analyses 

Time-to-outpatient visit (UC, months) 
(126) 

2.81 10% of the mean Normal 2.46 3.13 None 

Time-to-outpatient visit (HTM, months) 
(126) 

1.69 10% of the mean Normal 1.59 1.79 None 

Diagnostic algorithm 
      

Sensitivity (244) 0.52 N/A N/A N/A N/A 
Uncertainty assessed in the 
scenario analyses for the DA 

False positive rate (244) 0.03 N/A N/A N/A N/A 
Uncertainty assessed in the 
scenario analyses for the DA 

Proportion avoidable hospitalisations 
(208) 

50% 20% of the mean Normal 33.6% 66.4% None 

Costs 
      

Outpatient visit (UC) (126, 211) €44.50 20% of the mean Gamma €30.94 €60.08 None 

Outpatient visit (HTM) (126, 211) €43.30 20% of the mean Gamma €30.11 €58.46 None 
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Other HF-related care provider 
contacts (UC) (126, 211) 

€188.38 20% of the mean Gamma €130.98 €254.33 None 

Other HF-related care provider 
contacts (HTM) (126, 211) 

€623.61 20% of the mean Gamma €433.59 €841.93 None 

Hospitalisation (126, 211, 233) €4,404.46 20% of the mean Gamma €3,062.36 €5,946.44 None 

HTM device (per year) (205) €1,257.75 20% of the mean Gamma €1,059.87 €1,469.69 None 

Managing alarm (211) €18.38 20% of the mean Gamma €12.78 €24.81 None 

Drug costs (per year) (126, 245) €286.44 20% of the mean Gamma €199.16 €386.72 None 

Travelling expenses (outpatient visit) 
(126, 211, 246) 

€3.75 20% of the mean Gamma €2.61 €5.06 None 

Travelling expenses (hospitalisation) 
(211, 246) 

€4.68 20% of the mean Gamma €3.25 €6.32 None 

Informal care (per year) (126, 211, 243) €2,098.28 20% of the mean Gamma €1,458.90 €2,832.88 None 

Utilities 
     

 

NYHA class I (205) 0.87976 0.00827 Beta 0.86588 0.89308 None 

NYHA class II (205) 0.71178 0.00944 Beta 0.69615 0.72720 None 

NYHA class III (205) 0.61405 0.01349 Beta 0.59176 0.63614 None 

NYHA class IV (205) 0.49228 0.03032 Beta 0.44243 0.54220 None 

Utility multiplier (outpatient visit) 1 N/A N/A N/A N/A 
Assumption; excluded from 
uncertainty analyses* 

Utility multiplier (hospitalisation) (207) 0.82 10% of the mean Normal 0.69 0.95 None 

Abbreviations: EE, economic evaluation; HTM, home telemonitoring; LY, life year; N/A, not applicable; NYHA, New York Heart Association; QALY, quality-adjusted life year; SE, 
standard error; UC, usual care. 

* Depending on the rate of outpatient visits, positive values may generate higher QALYs when compared to LYs. 
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Treatment effect of the DA (when added to HTM alone) 

To model the treatment effect of adding the DA to HTM we considered the DA as a 

binary test for predicting a hospitalisation. Depending on the threshold value for the 

alarm of the DA to be raised, the DA has a certain sensitivity and specificity. The 

treatment effect of the DA is included in the model through its sensitivity and false 

positive rate (FPR; same as 1 – specificity). 

The sensitivity corresponds to the probability of correctly predicting a hospitalisation 

when that would be the next event to be processed in the model. A hospitalisation is 

avoided in the simulation when it is correctly detected and clinically avoidable, where 

the latter is approximated by the average for potentially preventable hospitalisations 

in HF reported in the literature, which is 50% (208). Thus, assuming the sensitivity of 

the alarm is 0.52 and that 50% of the hospitalisations are clinically avoidable, then 

0.52 x 50% = 26% would be the overall probability of avoiding a hospitalisation. 

FPR represents the proportion of false positive alarms. Hence, if the FPR of the DA 

(with daily alarms) were 0.03 and there were 100 days between the previous and the 

current events simulated in the model, there would be 3 false positive alarms during 

the period between both events. The false positive alarms are included in the model 

through the cost of managing those alarms and they are assumed to have no 

consequences for health outcomes. 

In our study we used the DA developed using a multi-resolution analysis signals for 

diastolic blood pressure and weight collected daily by a non-invasive HTM for 

predicting hospitalisation published elsewhere (244). The sensitivity and FPR in the 

base-case analysis were set to the figures reported in that study: 0.52 and 0.03, 

respectively. 

Outpatient visit costs 

The office visits reported in the TEN-HMS trial discriminated between general 

practitioner (GP), nurse, and specialist visits for both UC and HTM (126). We assumed 

that this partition is representative of the Dutch clinical practice for the population 

under analysis. Through calculating the weighted average between the product of the 

type of visit and its reference price in the Dutch costing manual (211), we estimated 

the costs of an outpatient visit to be €44.50 for UC and €43.30 for HTM (Table 1 in the 

Online Appendix 6.1). 

Costs of other HF-related care provider contacts 

The number and type of health care resources used (emergency room visits, office 

visits, home visits, and telephone calls) during the TEN-HMS trial were reported for 

UC and HTM for 240 follow-up days (126). TEN-HMS data were also assumed to 

represent Dutch clinical practice for the HF management. For estimating the costs of 
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other HF-related care provider contacts we excluded the count on office visits, as 

these were used separately for estimating the cost per outpatient visit (see above). We 

converted the resources used during the follow-up period in the TEN-HMS trial (240 

days) to yearly rates per patient and we multiplied these figures by the cost for the 

resource included in the Dutch costing manual (211). The estimated costs of other HF-

related care provider contacts per year were €188.38 for UC and €623.61 for HTM 

(Table 2 in the Online Appendix 6.1). 

Hospitalisation costs 

The average hospital stay in days in the Netherlands for HF is 8.6 for men and 8.4 for 

women (233). The gender partition of the population included in the TEN-HMS trial 

was 78% men and 22% women (126). Using the average cost of a hospital day from 

the Dutch costing manual (211) and the weighted average of hospital days according 

to gender, we estimated the average costs per hospitalisation at €4,404.46 (Table 3 in 

the Online Appendix 6.1). 

HTM costs 

We used the mid-point of the telemonitoring costs from the range of yearly equipment 

and service fee and the instalment fee (every 5 years) reported elsewhere (205) for 

obtaining an yearly cost estimate of €1,257.75 for HTM. Additionally, we used the cost 

for a GP teleconsultation reported in Dutch costing manual (211) (€18.38) for the cost 

of managing false positive alarms raised by the DA (Table 4 in the Online Appendix 

6.1). 

Drug costs 

The TEN-HMS database contained information about the drugs used by each 

individual patient. Every drug that was reported to have been used in more than 5% 

of the total patients was included in the cost analysis. The daily dose assumptions for 

each drug were obtained from the figures reported elsewhere (247) and confirmed by 

expert opinion. The representativeness of the TEN-HMS trial for the Dutch clinical 

practice for the considered population was discussed above and assumed for the drug 

use. 

The daily drug costs were based on the cheapest option available in the Z-index (245) 

and calculated applying the following formula from the Dutch costing manual (211): 

Drug costs = pharmacists purchase price (Z-index) – clawback (8.3%) + VAT (6%) + 

pharmacy dispensing fee. The pharmacy dispensing fee was included by dividing the 

total fee by the number of units in the considered presentation and multiplying it by 

the number of units taken daily. The costs for insulin therapy were not available in the 

Z-index database and were extracted from the literature (248). 
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The total average drug costs per patient per year were estimated at €286.44 (Table 5 

in the Online Appendix 6.1 shows the breakdown of drug costs included in the model). 

Informal care costs 

The TEN-HMS database contained information on the burden to others reported at 

baseline for 98.6% of patients. Possible answers were: “no”, “very little”, “a little”, 

“some”, “a lot”, and “very much”. These were modelled to correspond to 0%, 2%, 4%, 

6%, 8%, and 10% of time spend on informal care during a 16 hour day, respectively. 

After analysing these data by NYHA class we determined that there were no 

significant differences between classes (Table 6 in the Online Appendix 6.1) and we 

used the average of the whole population for obtaining informal care costs. The total 

average cost of informal care per patient per year (€2,098.28) was obtained by 

multiplying the average hours of informal care per 16-hour day by 365.25 days and by 

the hourly cost of informal care from the Dutch costing manual (211) (Table 7 in the 

Online Appendix 6.1). 

Travelling expenses 

Travelling expenses were calculated based on Kanters et al. (246) and added to the 

costs of outpatient visits and hospitalisations (Table 8 in the Online Appendix 6.1). 

Costs related to productivity losses 

Because we used a patient-level simulation model, we were able to include age and 

gender specific productivity costs for each individual patient until 65 years of age, 

after which we assumed that patients did not incur further productivity costs. 

Productivity losses were assigned to hospitalisations for patients who were 

considered to be working at baseline. We assumed that a hospitalised patient incurs 

productivity costs for one whole month, as it seems unlikely that the patient is able to 

return to work immediately after being hospitalised. We further assumed that the 

working status does not change during the model, which led to excluding long-term 

productivity costs from the model. We used the proportion of patients assumed to be 

working per NYHA class from expert opinion reported elsewhere (247). This working 

probability of each patient was adjusted using an age-gender-specific net-labour 

participation rate for the general population (243). The total cost per day was 

calculated using age-gender-specific data on working hours per week and hourly 

labour cost (243) (in the Online Appendix 6.1, Table 9 shows the inputs for the 

calculation of productivity costs and Table 10 an example of the costs incurred by a 

hypothetical patient). 
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Future unrelated medical costs 

Dutch guidelines require the inclusion of additional costs from unrelated diseases 

during the life years gained with interventions extending life-expectancy (210). We 

extracted the estimates of per capita health care expenditures by age and gender from 

the PAID 3.0 tool and we included those costs for each patient individually during the 

simulation (242, 249) (Table 11 in the Online Appendix 6.1). 

Health outcomes and utilities 

QALYs were obtained through weighing life years with patient utility over time. 

Utilities were attributed to each patient at the start of the simulation according to 

their NYHA class at baseline and to NYHA class specific utility values reported 

elsewhere (205) (Table 12 in the Online Appendix 6.1). Utilities change over time with 

events occurring in the simulation. It was assumed that there were no utility changes 

resulting from outpatient visits and that hospitalisations resulted in a decrease in 

utility by a factor of 0.82, following the change in utility observed between NYHA 

classes reported in another study published for a similar HF population (207). We 

assumed that the disutility factor from hospitalisations should be limited to three 

events. 

Based on the equation estimated by Ara and Brazier for the utilities for the general UK 

population (Equation 1 in the Online Appendix 6.1), age-gender-specific utilities 

attributed at baseline were capped and a decrement factor for ageing was 

implemented (250). 

Cost-effectiveness 

Average outcomes per patient were presented for each intervention. The incremental 

cost-effectiveness ratio (ICER) was calculated as the difference in the average total 

costs per patient divided by the difference in the average number of QALYs per patient 

(€/QALY). 

Sensitivity and scenario analyses 

Parameter uncertainty was assessed via deterministic sensitivity analyses (251). Joint 

parameter uncertainty was explored through probabilistic sensitivity analysis (PSA), 

including the parameter-distributions specified in Table 6.2 (252, 253). Following the 

methodology for addressing uncertainty in DES models published elsewhere (254), 

PSA was implemented as a double loop: an inner loop, in which a pre-determined 

number of patients are sampled with replacement from the baseline population, and 

an outer loop, in which values of the input parameters of the model are randomly 

drawn. The results from a PSA with an inner loop of 100 patients and an outer loop of 
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500 iterations were plotted on the cost-effectiveness plane (253, 255, 256). Cost-

effectiveness acceptability curves were drawn (92, 257). 

Scenario analyses in which key structural assumptions regarding time-to-death and 

time-to-hospitalisation parametric survival models, time-to-outpatient visits, utilities, 

and costs were varied to estimate the impact of those assumptions on the outcomes 

were performed. 

Value of information (VOI) analysis 

The guidelines for economic evaluations in the Netherlands require the calculation of 

the expected value of perfect information (EVPI) when the probability that the 

intervention is cost-effective at the appropriate cost-effectiveness threshold is lower 

than 100% (210). EVPI per patient is calculated from the average of the maximum 

net-benefits in each PSA iteration minus the maximum average net-benefit for the 

interventions considered in the analysis (94, 258, 259). The population EVPI is 

achieved through multiplying EVPI per patient by the size of the potential population 

benefiting from the new intervention across the time span for which the 

recommendation resulting from the VOI analysis is applicable. We assumed five years 

for the expected applicability of the recommendation and we estimated number of 

patients eligible for the HTM-based interventions in the Netherlands in the period 

2020-2024: 53,140, 55,009, 56,943, 58,946, and 61,019, respectively (233, 260, 261). 

We discounted EVPI at 4% per year. 

Cost-effectiveness of the DA 

In the context of the predictive performance of binary diagnostic tests, an ROC curve is 

the graph that illustrates the diagnostic ability of a binary classifier system by plotting 

the sensitivity against FPR (1 – specificity) at various threshold settings. 

In order to properly assess the cost-effectiveness of the DA when added to the HTM 

intervention, we ran the model at different points of the ROC curve of the DA other 

than the base-case scenario, thus inferring at which combinations of sensitivity and 

specificity the diagnostic algorithm would be the most cost-effective. In other words, 

this analysis intends to determine the operating point at which the threshold of the DA 

should be set in order to achieve the best balance between costs and health outcomes 

for the HTM+DA intervention. The values of sensitivity and FPR were measured using 

the website http://www.graphreader.com/ (161). 

Subgroup analyses 

We analysed a wide range of subgroups by varying patient and disease characteristics 

present in Table 6.1. We created two subgroups based on age – patients < and ≥ 65 

http://www.graphreader.com/
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years of age – and two based on the ejection fraction – patients with less and those 

with more than 25%. We further analysed patients belonging to each NYHA class 

separately, creating four more subgroups. Finally, every dichotomous variable 

generated two subgroups (characteristic present/not present). In total, we analysed 

26 different patient subgroups.  
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Results 

Cost-Effectiveness Threshold 

The standardised quality-adjusted life expectancy for the population included in the 

analysis (≈67 years of age and 78% males) is 14.7 QALYs. The total expected 

undiscounted QALYs accrued with the current standard of care (UC) in the model are 

1.16, which represents that 92.1% of normal quality-adjusted life expectancy is lost 

due to the disease. In this situation, the appropriate cost-effectiveness threshold using 

the proportional shortfall approach is €80,000 per QALY. 

Base-case analysis 

The main results of the base-case analysis are summarised in Table 6.3. 

Table 6.3 – Results of the base-case analysis 

Average outcomes per patient UC HTM* HTM+DA 

Intermediate outcomes (events per 
year) 

   

Outpatient visits 3.60 6.62 6.63 

Hospitalisations 1.70 1.64 1.31 

Avoided hospitalisations – – 0.45** 

Death type    

Death in hospital, % 47.2 64.2 58.5 

Death (other), % 52.8 35.8 41.5 

Final outcomes (discounted)    

Total costs, € €46,879 €60,343 €65,008 

Total life years 2.18 2.96 3.44 

Total QALYs 1.12 1.51 1.78 

Incremental cost-effectiveness 
analysis 

HTM vs. UC HTM+DA vs. HTM HTM+DA vs. UC 

Δ€ €13,465 €4,665 €18,129 

ΔQALY 0.39 0.26 0.65 

Δ€/ ΔQALY €34,449* €17,713 €27,712 

Abbreviations: DA, diagnostic algorithm; HTM, home telemonitoring; ICER, incremental cost-
effectiveness ratio; QALY, quality-adjusted life year; UC, usual care. 

* Extendedly dominated by HTM+DA. 

** Avoided hospitalisations within the HTM+DA intervention group 
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UC patients experienced approximately 3 outpatient visits per year less than HTM-

based interventions. Conversely, HTM results in a decrease of the yearly rate in 

hospitalisations when compared to UC (1.64 vs. 1.70). This decrease is even more 

pronounced when the DA is added to HTM, since 0.45 (95% CI: 0; 2.12) 

hospitalisations per year are avoided due to the DA. 

UC is the intervention with the lowest total discounted costs (€46,879), followed by 

HTM (€60,343), and HTM+DA (€65,008). Patients are expected to survive on average 

2.18 discounted years with UC, 2.96 with HTM, and 3.44 with HTM+DA, corresponding 

to 1.12, 1.51, and 1.78 discounted QALYs, respectively. The hierarchical analysis of the 

costs and QALYs of the three interventions shows that HTM is extendedly dominated 

by HTM+DA, as the ICER of HTM compared with UC (€34,449/QALY) is higher than 

the ICER of HTM+DA (the next, more effective, alternative) compared with UC 

(€27,712/QALY). 

Sensitivity and scenario analyses 

Considering the extended dominance of HTM+DA over HTM, the univariate sensitivity 

analyses were only performed for the HTM+DA versus UC comparison. The results of 

the five input parameters with the largest effect on the ICER are presented in the 

tornado diagram in Figure 6.1. All ICERs remained below the €80,000/QALY 

threshold. 

The PSA outcomes plotted in the cost-effectiveness plane for each pairwise 

comparison show that the great majority of simulations fall in the northeast quadrant, 

i.e. interventions have higher costs and accrue more QALYs than their comparators 

(Figure 6.2). The probabilistic ICER between HTM+DA and UC was similar to the 

deterministic one found in the base-case analysis: €25,864/QALY (95% CI: €15,527; 

€54,151). The cost-effectiveness acceptability curves for the three interventions show 

that UC is the alternative expected to be the most cost-effective at low WTP 

thresholds, HTM is never the most cost-effective intervention, and HTM+DA becomes 

the intervention most likely to be cost-effective from €25,864/QALY upwards, 

reaching a 96.0% probability at the appropriate cost-effectiveness threshold of 

€80,000/QALY (Figure 6.3). 
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Figure 6.1 – Tornado diagram for the HTM+DA vs. UC comparison 

The results of the scenario analyses assessing the structural assumptions of the model 

are summarised in Table 13 in the Online Appendix 6.1. The scenario with the highest 

impact on the ICER was the one where a healthcare perspective was taken, which 

resulted in an ICER between HTM+DA and UC of €14,408/QALY (-48.0% when 

compared to the base-case analysis). On the opposite direction, the scenario taking all 

costs from upper bound of 95% confidence intervals was the one with the highest 

ICER (€31,829/QALY). All ICERs from the scenario analyses stayed below the 

threshold of €80,000/QALY. 
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Figure 6.2 – Incremental cost-effectiveness plane 

Value of information (VOI) analysis 

In the base-case analysis, at the appropriate threshold of €80,000/QALY, the 

probability of HTM+DA being cost-effective was 96.0%. The calculated EVPI per 

patient was €341. With an estimated number of patients eligible for the HTM-based 

interventions in the Netherlands of 253,118 patients (after discounting) for the period 

2020-2024, the population EVPI was estimated at €86,383,575. 
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Figure 6.3 – Cost-effectiveness acceptability curves 

Cost-effectiveness of the DA 

Results for the treatment scenarios assuming different characteristics of the DA are 

presented for the comparison of HTM+DA with UC in Table 6.4. Increasing the 

sensitivity of the DA by setting a lower threshold for the alarm to go off, which entails 

an increase in FPR (decreased specificity), resulted in a higher number of avoided 

hospitalisations, life years and QALYs, but with higher costs. Alternatively, decreasing 

the sensitivity (i.e. setting a higher threshold for the alarm) resulted in lower costs, 

but with worse health outcomes. From the scenarios tested, the most cost-effective 

was scenario 3, where sensitivity was set to 0.600 and FPR to 0.068. In the scenarios 

testes, moving away from that point in either direction of the ROC curve resulted in 

higher ICERs (ICER range: €25,734/QALY; €35,560/QALY). 
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 Table 6.4 – Results of the scenario analyses for the diagnostic algorithm 

Average outcomes per patient (HTM+DA) 

DA scenarios 

1 

Sens: 0.200 

FPR: 0.007 

2 

Sens: 0.400 

FPR: 0.024 

BC 

Sens: 0.520 

FPR: 0.030 

3 

Sens: 0.600 

FPR: 0.068 

4 

Sens: 0.800 

FPR: 0.194 

5 

Sens: 0.950 

FPR: 0.562 

Intermediate outcomes (events per year)       

Outpatient visits 6.63 6.64 6.63 6.62 6.62 6.63 

Hospitalisations 1.52 1.36 1.31 1.23 1.10 1.00 

Avoided hospitalisations 0.18 0.33 0.45 0.56 0.76 0.92 

Final outcomes       

Total costs, € €62,085 €63,394 €65,008 €64,163 €71,016 €82,108 

Total life years 3.14 3.29 3.44 3.43 3.73 3.99 

Total QALYs 1.61 1.70 1.78 1.80 1.96 2.11 

ICER       

vs. UC, €/QALY €30,984 €28,881 €27,712 €25,734 €29,004 €35,560 

change vs. base-case +11.8% +4.2% 0.0% -7.1% +4.7% +28.3% 

Abbreviations: BC, base-case; DA, diagnostic algorithm; FPR, false positive rate; HTM, home telemonitoring; ICER, incremental cost-effectiveness 
ratio; QALY, quality-adjusted life year; Sens, sensitivity; UC, usual care. 
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Subgroup analyses 

The summary of cost-effectiveness results for the subgroup analyses is presented in 

Table 6.5. Because each subgroup is created from a subset of the population in the 

TEN-HMS database (126), the characteristics of the baseline population for each 

subgroup may differ. The baseline patient and disease characteristics of the model 

population for each of the analysed subgroups are presented in Tables 1 to 26 in the 

Online Appendix 6.2. All the ICER changes versus the base-case concern the 

comparison between HTM+DA and UC. 

The subgroup of NYHA class IV patients registered the highest deviation from the 

base-case analysis results, with an ICER of €52,727/QALY (+90.3%). On the contrary, 

the subgroups with the better cost-effectiveness ratios were patients younger than 65 

years of age and patients belonging to NYHA class I (€22,830/QALY [-17.6%] and 

€22,870/QALY [-17.5%], respectively). 

Although many other subgroups did not show such a high variation in the ICER – as 

this is a ratio that depends on the simultaneous variation of costs and QALYs for each 

of the interventions being compared –, large differences in final outcomes were 

observed for some subgroups. Males (especially when compared to females), patients 

from NYHA class III, with diabetes, with chronic obstructive pulmonary disease, not 

on beta-blocker medication, not on angiotensin-converting enzyme medication, with 

history of myocardial infarction, and with history of chronic atrial fibrillation recorded 

a considerable decrease in QALYs for both HTM+DA and UC. For those subgroups, 

given that we are dealing with dichotomous variables, the complementary subgroups 

resulted in higher QALYs (i.e. better health outcomes), with the exception of smokers 

vs. non-smokers, where the comparison between those two subgroups showed small 

differences in QALYs and costs. 

For all the subgroups showing a decrease in QALYs, a decrease in costs was also 

observed. This fact corroborates the positive correlation between costs and effects 

that was noticeable in the incremental cost-effectiveness plane show in Figure 6.2. 

Hence, a decrease in life expectancy and, therefore, QALYs, is associated with 

increased ICERs when compared to the base-case analysis. 
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 Table 6.5 – Subgroup analyses: summary of cost-effectiveness results 

 
Subgroup* 

Costs (€) QALYs ICER (€/QALY) 

UC HTM** HTM+DA UC HTM** HTM+DA HTM+DA vs. UC 
% vs. base-

case 

- Baseline population €46,879 €60,343 €65,008 1.12 1.51 1.78 €27,712 0.0% 

1 Age < 65 years old €59,543 €75,311 €79,144 1.78 2.25 2.64 €22,830 -17.6% 

2 Age ≥ 65 years old €39,380 €52,035 €56,483 0.82 1.14 1.32 €34,368 +24.0% 

3 Ejection fraction < 25% €45,516 €60,745 €64,906 1.22 1.67 1.94 €26,813 -3.2% 

4 Ejection fraction ≥ 25% €46,843 €61,279 €65,606 1.06 1.39 1.65 €31,372 +13.2% 

5 NYHA class I €53,679 €72,656 €77,377 1.84 2.51 2.88 €22,870 -17.5% 

6 NYHA class II €48,659 €64,094 €67,515 1.24 1.63 1.90 €28,827 +4.0% 

7 NYHA class III €43,142 €51,046 €54,454 0.80 1.00 1.18 €29,759 +7.4% 

8 NYHA class IV €36,821 €45,218 €48,957 0.38 0.50 0.61 €52,727 +90.3% 

9 Gender: male €45,762 €57,518 €61,122 1.08 1.36 1.60 €29,777 +7.5% 

10 Gender: female €51,148 €68,937 €75,954 1.53 2.05 2.38 €29,038 +4.8% 

11 Smoker: yes €49,819 €62,956 €64,973 1.18 1.48 1.73 €27,765 +0.2% 

12 Smoker: no €45,741 €60,614 €64,392 1.13 1.49 1.74 €30,208 +9.0% 

13 Diabetes: yes €43,213 €55,144 €59,211 0.96 1.26 1.48 €30,624 +10.5% 

14 Diabetes: no €48,611 €60,287 €65,193 1.27 1.59 1.86 €27,980 +1.0% 

15 COPD: yes €39,386 €47,599 €52,293 0.80 1.02 1.24 €29,560 +6.7% 

16 COPD: no €49,180 €67,014 €70,128 1.23 1.67 1.92 €30,105 +8.6% 

17 Recent diagnosis: yes €54,103 €69,207 €74,122 1.53 1.90 2.20 €29,748 +7.3% 
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18 Recent diagnosis: no €42,619 €53,123 €56,272 0.91 1.18 1.39 €28,567 +3.1% 

19 
No beta-blocker 
medication: yes 

€38,967 €48,709 €50,661 0.70 0.92 1.09 €29,830 +7.6% 

20 
No beta-blocker 
medication: no 

€51,211 €67,252 €71,213 1.41 1.85 2.15 €27,127 -2.1% 

21 
No ACE inhibitor 
medication: yes 

€39,967 €52,165 €54,888 0.76 1.04 1.21 €32,921 +18.8% 

22 
No ACE inhibitor 
medication: no 

€47,208 €61,294 €65,897 1.20 1.57 1.84 €29,424 +6.2% 

23 Myocardial infarction: yes €43,366 €57,360 €61,261 0.99 1.33 1.56 €30,958 +11.7% 

24 Myocardial infarction: no €51,222 €64,252 €69,338 1.41 1.79 2.10 €26,195 -5.5% 

25 
Chronic atrial fibrillation: 
yes 

€38,205 €49,469 €53,452 0.72 1.02 1.19 €32,415 +17.0% 

26 
Chronic atrial fibrillation: 
no 

€50,164 €64,086 €68,856 1.31 1.71 2.01 €26,812 -3.2% 

Abbreviations: ACE, angiotensin-converting enzyme; BMI, body mass index; COPD, chronic obstructive pulmonary disease; DA, diagnostic algorithm; 
HTM, home telemonitoring; ICER, incremental cost-effectiveness ratio; NYHA, New York Heart Association; QALY, quality-adjusted life year; UC, usual 
care. 

* Because each subgroup is created from a subset of the population in the TEN-HMS database (126), the characteristics of the baseline population 
for each subgroup may differ. The baseline patient and disease characteristics of the model population for each of the analysed subgroups are 
presented in Tables 1-26 in the Online Appendix 6.2. 

** HTM is extendedly dominated by HTM+DA in all analysed subgroups. The ICER comparison against the base-case is only shown for HTM+DA vs. 
UC. 
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Discussion 

This study aimed at assessing the cost-effectiveness of HTM and a DA in the 

management of heart failure in the Netherlands and it used a previously validated 

patient-level discrete event simulation model (238) for analysing three separate 

interventions: UC, HTM, and HTM+DA. The base-case analysis determined that HTM is 

extendedly dominated by HTM+DA, with the latter intervention being cost-effective 

versus UC at a deterministic ICER of €27,712 per QALY gained (Table 6.3). 

The cost-effectiveness of the DA was more carefully examined through creating 

various scenarios with different values for sensitivity and FPR from the ROC curve 

published by Koulaouzidis et al. 2016 (244). Those scenarios generated model 

outcomes that allowed for comparing the ICER of HTM+DA vs. UC at various 

thresholds of the DA (Table 6.4), thereby assessing the inherent trade-off between 

false positives and false negatives in cost-effectiveness terms. In the particular case of 

this study, false positives correspond to alarms that were incorrectly raised, as the 

patient would not have been hospitalised, while false negatives represent alarms that 

were incorrectly not raised and thus did not possibilitate avoiding a hospitalisation. In 

the DA scenarios tested, scenario 5 minimises false negatives at the expense of 

increasing false positives: in this case, more hospitalisations are avoided and QALYs 

increase as a consequence, but at a higher cost, as there are more false positives, 

which entail costs without any additional health benefits. Conversely, scenario 1 

minimises false positives at the expense of increasing false negatives: in this situation, 

less hospitalisations are avoided – due a higher number of false negatives –, leading to 

fewer QALYs and fewer costs, as the false positives drop. Although both false positives 

and false negatives are undesirable, there is an optimal point in terms of cost-

effectiveness that represents the balance between sensitivity and FPR within the ROC 

curve in terms of generated QALYs and associated costs. In our analysis, scenario 3 is 

the one closer to this optimal point, as it leads to the lowest ICER of HTM+DA against 

UC. Because sensitivity and specificity are not independent variables, the optimal 

point must be found iteratively, as there is a great deal of calculations running in the 

background of the model and it would be mathematically very hard to solve all the 

equations for those variables. 

The subgroup analyses showed considerable variation in the ICERs of HTM+DA vs. UC 

(Table 6.5), with the highest ratios being recorded for the subgroups of patients ≥ 65 

years of age and those in NYHA class IV. A large variation in costs and QALYs was also 

observed, even when the resulting ICER did not change much from the base-case 

analysis for the HTM+DA vs. UC comparison, which may be attributed to the positive 

correlation between costs and effects observed in the subgroup analyses. It was also 

observed that complementary subgroups (with the exception of smokers/non-
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smokers) went in opposite directions in relation to final outcomes (e.g., lower QALYs 

and costs for patients with history of myocardial infarction contrasted with higher 

QALYs and costs for patients without any history of myocardial infarction). 

Concerning the subgroup analyses, it is critical to emphasise that the interpretation of 

subgroups in patient-level simulation models is a sensitive matter, as every subgroup 

created from the baseline population – by restricting the variables of interest to values 

compatible with the subgroup being analysed – is likely to have different patient and 

disease characteristics when compared to the model population used in the base-case 

analysis (Tables 1 to 27 in the Online Appendix 6.2). For instance, NYHA class IV 

patients are also older on average than the baseline model population (Table 14 

versus Table 27 in the Online Appendix 6.2). Hence, the outcomes from the model and 

their variation from the base-case analysis in that situation are not only depending on 

the impact of NYHA IV, but also of all other patient and disease characteristics that 

change in the subgroup population when compared to the base-case population. Thus, 

the correct interpretation of subgroup analyses requires a link with the patient and 

disease characteristics than can be correlated with the particular characteristic 

changing in any given subgroup. 

The cost-effectiveness analysis presented in this paper relied on several 

distinguishing features of the Dutch economic evaluation guidelines: the adoption of a 

societal perspective, the calculation of productivity losses using the friction cost-

method, differential discounting, the inclusion of caregiver burden on the cost side of 

the economic evaluation, the incorporation of indirect medical costs of life-years 

gained, and a VOI analysis. Deterministic sensitivity analyses and scenario analyses 

showed that the model results were robust to the variation of most parameters 

(Figure 6.1) and to most changes in structural assumptions, with the highest change in 

the ICER resulting from taking a healthcare perspective in the analysis. This 

worsening of the ICER is due to the increased costs that are not matched by an 

increase in life-expectancy and QALYs. PSA results revealed a 96.0% chance that 

HTM+DA being cost-effective at the appropriate threshold of €80,000/QALY (as 

determined by the proportional shortfall method). At that threshold, the calculated 

EVPI per patient, i.e. the monetary consequence of making a wrong decision, was 

€341. Given the high estimated number of eligible patients for the HTM-based 

interventions in the Netherlands for the period 2020-2024, the monetary 

consequence of making a wrong decision at a population level was estimated at 

€86,383,575. 

Comparison to other studies 

To our knowledge, this is the first study using a health economic patient-level 

simulation model for assessing the cost-effectiveness of a HF intervention in the 
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Netherlands. Concerning the intervention, two studies have also assessed the cost-

effectiveness of HTM in the Netherlands: Boyne et al. (2013) (262) and Grustam et al. 

(2018) (205). Boyne et al. performed a trial-based economic evaluation of the 

Telemonitoring in Heart Failure (TEHAF) study (263, 264), a prospective open label, 

multicentre, randomised controlled trial with blinded endpoint evaluation, conducted 

at three hospitals in The Netherlands. The results of this study can hardly be 

compared to ours. Firstly, because the population in the TEHAF-study was in better 

health state than the one in the TEN-HMS study (e.g., mean ejection fraction of 36% vs. 

25%), and secondly, because the time horizon of their study was only one year, which 

cannot properly capture the lifetime change in costs and effects between the 

interventions since patients are expected to survive more than one year. Grustam et 

al. used a Markov cohort model with most of the data coming from the TEN-HMS study 

for assessing the cost-effectiveness of HTM compared to UC. They took a third-party 

payer’s perspective and direct comparison of results with that study would be unwise 

and uninformative. However, in the scenario analysis where we took a healthcare 

perspective (scenario 23 in Table 13 in the Online Appendix 6.1), we estimated similar 

costs: €16,034 for UC and €25,433 for HTM vs. €14,414 and €27,186, respectively, 

found by Grustam et al. (205). The ICERs, however, were different, because we 

estimated fewer QALYs in our study. One possible explanation is the assumption by 

Grustam et al. that the transition probabilities measured in the time frame of 240 to 

450 days in the TEN-HMS study continue unaltered for 20 years, which, given the 

mean age of 67 years of the patients included in the model and their very poor health 

state, seems unlikely. This assumption may have overestimated survival in their study. 

Another possible explanation for the aforementioned difference is the potential 

underestimation of survival in our study due to the regression equation for dying in 

hospital. The regression equation calculating time-to-death predicts all-cause 

mortality. Thus, patients dying in hospital may result in some type of double counting 

of mortality due to the inherent imprecision of data-driven estimates. If predictions 

were 100% accurate, the model would predict time of death flawlessly – which never 

happens in practice. However, given the higher number of hospitalisations 

experienced by patients in the intervention arms – due to their increased survival –, 

the cost-effectiveness estimates, if anything, are conservative. 

The findings in our study of lower mortality and hospitalisations with HTM-based 

intervention when compared to UC are consistent with the results previously 

published in two network-meta analyses (112, 265). Regarding costs, we found an 

increase in total costs with HTM when compared to UC. In the review by Inglis et al. 

the authors identified three studies reporting costs for HTM vs. UC; one reported a 

decrease in costs and two reported increases in cost, due both to the cost of the 

intervention and to increased medical management (265). 



Chapter 6 

187 

It is worthwhile mentioning that the structure of the model used in our study allowed 

exploring the impact of adding a DA to the HTM intervention. This is a critical aspect 

of our study, as it is the first to assess the cost-effectiveness of a DA in the context of 

chronic disease management. Although we have used the concept in the context of a 

HF intervention, it could be adapted for other disease areas. This subject has been 

discussed in the publication regarding the validation of the model used in the present 

study (238). 

Limitations 

The first limitation stems from the TEN-HMS study dating from 2005, which results in 

a large enough period for medical practice to have changed, especially since we are 

talking about technologies which are developed at a fast pace. The experience that 

results from the continuous use of these technologies can ultimately have an impact 

on their effectiveness and cost-effectiveness. Still related to the TEN-HMS study, drug 

use and their costs report to standards in the time of the trial. Even if standards in 

terms of therapeutic classes are not necessarily different, the drugs used are older and 

they are likely cheaper than the more recent alternatives as of today (this impact was 

assessed via scenario analysis). And finally, there could be some variation in 

healthcare systems between patients included in the TEN-HMS study (UK, the 

Netherlands, and Germany), which is not accounted for in the model. 

The second limitation relates to the DA ROC curve used for the analysis. Since the ROC 

curve was not obtained using the same population or HTM system, we assumed that 

the different levels of diagnostic accuracy of the DA, i.e. the different points of the ROC 

curve, would be applicable to the population in our model as well. The population 

used in the study by Koulaouzidis et al. (244) seemed to be in a better health state 

than the one in the TEN-HMS study (126) (e.g., ejection fraction of 36.6% vs. 25.1%). 

Ideally, we would have a DA constructed with the TEN-HMS data, as we would want to 

optimise the threshold of a DA that would have been designed with the same HTM 

system. In that way, we could use the data generated by that system for continuously 

improving predictions of hospitalisation and, consequently, improving the cost-

effectiveness of the HTM+DA intervention. 

Recommendations for future research 

The model could include individual drug costs and optimise the medication used at 

each processed event. For that to happen, it should update patient characteristics at 

those events in order to define the correct medication for each patient. In doing so, the 

model would also capture the drug costs more accurately. 

Further research must be done in order to better describe DAs and the follow-up 

actions they entail in the clinical practice and disease pathways. While the DES 
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framework allowed for the assessment of the cost-effectiveness of the DA, the 

potential of those models opens enormous possibilities for designing a model with 

highly detailed disease pathways for clinicians and decision makers who are less 

familiar with decision modelling in the context of the economic evaluation of health 

technologies. However, the increased complexity of models would come at the 

expense of the need for patient-level data for building and validating the model. 

Theoretically, all the patient pathways after an alarm could be included in a DES 

framework. The question would be whether there would be reliable data on the 

outcomes for each of the pathways that could be conceived for reacting to an alarm. As 

it is widely described in the health economic literature, models should abide by the 

principle of parsimony, i.e. as simple as possible in order to accurately reflect the 

problem under analysis and allowing for making an informed decision. 

Conclusions 

Although increased costs of adopting HTM and DA in the management of HF may 

seemingly be an additional strain on scarce health care resources, the results of this 

study demonstrate that, by increasing patient life expectancy by 1.28 years and 

reducing their hospitalisation rate by 23% when compared to UC, the use of these 

technologies may be seen as an investment, as HTM+DA extendedly dominates HTM 

and generates an extra QALY for a €27,712 investment. At the appropriate cost-

effectiveness threshold of €80,000/QALY resulting from the proportional shortfall 

methodology used in the Dutch economic evaluation guidelines, HTM+DA has a 96.0% 

probability of being cost-effective.  
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Appendices 

Online Appendix 6.1 

Available at: 

https://drive.google.com/file/d/14wGfQN7cdnx5IPF1iAVMYq_9Zmr2I8Zr/view?usp

=sharing  

Online Appendix 6.2 

Available at: 

https://drive.google.com/file/d/1kvSsLgLHi2FsIVRsqzME3xICp9Dlg_V-

/view?usp=sharing  

 

https://drive.google.com/file/d/14wGfQN7cdnx5IPF1iAVMYq_9Zmr2I8Zr/view?usp=sharing
https://drive.google.com/file/d/14wGfQN7cdnx5IPF1iAVMYq_9Zmr2I8Zr/view?usp=sharing
https://drive.google.com/file/d/1kvSsLgLHi2FsIVRsqzME3xICp9Dlg_V-/view?usp=sharing
https://drive.google.com/file/d/1kvSsLgLHi2FsIVRsqzME3xICp9Dlg_V-/view?usp=sharing
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Abstract 

Objectives: Understanding whether the regulatory framework creates different 

standards for medical devices and drugs, assessing whether there is evidence on the 

impact of these standards on clinical and HTA research, and reflecting on the findings 

in order to propose legislative changes that could promote an integrated evidence-

based assessment system that could arguably result in a more efficient allocation of 

resources in the healthcare systems. 

 

Methods: This study reviewed and compared the legal framework for the approval of 

medical devices and drugs in the EU, with a particular focus on the changes brought by 

Regulation (EU) 2017/745. It further investigated the available information on 

manufacturer sponsored clinical studies and HTA-supported recommendations for 

medical devices and drugs. 

 

Results: The review of the legislation identified different standards for approval of 

devices and drugs on their quality, safety, and performance/efficacy dimensions. We 

found substantially lower number of manufacturer sponsored clinical studies and 

HTA-supported recommendations for medical devices versus drugs. Further, there is 

an indication of lower standards of evidence used in recommendations for medical 

devices. 

 

Conclusions: Policy changes ought to be implemented in order to promote an 

integrated evidence-based assessment system for a better allocation of resources in 

healthcare, namely: a consensual classification of medical devices from an HTA 

perspective, which could be used as a guide for generating outcomes in clinical 

investigation, and the adoption of conditional coverage practices including mandatory 

post-approval evidence development for performing periodic technology assessments. 
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Introduction 

A medical device (MD) can be defined as any instrument, apparatus, appliance, 

software, material or other article, whether used alone or in combination, intended for 

use in the diagnosis of disease or other conditions, in the cure, mitigation, treatment, 

or prevention of disease, or in the investigation, replacement or modification of the 

anatomy or of a physiological process, and which does not achieve its principal 

intended action in or on the human body by pharmacological, immunological or 

metabolic means (266). In the European Union (EU), MDs are categorised in classes, 

based on their intended purposes and inherent risks, which determine the regulatory 

controls necessary to provide a reasonable assurance of safety and performance. 

Attention given to MDs has been increasing steadily, with the number of patent 

applications for medical technology to the European Patent Office (EPO) growing 

32.5% between 2010 and 2019 (267). MDs represent a significant share of the 

healthcare expenditures in the EU: in 2018 the total spending with MDs and in vitro 

diagnostics was estimated at around 120€ billion, or 7.4% of the money spent on 

healthcare (if we exclude in-vitro diagnostics, 108.6€ billion, or 6.7%), with the EU5 

countries – France, Germany, Italy, Spain, and the United Kingdom (UK)
1
 – 

representing 70% of the total expense with MDs in the EU (268). 

Bringing a device to market takes on average 3 to 7 years, compared with an average 

of 12 years for drugs (269). Evidence shows that the EU faces challenges ensuring that 

only safe and effective devices reach the market and monitoring their real-world 

utilization, and there is a lack of quantitative evidence assessing MD regulation (270, 

271). 

Traditionally MDs have been less regulated than drugs and the standards of evidence 

collection for placing them on the market are generally lower, which may ultimately 

hinder comparison between these health technologies, especially when they have the 

same goal and are targeted at the same disease and/or population (272-274). Health 

technology assessment (HTA), aimed at informing decisions on the adoption of new 

health technologies, broadly used for drugs, usually comes across methodological 

issues due to scarce evidence on clinical effectiveness when assessing MDs, as the 

regulation for their access to the market focuses on safety and performance (275). 

                                                                    

1 Although the UK has formally withdrawn from the EU as of 1 February 2020 at 00:00, for the purpose of 

this study the UK will be considered a EU5 country, as most of the data included in the study pertain to a 

period in which the UK was a Member State of the EU. 
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This study reviews and compares the legal framework in the EU for the approval of 

MDs and drugs, with a particular focus on the changes brought by new Regulation 

(EU) 2017/745, which aims to ensure the smooth functioning of the internal market 

as regards MDs, taking as a base a high level of protection of health for patients and 

users, and taking into account the small and medium-sized enterprises that are active 

in this sector, at the same time it sets high standards of quality and safety for medical 

devices in order to meet common safety concerns as regards such products. 

Additionally, this study seeks to compare the available information on the clinical 

research and the HTA-based recommendations for the health technologies under 

analysis. The main goal of the study was to understand whether the regulatory 

framework creates different standards for MDs and drugs, to assess whether there is 

evidence on the impact of these standards on clinical and HTA research and to 

critically reflect on the findings in order to propose legislative changes that could 

promote an integrated evidence-based assessment system that would arguably result 

in a more efficient allocation of resources in the healthcare systems, as both MDs and 

drugs are usually covered by the same limited healthcare budget. 
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Methods 

EU Law definitions 

EU Law is divided into primary and secondary legislation (276). Primary legislation is 

constituted by the treaties, which are binding agreements between the member States 

to the EU and contain the ground rules for EU action (Treaty on the European Union 

and Treaty on the Functioning of the European Union, Treaty establishing the 

European Atomic Energy Community, and the Charter of Fundamental Rights of the 

European Union). Secondary legislation includes binding legal instruments such as 

regulations, directives, and decisions. Additionally, there is soft law which 

corresponds to non-binding instruments: resolutions, opinions, and other instruments 

such as EU institutions’ internal regulations (277). More specifically on the binding 

secondary legislation, regulations are legislative acts that must be applied in their 

entirety across the EU and that become automatically binding on the date they take 

effect, whereas directives are legislative acts that set out goals/results that addressed 

Member States must achieve, although they may give leeway to each country for 

devising its own laws for reaching those goals/results (278). 

Identification and review of EU Law for approving medical devices 

and drugs 

For MDs, in order to assess the EU legal framework for placing them on the market – 

the term equivalent to obtaining a marketing authorisation (MA) in the drug realm –, 

we extracted regulations and directives from EUR-Lex, the online gateway to EU Law 

(276). 

For drugs, we analysed Directive 2001/83/EC on medicinal products for human use, 

as amended (279), and Regulation (EC) 726/2004 laying down EU procedures for the 

authorisation of medicinal products for human use, as amended (280), since they 

constitute the cornerstone for drug approval in the EU. Both MAs granted following 

centralised procedures, pursuant to Regulation (EC) 726/2004, and MAs granted 

through decentralised and mutual recognition procedures, in accordance to Directive 

2001/83/EC, are valid throughout the EU and confer the same rights and obligations 

in all Member States. 

The existence of secondary EU legislation containing the definition of the general 

requirements on quality, safety, and performance/efficacy (performance is the term 

preferred for MDs, while efficacy is the term used for drugs) for ensuring access to 

market means that either through the transposition of the rules in the directives or 

the direct application of regulations the same standards apply to all Member States. 
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Clinical research and HTA-supported recommendations for 

medical devices and drugs 

In order to assess how clinical research for MDs compares with that for drugs, we 

searched the ClinicalTrials.gov database for the clinical studies registered for both 

MDs and drugs as the intervention type (281). We searched for phase II and phase III 

clinical trials (interventional studies) funded by the industry, as we assumed that 

these are the studies leading to or containing the most relevant data for submissions 

to regulatory approval of drugs (and MDs) and/or to HTA submissions for pricing and 

reimbursement (P&R) purposes. We reported the number of clinical trials registered 

in the ClinicalTrials.gov database by type of intervention, chronologically by date of 

study start (before 2010 and yearly after that). Although we intended to perform a 

similar analysis on the EU Clinical Trials Register (266), this database only contains 

information on interventional clinical trials on drugs conducted in the EU or the 

European Economic Area. 

In regards to the comparative analysis of the HTA-based recommendations by 

jurisdiction for MDs and drugs, we firstly identified the relevant HTA body for each of 

the EU5 countries: for France, the Haute Autorité de Santé (HAS); for Germany, the 

Gemeinsamer Bundesausschuss (G-BA) and the Institut für Qualität und 

Wirtschaftlichkeit im Gesundheitswesen (IQWiG); for Italy, the Agenzia Italiana del 

Farmaco (AIFA) and the Agenzia Nazionale per i Servizi Sanitari Regionali (AGENAS); 

and for the UK, the National Institute for Health and Care Excellence (NICE). In Spain 

the provision of healthcare services is decentralized and thus the responsibility of the 

autonomous communities; there is no central HTA agency. We used the Red Española 

de Agencias de Evaluación de Tecnologías Sanitarias y Prestaciones del Sistema 

Nacional de Salud (RedETS) – a collaboration network between the HTA agencies 

from the autonomous communities, with a common methodology and under the 

principle of mutual recognition and cooperation – as the data source for our analysis 

on medical devices. Additionally, we searched the website of the Agencia Española de 

Medicamentos y Productos Sanitarios (AEMPS) – the central drug regulating agency 

belonging to the Spanish Ministry of Health – for extracting their therapeutic 

positioning reports on drugs.(282) 

The websites of the previously mentioned institutions were searched for all publicly 

available assessments/recommendations (283-290) (the details of the website 

searches and inclusion/exclusion criteria are provided in the Online Appendix 7.1). 

The number of results was reported separately for MDs and drugs. The type of the 

publicly available documentation was indicated, as there may be some inter-

jurisdiction variation regarding the assessment or type of recommendation made. 
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Results 

Identification and review of the relevant legislation concerning 

medical devices 

The complete list of the legislative acts retrieved from EUR-Lex is presented in the 

Online Appendix 7.1. After assessing the title and the scope of the retrieved legislation, 

we reviewed in detail the following legislative acts, which contain all the relevant 

information for the description of the regulatory framework in the EU: Council 

Directive 90/385/EEC of 20 June 1990 relating to active implantable medical devices 

(291) (AIMDD), Council Directive 93/42/EEC of 14 June 1993 concerning medical 

devices (292) (MDD), and Regulation (EU) 2017/745 of the European Parliament and 

of the Council of 5 April 2017, on medical devices (293) (MDR). 

The MDR was approved in 2017 and the due date of application of the large majority 

of its provisions was scheduled for 26 May 2020. However, the date of application was 

postponed to 26 May 2021 by Regulation (EU) 2020/561 and the MDR has repealed 

both AIMDD and MDD on that date (294). Regulation (EU) 2020/561 simultaneously 

adapted transitional provisions of Regulation (EU) 2017/745 that would otherwise no 

longer apply. This postponement is explained by the “unprecedented magnitude of the 

current challenges [COVID-19 outbreak and the associated public health crisis], and 

taking into account the complexity of Regulation (EU) 2017/745, it is very likely that 

Member States, health institutions, economic operators and other relevant parties will 

not be in a position to ensure the proper implementation and application.” 

Considering that MDs regulated by the AIMDD and the MDD may still be placed on the 

market, we reviewed those directives in addition to the MDR. Any relevant difference 

in the scope of the present analysis introduced by the MDR is appropriately pointed 

out. 

Classification of medical devices and definition of the relevant 

technologies for the comparison with drugs 

Considering the purpose of comparing regulatory standards for MDs and drugs, it is 

relevant to categorise MDs into interventional and non-interventional devices. Drugs 

or medicinal products are defined as substances or combination of substances 

presented as having properties for treating or preventing disease in human beings, or 

any substances or combination of substances which may be used in or administered to 

human beings either with a view to restoring, correcting or modifying physiological 

functions by exerting a pharmacological, immunological or metabolic action, or to 

making a medical diagnosis. 
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The review of AIMDD, MDD, and MDR in regards to their definition of MDs allowed for 

establishing that distinction, with interventional MDs being the ones intended for 

treatment of a disease, injury or disability, whereas non-interventional MDs can be 

defined as the ones directed at diagnosis, monitoring, prognosis or alleviation of 

disease, injury or disability. We found this distinction to be further supported by the 

definition of MDs contained in the AIMDD, and the classification rules contained in 

Annex IX of the MDD and Annex VIII of the MDR, where the reference to active 

therapeutic devices is found: any device used, whether alone or in combination with 

other devices, to support, modify, replace or restore biological functions or structures 

with a view to treatment or alleviation of an illness, injury or disability. Through the 

analysis of those annexes, we further ascertained that interventional MDs belong to 

classes IIa (all active therapeutic devices intended to administer or exchange energy), 

IIb (active devices intended to emit ionising radiation and intended for therapeutic 

interventional radiology), or III (implantable devices intended to be used in direct 

contact with the heart, the central circulatory system or the central nervous system). 

The classification of interventional MDs helps to set the boundaries for reviewing the 

rules for placing them on the market, with only relevant standards for the comparison 

between MDs and drugs being assessed. 

Regulatory framework of medical devices across jurisdictions and 

its comparison to drugs 

In the EU drugs are granted marketing authorisation – Article 6 of Directive 

2001/83/EC and Article 3 of Regulation (EC) 726/2004  –, whilst MDs are subject to 

conformity assessment procedures aimed at demonstrating compliance with the 

requirements of the AIMDD, the MDD, or the MDR – Article 9 of the AIMDD, Article 11 

of the MDD, and Article 52 of the MDR. The applicable conformity assessment 

procedure is determined in accordance with the device classification, with 

manufacturers being able to select their preferred route. Conformity assessment 

procedure routes for MDs of classes IIa and of classes IIb and III are shown in Figure 

7.1 and Figure 7.2, respectively. 
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Figure 7.1 – Class IIa medical devices conformity assessment procedure routes 
CE, Conformité Européene (European Conformity); EC, European Community; EEC, European Economic Community; EU, European Union; NB, Notified Body. 
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Figure 7.2 – Class IIb + III medical devices conformity assessment procedure routes 
AIMDD, Active Implantable Medical Devices Directive; CE, Conformité Européene (European Conformity); EC, European Community; EEC, European Economic Community; EU, European 
Union; NB, Notified Body. 
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The relevant body for performing third-party conformity assessment activities is the 

Notified Body (NB), an independent third party designated by Member States (Article 

11 and Annex 8 of the AIMDD, Article 16 and Annex XI of the MDD, and Articles 35-50 

and Annex VII of the MDR). MDs found in conformity to EU rules are then registered 

with the competent authority in each EU country where they are placed on the 

market. Marketing authorisations for drugs are granted by the European Commission 

(centralised procedure) or by the medicines regulatory authority in the relevant 

Member State (mutual recognition and decentralised procedures) (Article 3 of 

Regulation (EC) 726/2004 and Article 6 of Directive 2001/83/EC, respectively). 

If considered to meet applicable performance, safety, design, and manufacture 

requirements, MDs must bear the CE marking of conformity, which ensures the device 

may be freely marketed anywhere in the EU without further control (295). 

Confirmation of conformity with requirements, and the evaluation of the side-effects 

and of the acceptability of the benefit/risk ratio of MDs must be based on clinical data 

(AIMDD and MDD) and on clinical data providing sufficient clinical evidence. Under 

the MDR it is the responsibility of the manufacturers to specify and to justify the level 

of clinical evidence necessary to demonstrate conformity: to this end, a clinical 

evaluation shall be planned, conducted, and documented. 

We noted both the AIMDD and the MDD required clinical investigations to be 

performed for class III medical devices and implantable devices (which may fall under 

classes IIa or IIb), unless it was duly justified to rely on existing clinical data. However, 

the MDR determines that for the same devices and as a general rule data should be 

sourced from clinical investigations that have been carried out under the 

responsibility of a sponsor. This requirement, however, shall not apply to implantable 

and Class III devices placed on the market in accordance with the MDD. 

Regulatory framework of medical devices and drugs in their 

quality, safety, and performance/efficacy dimensions 

We analysed the requirements for the approval of MDs and drugs in their quality, 

safety, and performance/efficacy dimensions – performance is the term preferred for 

MDs, while efficacy is the term used for drugs. The repeal of the directives regulating 

MDs and the adoption of a regulation seems to reflect the EU’s consideration that the 

proper functioning of the MD market could benefit from an extensive regulatory 

framework review aimed at achieving higher levels of health and safety. The nature of 

the legislative act adopted to review the EU MD framework is a non-negligible 

indicator that EU lawmakers took into consideration the growth of the use of these 

health technologies and their impact on the lives of patients (recital (1) of the MDR). 

The MDR reinforces key elements of the regulatory approach set out in the repealed 
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directives, such as clinical investigations and clinical data and the designation and 

supervision of the NBs performing conformity assessments. 

The MDR introduces more stringent requirements regarding clinical investigations, 

which saw their importance upgraded from a non-exhaustive annex in the directives, 

containing what could best be described a list of declarations of intent with little 

practical impact (Annex 7 of the AIMDD and Annex X of the MDD), to a robust set of 

rules included within the provisions of the MDR, complemented by a comprehensive 

annex comprised of general requirements, demands on the application for clinical 

investigation, and a list of sponsor obligations (Articles 61-82 and Annex XV of the 

MDR). Concerns with setting higher standards for the safety of MDs are depicted by 

the provision that clinical data sourced from studies or reports must be supported by 

their publication in peer-reviewed scientific literature. Additionally, under the MDR, 

data used for showing safety and/or performance should be sourced from clinically 

relevant information coming from post-market surveillance – in particular the post-

market clinical follow-up, in itself a reflection of the intensified post-market 

surveillance requirements for manufacturers – and include clinical benefits of the 

device when used as intended by the manufacturer. 

The MDR further introduces detailed and strict criteria for the designation of NBs, 

which are subject to further control at EU level (recital (50) of the MDR). The MDR 

requires NBs to be certified under its rules (Article 36 and Annex VII of the MDR), 

irrespective of having been designated and certified in accordance with the directives. 

It also determines that certificates issued by those NBs, albeit remaining valid until 

the end of the period indicated in the certificate, shall become void at the latest on 27 

May 2024 (Articles 38 and 120 of the MDR).  

Although there are signs of an increasing matching between the regulatory 

frameworks for MDs and drugs, the analysis of the relevant legislation shows this has 

not yet been achieved. We noted that the MDR refers to clinical investigations – 

defined as systematic investigations involving one or more human subjects, 

undertaken to assess the safety or performance of a device –, whilst Directive 

2001/83/EC refers to clinical trials. The improvement of electronic registries is also 

part of the MDR goals, as new rules determine that information on clinical 

investigations must be provided through an electronic system that shall be 

interoperable with the EU database for clinical trials on medicinal products. In this 

scope, information shall be accessible to the public, with the exception of information 

relating to clinical investigations and their revocation, suspension, termination, or 

modification exchanged between Member States and the Commission, and 

information on the application exchanged between the sponsor and the Member State 

concerned, unless confidentiality is justified. The MDR states that data generated from 

clinical investigations should be scientifically valid. Yet, in spite of the similarities 
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regarding the demands from generated data between clinical investigations and 

clinical trials – reliable and robust, taking account of statistical approach, design of the 

investigation/trial and methodology, including sample size, comparator, and 

endpoints –, the latter require randomisation of study participants, as opposed to 

clinical investigations (296). Additionally, we noted that the assessment of the 

applications for conducting clinical investigations and clinical trials contain 

differences that impact generated data. In fact, while an application to conduct a 

clinical investigation is assessed by demonstrating the investigational device(s) 

compliance with the applicable general safety and performance requirements, an 

application to conduct a clinical trial is evaluated on its relevance, especially on 

whether the group of subjects participating in the clinical trial represent the 

population to be treated. Manufacturers of MDs may, in certain circumstances, select 

not to resort to data from clinical investigations, relying on studies reported in the 

(peer-reviewed) scientific literature showing equivalence to another approved device. 

By contrast, pharma companies are required to provide the results of pre-clinical tests 

and clinical trials, unless they are requesting marketing authorisation under generic 

drug rules. 

A summary of the regulatory standards on quality, safety, and performance/efficacy 

parameters for the approval of MDs and drugs in the EU and a highlight of the main 

differences between them is presented in Table 7.1. 

 

Clinical research and HTA-supported recommendations for drugs 

and medical devices 

We found a substantially larger number of phase II and III industry funded clinical 

studies registered in the ClinicalTrials.gov database for drugs (42,761) than for 

medical devices (2,039) – more than a twenty-fold difference. Additionally, when 

plotting the yearly studies that started over the last ten years, an upward trend was 

observable for drugs – with an exceptionally large increase from 2019 to 2020 

(+11.7%) –, whereas a slight downward trend is noticeable for clinical trials started 

for medical devices (see Figure 7.3). 
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Figure 7.3 – Number of manufacturer sponsored clinical studies started for medical devices and drugs 

A lower number of HTA-based recommendations was found for MDs when compared 

to drugs. In France, HAS issued 2,805 recommendations for drugs and 1,610 opinions 

for medical devices. It is further worth noting that around 10% of these opinions 

stated that data were insufficient for issuing a recommendation about that particular 

health technology. In Germany, G-BA made public 622 dossiers assessing the benefit 

of drugs (§ 35 SGB V assessments) and only 40 assessing the benefit of medical 

devices (§ 137h SGB V assessments); a smaller number was found for IQWiG (424 and 

8, respectively). It ought to be said that whilst both HTA institutions are responsible 

for issuing assessments on the benefit of health technologies, the recommendations 

from G-BA are the binding ones in the scope of the formal P&R process in Germany. In 

Italy, there were 35 HTA reports for MDs available in the AGENAS website and 119 

innovation assessment reports for drugs in the AIFA website. In Spain, AEMPS 

published 283 therapeutic positioning reports for drugs, while from the 630 HTA 

reports available in RedETS website 81 included medical devices in the scope of their 

analysis, from which 12 consisted of an evaluation of a single medical device. NICE – 

the institute responsible for issuing evidence-based recommendations developed by 
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independent committees in the UK – published 503 technology appraisals for drugs 

and 47 medical technologies guidance documents for medical devices. 

The summary of the HTA-based recommendations by jurisdiction for MDs and drugs 

is presented in Table 7.2. 
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Table 7.1 – Regulatory standards on quality, safety, and performance/efficacy for the approval of medical devices and drugs in the EU 

Quality Safety Performance/Efficacy 

Main differences 

Medical devices Drugs Medical devices Drugs Medical devices Drugs 

 Requirements 
on design and 
manufacturing 
depending on 
the class and 
intended 
purpose of the 
device 

 Quality System: 
implementation 
of a production 
quality 
assurance 
system verified 
by a NB 

 Standards on 
qualitative 
and 
quantitative 
composition 

 Compliance 
with GMP 

 Risk control measures and 
safety principles taking 
into account the generally 
acknowledged state of the 
art 

 Compliance with design 
and manufacturing 
information 

 Clinical data sourced from 
clinical investigations or 
studies reported in 
scientific literature, 
published and/or 
unpublished reports, 
clinically relevant 
information coming from 
post-market surveillance 

 Clinical evaluation 
consultation procedure for 
by an independent expert 
panel 

 Data sourced 
from clinical 
trials 

 Non-clinical 
(pharmaco-
toxicological) 
studies 

 Pharmaceutical 
(physicochemic
al, biological or 
microbiological
) tests 

 Performance 
requirements as 
intended by the 
manufacturer 

 Clinical data 
sourced from 
clinical 
investigations or 
studies reported 
in scientific 
literature, 
published and/or 
unpublished 
reports, clinically 
relevant 
information 
coming from post-
market 
surveillance 

 Data 
sourced 
from 
clinical 
trials 

 Source of data on safety and 
performance/efficacy for 
approval between MDs and 
drugs (clinical investigations vs 
clinical trials) 

 The MDR imposes more 
stringent premarket clinical 
data requirements, introducing 
that data used for showing 
safety and/or performance are 
sourced from published peer-
reviewed scientific literature 
and from clinically relevant 
information coming from post-
market surveillance, and 
demanding a summary of safety 
and clinical performance for 
Class III MDs 

 Clinical evaluation of MDs 
under the MDR imposes the 
verification of clinical benefits 
of the device when used as 
intended by the manufacturer 

Abbreviations: EU, European Union; GMP, Good Manufacturing Practices; MD, Medical Device; MDR, Regulation (EU) 2017/745 on medical devices; NB, Notified 
Body. 
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 Table 7.2 – Summary of HTA-supported recommendations in EU5 countries for medical devices and drugs 

Jurisdiction HTA 

institution(s) 

Medical devices Drugs 

France HAS 1,610 opinions on medical devices and other health 

products, from which 163 stated that data were insufficient 

for issuing a recommendation 

2805 recommendations 

Germany  G-BA 
 IQWiG 

 40 § 137h SGB V assessments from G-BA 
 8 § 137h SGB V assessments from IQWiG 

 622 § 35 SGB V assessments from G-BA 
 424 § 35 SGB V assessments from IQWiG 

Italy  AIFA 
 AGENAS 

35 HTA reports (AGENAS) 119 innovation assessment reports (AIFA) 

Spain  AEMPS 
 RedETS 

 81 (out of 630) HTA reports from RedETS include medical 
devices in the scope of the analysis 
 12 reports are specific for a single device 

283 therapeutic positioning reports from AEMPS 

UK NICE 47 medical technologies guidance publications 503 technology appraisal guidance publications 

Abbreviations: AEMPS, Agencia Española de Medicamentos y Productos Sanitarios (Spanish Agency of Medicines and Medical Devices); AGENAS, Agenzia Nazionale 

per i Servizi Sanitari Regionali (National Agency for Regional Health Services); AIFA, Agenzia Italiana del Farmaco (Italian Medicines Agency); G-BA, Gemeinsamer 

Bundesausschuss (Federal Joint Committee); HAS, Haute Autorité de santé; HTA, Health Technology Assessment; IQWiG, Institut für Qualität und Wirtschaftlichkeit im 

Gesundheitswesen (Institute for Quality and Efficiency in Health Care); NICE, The National Institute for Health and Care Excellence; P&R, Pricing and Reimbursement; 

RedETS, Red Española de Agencias de Evaluación de Tecnologías Sanitarias y Prestaciones del Sistema Nacional de Salud (Spanish Network of Agencies for Assessing 

National Health System Technologies and Performance) SGB, Sozialgesetzbuch (Social Code Book); UK, United Kingdom. 
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Discussion 

This study aimed at reviewing and comparing the legal framework in the EU for the 

approval of MDs and drugs. Additionally, it sought to compare the available 

information on the clinical research, as well as the HTA-based recommendations for 

both MDs and drugs in the EU5 countries. It was deemed that a specific analysis of the 

approval of MDs and/or drugs in the EU5 countries was not required, as the proper 

functioning of the EU single market and the free movement of goods is better achieved 

through centralised EU legislation that harmonises standards for MD and drug 

approval across Member States and that allows for relevant stakeholders to efficiently 

function within the EU, fostering a harmonised regulatory environment that 

ultimately benefits EU patients (278, 297). 

Following the results on the regulatory framework of medical devices and drugs in 

their quality, safety, and performance/efficacy dimensions, it is critical to point out the 

different requirements between the clinical data necessary for the approval of MDs vs. 

drugs. In fact, the lower standards for MD approval are a plausible explanation for the 

significantly lower number of manufacturer sponsored clinical studies observed for 

MDs when compared to drugs (see Figure 7.3). As a consequence, comparative 

evidence generation seems to be scarcer for MDs than for drugs, including for high-

risk devices, which are often approved without rigorous clinical studies (298). 

Although figures for device approvals in the EU are not available due to insufficient 

transparency (299), in the United States (US), even when going through the most 

stringent regulatory pathway for high-risk devices, MDs are typically approved based 

on a single non-randomised clinical study without a control group (300, 301). 

Between 2000 and 2011, less than half of studies supporting Food and Drug 

Administration (FDA) approval of high-risk cardiovascular devices included active 

comparators (302). As previously noted, it is expected that the MDR will provide some 

clarity regarding the clinical evidence used in the approval of MDs in the EU through 

the public disclosure of data generated in clinical investigations imposed by the new 

regulation. However, besides the issue of evidence generation for approving the use of 

MDs, there is still the need to consider the scarcity of comparative evidence, which 

may, in turn, impair the correct assessment of MDs within any given healthcare 

system. 

HTA refers to the systematic assessment of the properties, effects, and/or impacts of 

health technology with the main purpose of informing a policy decision making (3). 

Unlike the regulatory approval of MDs and drugs in the EU, technology assessments 

are done at a country level, as they are mostly used for P&R purposes. Despite the 

recent political agreement on the HTA Regulation reached by the European 

Parliament and the Council that will enable joint scientific assessments of treatments 
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and MDs at EU level (303), it is not anticipated that the Regulation will impact on 

Member States' responsibility for the management of their health services. Hence, 

P&R decisions are expected to continue to be a matter of national competence of the 

Member States. A previous study analysing HTA and reimbursement processes in 

countries taking part in EUnetHTA found that, from 58 agencies in 29 countries, 94% 

of countries reported assessing pharmaceuticals and 68% of countries reported 

assessing non-pharmaceutical health technologies (304). In spite of the percentage 

reported by the country HTA agencies, it is critical to reflect on the relative numbers 

of assessments performed and published for MDs and drugs. On that topic, we found 

that a substantially lower number of published HTA reports or recommendations for 

MDs than for drugs in all analysed jurisdictions. Noteworthy, HAS in France reported 

that data were insufficient for issuing a recommendation for 10% of the assessed MDs, 

whereas this was never a problem identified for drugs (see Table 7.2). It is also 

meaningful to reflect upon the issue of economic evaluation, one of the main 

components of technology assessments. Although the general methods for conducting 

economic evaluations are well established, most guidelines were written with drugs in 

mind and they typically rely on randomized controlled trial (RCT) data for the 

assessment of relative treatment effect (305). MDs can therefore face hurdles in their 

fair assessment, seeing that their clinical trials are often non-randomized, non-

blinded, do not have active control groups and lack hard endpoints (270). Drummond 

et al. (306) identified six reasons for why devices are different from drugs when it 

comes to economic evaluations: (i) many devices are diagnostics, (ii) challenges 

undertaking RCTs, (iii) efficacy often depends not only on the device itself, but how it 

is used, (iv) wider economic implications vs. drugs (e.g. training or organizational 

context impacting the effectiveness of the device), (v) equivalent clinical evidence may 

not be available for all products, hindering comparisons, and (vi) prices are much 

more likely to change over time because of the market entry of new products. Despite 

these challenges and the differences in the mandates and competencies of individual 

HTA agencies, additional data generation may be requested for coverage and 

reimbursement, as the regulatory framework should not be accepted as an argument 

for using lower levels of clinical evidence in technology assessments and decision 

making (275). Specific guidelines and recommendations for conducting technology 

assessments for MDs have since been published (307-309). 

Some limitations of this study should be pointed out. Although we aimed at assessing 

the implications that the regulatory framework may have on clinical and HTA 

research, we did not have any relevant quantitative data for establishing a causality 

effect between one and the other. Moreover, we simply quantified the comparative 

research output for MDs and drugs, while no judgment was made about the quality of 

that research.  Also, HTA methodology typically uses all best available evidence and 

not only industry funded phase II and phase III trials. For MDs in particular, HTA often 
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uses evidence from non-manufacturer studies that are not typically phase II and III. 

Although there are some limitations through searching only ClinicalTrials.gov 

database for medical device evidence, this approach also shows the lack of investment 

in developing primary evidence for the approval of MDs. 

From the performed analysis, it was possible to identify some points for improvement 

and, as such, to issue some policy recommendations that could promote an integrated 

evidence-based assessment system that could result in a more efficient allocation of 

resources in the healthcare systems. 

First and foremost, the classification of MDs. In the Results section we elaborated on 

the classification of MDs in regulatory terms and we aimed at defining and confining 

our analysis to what we labelled as interventional medical devices. In our view, these 

are the MDs that best match drugs and their purpose. Those MDs could benefit from a 

similar environment to that of drugs. While the classification of MDs from an HTA 

perspective will not be an easy nor consensual task, work has already been made on 

that topic (310). 

The regulatory processes for MDs should be more closely aligned to the HTA 

framework. For instance, a MD that would be used for the treatment of a disease, 

injury or disability in the same target population as a drug (e.g. heart failure or 

diabetes) should be evaluated on the same outcomes. For that to happen, clinical 

studies aimed at generating evidence for devices should be forced to do so implicitly. 

The best way for achieving this goal is through a mandatory technology assessment of 

interventional devices (or a subset), similarly to what happens for drugs in many 

countries. The manufacturer would then be forced to think about the intended 

purpose for the MD from a clinical perspective and how that same device would prove 

its worth. Is there any clinical development of an oncology drug that would even risk 

not collecting evidence on the overall and progression-free survival? The assessment 

of the MD could not only serve the purpose of deciding upon reimbursement, as it 

could also impact the price of the MD. After all, this is what happens with drugs and 

what is considered everywhere to be the most efficient way of allocating healthcare 

resources. 

Acknowledging the difficulties of the HTA of some MDs, conditional coverage and 

post-approval evidence development should be put in place. In a way, the MDR 

already foresees it, although very much focused on the safety dimension. Conditional 

coverage would imply the establishment of high quality registries that would entail 

periodic revaluations over time. Real world evidence should become a fundamental 

source of data for the assessment of MDs. The creation of high quality registries would 

serve more than the purpose of revaluating MDs, as the data contained in those 
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registries is frequently used in other areas of research aimed at informing decision 

making. 

In summary, we are calling for a conceptual change in the way MDs are perceived in 

the healthcare sector, especially when they could fall under the umbrella of 

interventional devices. There is an urgent need for seeing interventional MDs as 

treatments and, as any other treatment in the healthcare space, assess them with the 

best available methodology. An integrated path for the life cycle of MDs, similarly to 

what happens with drugs, needs to be designed and validated in the upcoming years. 
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Appendices 

Online Appendix 7.1 

Available at: 

https://drive.google.com/file/d/1cRo6lpbtDamQ9hEtlEuLgmXqo4bVfeUW/view?usp

=sharing 

 

https://drive.google.com/file/d/1cRo6lpbtDamQ9hEtlEuLgmXqo4bVfeUW/view?usp=sharing
https://drive.google.com/file/d/1cRo6lpbtDamQ9hEtlEuLgmXqo4bVfeUW/view?usp=sharing
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Chronic diseases are responsible for a high disease and economic burden and they are 

the main cause of mortality worldwide (2, 4-7). In keeping with the World Health 

Organisation’s recommendation to delineate comprehensive strategies for reducing 

death from chronic diseases more effectively, many healthcare systems started 

looking into digital technologies as a solution for managing chronic diseases and thus 

improving public health (8, 57). Early warning systems – timely surveillance systems 

that collect information on diseases in order to anticipate health deterioration and to 

trigger prompt clinical intervention – are considerably enhanced by the technological 

developments in recent years and they are seen as a promising solution for effective 

chronic disease management (55, 56). Modern healthcare systems often resort to 

health technology assessment methods to systematically evaluate the properties, 

effects, and impacts of new health technologies for informing policy and decision 

making (3, 72, 73). Economic evaluation – one of the critical components of health 

technology assessment – aims at providing evidence that rationally helps to decide 

upon healthcare resource allocation within a value for money framework (81). 

The aim of this thesis was to investigate the methodology used in the economic 

evaluation of early warning systems for chronic disease management and to 

contribute to the field by developing a more generic and versatile health economic 

model for assessing the cost-effectiveness of early warning systems. 

Thesis pathway and rationale 

What exactly are early warning systems? 

An overarching definition of early warning systems (EWS) was required in the scope 

of this thesis. The United Nations define EWS in the context of Climate Action as an 

adaptive measure for climate change, using integrated communication systems to help 

communities prepare for hazardous climate-related events (311). A quick search on a 

well-known Internet browser shows that the top results returned for EWS are related 

to geohazards such as landslides, volcanoes, and earthquakes. Other scientific areas 

also use the term EWS: a paper in the field of international monetary 

economics/international finance – ironically published in 2006 – presents the 

development of a new EWS model for predicting financial crises (312). Digging deeper 

into the EWS definition unveiled a publication from the United Nations Development 

Programme, which identifies four key components of EWS: risk knowledge, 

monitoring and warning services, dissemination and communication, and response 

capability (313). These elements are the pillars of the EWS concept, regardless of the 

point of view from which it will be studied. 

When translating these elements to the field of health care, after acknowledging a pre-

identified risk, we conceptualised EWS in this thesis by adapting the three remaining 
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three main elements and defining them as such: (i) monitoring and collection of 

clinical data (e.g. vital signs, biomarkers, self-reported health status); (ii) a framework 

allowing for the identification of patterns and trends in these data, indicating 

significant changes in the health status of the patients; and (iii) the establishment of 

pre-determined conditions – such as the existence of statistically uncommon patterns 

in the data, threshold values or ranges for specific parameters within the collected 

data, or the presence of a particular combination of signs and symptoms – that trigger 

an alarm and follow-up actions (59). Although this is not intended to be a clear-cut 

definition of EWS, any health technology comprising the three previously identified 

elements was interpreted as an EWS in the context and throughout the thesis. 

Published decision analytical models for the economic evaluation 

of early warning systems 

The first step of the research consisted of investigating the state-of-the-art of decision 

analytical models (henceforth simply referred to as models) for the economic 

evaluation of EWS for chronic disease management. For that purpose, a systematic 

literature review of the references catalogued in nine key electronic databases was 

performed. None of the searched databases included the exact expression “early 

warning systems” in their thesaurus terms. Therefore, considering the interpretation 

given to EWS in the context of the thesis, in order to ensure that no relevant studies 

were being missed, a sensitive search strategy describing EWS through a wide variety 

of related search terms was adopted (see Appendix 2.1). This search returned a large 

number of references with a great deal of false positives, i.e. studies that did not match 

the inclusion criteria but were identified by the broad search strategy. For that reason, 

the scope of the review had to be narrowed from chronic diseases to chronic heart 

failure, lest the amount of retrieved references would become unmanageable. Heart 

failure (HF) was the chosen disease, as a result of the available access to the database 

from the Trans-European Network-Home-Care Management System (TEN-HMS) study 

(314) and the outlook of using those data in subsequent analyses included in the 

thesis. 

Chapter 2 presents the systematic literature review of cost-effectiveness models for 

the management of chronic heart failure. The study described the general and 

methodological characteristics of the reviewed models. The results were reported in 

accordance to the framework defined in the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines published in 2009 (109) – as these 

were in force at the time of publication of the review included in the thesis –, although 

a recent update of the PRISMA guidelines has been published in 2021 (315). 

A quality assessment of the methodological characteristics of the included models was 

performed using the checklist for the critical appraisal of decision analytic models for 
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health technology assessment developed by Philips et al. (110). This assessment 

helped to determine that models were unsatisfactory in the consideration and 

discussion of any competing theories regarding model structure and disease 

progression, the identification of key parameters and the use of expert opinion, and 

the assessment of the four types of uncertainty (methodological, structural, 

heterogeneity, and parameter). Describing the different approaches used in published 

models also showed that the most frequently used methodological approaches in 

decision analytic modelling – including the model type: decision trees and Markov 

models – did not seem adequate for the assessment of EWS. These conclusions 

provided useful insights for the development of the model presented in Chapter 5 of 

the thesis. 

Critical events: prediction and impact 

By definition, the relevant health technologies in the scope of the thesis provide an 

early warning for an occurrence, which is normally a critical event that patients are at 

risk of experiencing and that should be predicted and avoided from a clinical 

perspective. It is vital, therefore, to identify the event(s) of interest in each of the 

clinical situations being investigated. 

In the instance of HF, one can think of a myocardial infarction as the event of interest, 

while in chronic obstructive pulmonary disease patients we may be interested in 

predicting and avoiding exacerbations, which normally result in negative health 

outcomes and increased costs (316, 317). However, when considering that the focus 

of the thesis is the management of chronic diseases, from a broader perspective, we 

can also think of an event of interest such as hospitalisation, transversal to most 

chronic diseases, and that is desirably avoided in the management of chronic disease 

patients who often have numerous comorbidities and that tend to be of older age. 

Following on the considerations above, Chapter 4 describes the concept of a 

diagnostic algorithm (DA) for estimating the risk of HF-related hospital admissions 

using an ambulatory telehealth programme that combined clinical software and in-

home remote monitoring technology (the EWS under analysis). The algorithm intends 

to provide healthcare professionals with a global risk score and, ultimately, using that 

score to define follow-up actions based on evidence-based thresholds of the risk of 

hospitalisation. 

Hospitalisation in HF is a consequence of acute decompensated heart failure, a clinical 

condition characterised by a rapid onset or worsening of symptoms or signs of HF that 

requires urgent evaluation and treatment and that typically leads to an urgent 

hospital admission (10-12). Since the risk for hospitalisation depends on the 

individual disease and patient characteristics (34, 35), it is precisely where the 
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previously introduced concept of an early warning system comes into play. Looking 

retrospectively at the data generated by the EWS under analysis, which contained 

daily measurements of patient and disease characteristics (body weight, systolic blood 

pressure, diastolic blood pressure, heart rate, and blood oxygen saturation and 

answer to surveys administered remotely on oedema, fatigue, shortness of breath, and 

activity status) and the information on hospitalisation events, it was possible to 

develop an algorithm that could predict hospitalisations based on the patient and 

disease characteristics. The algorithm is based on a series of different logistic 

regression models that use the different characteristics (e.g., vitals, surveys, etc.) for 

calculating the risk of being hospitalised. The logistic regression models are combined 

in a final risk score by taking their average of their results. This was referred to as an 

ensemble algorithm, which allowed for overcoming the main constraint found in using 

a simple logistic regression model with the available dataset, i.e. the need to feed the 

model with a complete feature vector in order to generate a risk score. 

Another critical feature of early warning systems is the existence of an alarm when the 

calculated probability of hospitalisation goes above a certain risk score threshold. In 

this framework, we can interpret the alarm as a diagnostic test: if an alarm is raised 

(above the threshold), the test is positive; if not (below the threshold), the test is 

negative. We can then consider the event of interest (hospitalisation) as “having 

disease/condition” and not being hospitalised as “not having disease/condition”. 

Table 8.1 presents the confusion matrix for the described situation. 

Table 8.1 – Confusion matrix for alarm and hospitalisation 

 Hospitalised Not hospitalised 

Alarm True positive False positive 

No alarm False negative True negative 

 

From the confusion matrix above, type I (false positive) and type II errors (false 

negative) are clearly defined, which allows us to calculate the statistical measures of 

the performance of the algorithm: sensitivity (also known as true positive rate, recall, 

or probability of detection) and specificity (also referred to as selectivity or true 

negative rate). As any other diagnostic test, sensitivity and specificity will depend on 

the risk score threshold used for the algorithm and they are inversely proportional 

between themselves (i.e. as sensitivity increases, specificity decreases and vice versa). 

Plotting sensitivity against 1 – specificity at various thresholds results in a receiver 

operating characteristic (ROC) curve. 

Depending on the probability of being hospitalised calculated by the algorithm and the 

consequential alarm, it is possible to conceive follow-up actions/pathways. Although 
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it was not the goal of the development of the algorithm to assess the optimal follow-up 

actions after an alarm, an exemplificative diagram of possible pathways after an alarm 

is raised by the EWS is shown in Figure 8.1. 

 

 

Figure 8.1 – Follow-up pathways of an alarm in an early warning system 

In regards to the determination of the correct operating point for the alarm, Chapter 

4 uses the therapeutic threshold concept (177) for calculating the risk score threshold 

for the probability of being hospitalised above which an alarm should be raised. When 

applying the monetary value of a planned hospitalisation and an unplanned 

hospitalisation as the measurement of the value of the outcomes (using the length of 

hospital stay as a proxy for distinguishing between hospitalisation types), a patient 

should be followed-up after an alarm when his/her probability of being hospitalised, 
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as calculated by the algorithm, is higher than 11.7%. However, it should be stresses 

that using another measurement for the value of the outcome (e.g., quality of life) 

could lead to a different result for the correct operating point for the alarm. 

For a full assessment of the added value of the EWS, we ought to evaluate the entire 

package of interventions, including the home telemonitoring system, the diagnostic 

algorithm, the cut-off value for the alarm to go off, and the clinical intervention that 

follows the alarm. Consequently, a full cost-effectiveness analysis that can properly 

assess the costs of implementing and using the technology and the anticipated 

effectiveness resulting from the early detection of disease deterioration and the 

subsequent reduction of hospitalisations is required. The conceptual modelling 

approach to such a full cost-effectiveness analysis was described in Chapter 5.  

With a full cost-effectiveness analysis in mind, considering hospitalisation avoidance 

as one of the main effects of early warning systems, the impact of hospitalisations on 

health-related quality of life (HRQoL) in patients with chronic heart failure was 

explored in Chapter 3. The impact of nonfatal hospitalisations on the HRQoL for a 

cohort of patients previously diagnosed with heart failure was estimated by 

calculating the difference in utility measured using the EQ-5D-3L in patients that were 

hospitalised and had records of utility before and after hospitalisation. The mean 

difference between HRQoL measurements pre and post hospitalisation was found to 

be 0.020 [95% CI: -0.020, 0.059], when measured with the EQ-5D index, while there 

was a mean decrease of -0.012 [95% CI: -0.043, 0.020] in the utility measured with the 

visual analogue scale. Differences in utility according to the primary cause for 

hospitalisation were identified: hospitalisations due to respiratory/chest infection 

and ventricular tachycardia showed an improvement in quality of life when 

considering the index utilities measured before and after admission, while hospital 

admissions attributed to atrial fibrillation and myocardial infarction showed a 

decrease between index utilities measured before and after hospital admission. 

The model: a discrete event simulation approach 

The systematic literature review presented in Chapter 2 revealed that published 

models had considerable drawbacks for the assessment of the cost-effectiveness of 

early warning systems for heart failure management, which can be extrapolated to the 

broader concept of chronic disease management. More specifically, decision trees and 

Markov models – the model types used in all identified studies – failed to capture a 

critical aspect in chronic disease management done with early warning systems: the 

impact of individual patient and disease characteristics on the outcomes. 

Chapter 5 presents the construction and validation of a discrete event simulation 

(DES) model that is able to model heart failure patients managed with usual care or an 
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EWS (with or without a diagnostic algorithm) and to account for the impact of 

individual patient and disease characteristics on their outcomes. The model was 

developed using patient-level data from the TEN-HMS study, coded using the 

programming language R, and validated along the lines of the Assessment of the 

Validation Status of Health-Economic decision models tool (AdViSHE). The model 

includes 20 patient and disease characteristics and generates 8 different outcomes. 

The use of DES proved to be a suitable approach for modelling the analysed patient 

population. That type of models, in allowing for individual patient events to be 

recorded, is generally appreciated by decision-makers in their appraisal of economic 

evaluations. First, because creating a patient history simplifies the explanation of the 

general lines of modelling to people who are not specialists in decision analytical 

modelling itself but are familiar with the output generated by these studies. And 

second, because DES allows for the exploration a variety of hypothetical scenarios, 

which is sometimes impossible using the more common Markov models and decision 

trees. A frequent problem in economic evaluations is the rigidity of the models and the 

inability of the developer to change them readily to answer “what if” questions. On a 

different note, it should be mentioned that the flexibility of the programming software 

amply facilitates the adaptation and debugging of the model. 

However, DES models also have their perils. The most flagrant of them all is arguably 

their data requirements. Primarily, the need of patient-level data: even when those 

data exist, they are frequently incomplete or of poor quality, which generally leads to 

the need for some assumptions regarding the data or to the exclusion of patients with 

missing values, leaving the analyst to face some dilemmas on how to use the data at 

disposal in the best possible way. A more comprehensive examination of the strengths 

and limitations of DES models was outlined in the Discussion section of Chapter 5. 

The health economic model was developed using RStudio, an integrated development 

environment for the programming language R. Both R and RStudio are free and open-

source software for data science, scientific research, and technical communication, 

with the mission to enhance the production and consumption of knowledge by everyone, 

regardless of economic means, and to facilitate collaboration and reproducible research, 

both of which are critical to the integrity and efficacy of work in science, education, 

government, and industry. As previously noted, this thesis had the goal of developing a 

generic and versatile health economic model for assessing the cost-effectiveness of 

early warning systems. Using R software allowed us to build a model that embodies 

that aspiration, both in terms of the adaptability and the availability of the model for 

interested parties: adaptability to other diseases and early warning systems, by 

changing the critical events for the specific disease without changing the core model 

structure; availability through making the code available to others in a development 
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environment that is open source and free-of-charge 

(https://github.com/fernandoalbuquerquealmeida/EWS_HF_DES_model). 

Cost-effectiveness results using the model 

Chapter 6 uses the model described in Chapter 5 for assessing the cost-effectiveness 

of a home telemonitoring system and a diagnostic algorithm in the management of 

heart failure in the Netherlands. Three interventions were included in the cost-

effectiveness analysis: (i) usual care (UC) – patient management plan implemented by 

the patient’s primary care physician (314), (ii) HTM (as described in the TEN-HMS 

original publication (314)), and (iii) HTM with the addition of a DA (HTM+DA). 

The Dutch guidelines for economic evaluations in healthcare require a societal 

perspective, including all costs inside the healthcare sector, patient and family, and 

other sectors, regardless of who is paying for those costs, productivity losses assessed 

using the friction cost method, and future unrelated medical costs (210). 

The base-case analysis revealed that HTM+DA extendedly dominates HTM and it has a 

deterministic incremental cost-effectiveness ratio (ICER) versus UC of €27,712 per 

quality-adjusted life year (QALY). The scenario where a healthcare perspective was 

taken resulted in an ICER between HTM+DA and UC of €14,408/QALY, which shows 

that many of the costs resulting from increased life expectancy fall outside of the 

healthcare sector although they take an economic toll on the wider society. 

The cost-effectiveness threshold in the Netherlands depends on the burden of disease 

as measured by the fraction of QALYs that people lose relative to the situation in 

which the disease had been absent – referred to as proportional shortfall. The 

appropriate cost-effectiveness threshold for the analysed patient population was 

€80,000/QALY. At this threshold, probabilistic sensitivity analysis determined that 

HTM+DA had a 96.0% probability of being cost-effective. 

The guidelines for economic evaluations in the Netherlands require the calculation of 

the expected value of perfect information (EVPI) when the probability that the 

intervention is cost-effective at the appropriate cost-effectiveness threshold is lower 

than 100%. The calculated EVPI per patient was €341. With an estimated number of 

eligible patients for the HTM-based interventions in the Netherlands of 253,118 

patients for the period 2020-2024, the population EVPI was estimated at €86,383,575 

(after discounting). Two main things should be pointed out in this regard. First, we did 

not have the standard error for many of the variables included in the model and we 

assumed 10-20% of the mean for that value, which, despite being usual in cost-

effectiveness analyses, is a procedure that artificially imposes the extent of the impact 

of parameter uncertainty in the model results. Second, the deterministic incremental 

net monetary benefit (NMB) of HTM+DA versus UC at a €80,000/QALY was estimated 

https://github.com/fernandoalbuquerquealmeida/EWS_HF_DES_model
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at €34,207. Thus, the EVPI corresponds to circa 1% of the NMB of implementing the 

HTM+DA intervention, which can be seen as quite a low risk of making the wrong 

decision due to uncertainty. 

The ability to include the effect of a diagnostic algorithm in the overall assessment of 

the cost-effectiveness of the EWS through the use of the figures for sensitivity and 

specificity is one of the innovative characteristics of the model presented in Chapter 

5. But while the values for sensitivity and specificity give an indication of the accuracy 

of the diagnostic algorithm as a diagnostic test, they do not provide any information 

about the operating point at which they result in the best cost-effectiveness ratio for 

the intervention as a whole. The model allowed for calculating the cost-effectiveness 

of the HTM+DA intervention at different operating points of the ROC curve through 

using different combination of sensitivity and specificity or, in other words, by 

weighting the relative costs and effects of the false positives and the false negatives. 

But since sensitivity and specificity are not independent variables, the optimal 

operating point within the ROC curve ought to be found iteratively, as there are a 

great deal of calculations running in the background of the model and it would be 

mathematically very hard to solve all those equations for sensitivity and specificity. 

Further, in spite of using a patient-level model, the cost-effectiveness of the algorithm 

in the model is included as the average of the population, as it uses the figures of 

sensitivity and specificity of the whole population and does not calculate the 

hospitalisation risk for each individual simulated patient. Increasing the sensitivity of 

the algorithm by setting a lower threshold for the alarm to go off, which entails an 

increase in the false positive rate (decreased specificity), resulted in a higher number 

of avoided hospitalisations, life years, and QALYs, but with higher total costs. 

Contrarily, decreasing the sensitivity (i.e. setting a higher threshold for the alarm) 

resulted in lower costs and worse health outcomes. From the previously described 

exercise, the model proved suitable for analysing the cost-effectiveness of the 

HTM+DA intervention for each combination of sensitivity and specificity within the 

ROC curve of the diagnostic algorithm that was used in the analysis. 

Another key feature of the DES model is the ability to assess the cost-effectiveness of 

specific subgroups of patients with relative ease. The model can be used for 

performing subgroup analyses by defining subgroups of interest in the whole patient-

level database by creating a model population through randomly sampling patients 

from that subpopulation. We analysed a wide range of subgroups and we found that 

the subgroup of NYHA class IV patients was the one that recorded the highest 

deviation from the base-case analysis results, with an ICER of €52,727/QALY 

(+90.3%) for HTM+DA vs. UC. Conversely, the subgroups with the better cost-

effectiveness ratios were patients younger than 65 years of age and patients belonging 

to NYHA class I (€22,830/QALY [-17.6%] and €22,870/QALY [-17.5%], respectively). 
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In respect to the subgroup analyses, as discussed in greater detail in Chapter 6, it is 

essential to highlight that the interpretation of subgroups in patient-level simulation 

models is not entirely straightforward, as every subgroup created from the baseline 

population by restricting the values for the variables of interest is likely to generate 

differences in the remaining patient and disease characteristics when compared to the 

model population used in the base-case analysis. Thus, the observed changes in the 

cost-effectiveness versus the base-case results are not only due to the characteristic 

controlled in the subgroup (e.g., age), but also from the other patient and 

characteristics that may be associated with it (i.e. older patients may also have other 

comorbidities like diabetes or chronic obstructive pulmonary disease or belonging to 

more advanced stages of disease burden like NYHA class IV). 

The available body of evidence for early warning systems 

The economic evaluation of health technologies implies having access to a great deal 

of data. Not only the data generated from clinical trials, but also the data from 

observational studies that may need to be generated for determining the effectiveness 

or safety in a real world setting. Health economic models are a complicated 

mathematical framework for performing cost-effectiveness analyses that aim at 

including all relevant inputs and make use of all the available body of evidence for 

estimating the value and uncertainty around those inputs. 

Early warning systems are normally medical devices, especially when seen from a 

technological point of view. Medical devices are traditionally less regulated than drugs 

and the standards of evidence generation and collection for their market access are 

generally lower. Having access to lesser quality data or not having access to those data 

at all constitutes impairment for the accurate assessment of the cost-effectiveness of 

medical devices (i.e. EWS). 

Chapter 7 presents a review and comparison of the legal framework for the approval 

of medical devices and drugs in the EU and it presents the available information on 

manufacturer sponsored clinical studies and HTA-supported recommendations for 

medical devices and drugs in those same jurisdictions. 

Since the approval of medical devices and drugs in the EU is centralised (exceptions 

do exist for drugs, but they are not relevant in the context of this analysis), the 

standards for the approval of devices and drugs in terms of their quality, safety, and 

performance (term used for medical devices) / efficacy (term preferred for drugs) 

were analysed using EU legislation. 

HTA-supported recommendations for devices and drugs are normally issued by 

national agencies in the EU, as these are normally used for pricing and reimbursement 

purposes, which are decided at a member state level and not centrally. Thus, the HTA-
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supported recommendations from the HTA agencies of the EU5 countries were 

analysed  (although the UK has formally withdrawn from the EU, the UK was 

considered a EU5 country, as most of the data included in the study pertain to a period 

in which the UK was a member state of the EU). 

The review of the legislation identified different standards in the requirements for the 

approval of devices and drugs on their quality, safety, and performance/efficacy 

dimensions as well as substantially lower number of manufacturer-sponsored clinical 

studies and HTA-supported recommendations for medical devices versus drugs and 

an indication of lower standards of evidence used in recommendations for medical 

devices. These findings substantiate some of the challenges encountered during the 

research performed in the scope of the thesis. Although there is a lot of information on 

digital technologies (electronic processes and communications, the internet, and other 

information technologies) – usually labelled under eHealth, or mHealth if involving 

mobile devices –, the publications on those topics are normally policy related and they 

use mainly qualitative research. The lack of clinical studies for the approval of medical 

devices weakens the body of evidence available for the correct assessment of medical 

devices in an HTA/economic evaluation framework, especially when they should be 

compared to drugs that have the same therapeutic goal and that are targeted at the 

same disease and/or patient population. 

Challenges and limitations 

The methods and findings of the thesis were discussed in detail in each of the 

corresponding chapters. This section intends to discuss the main challenges and 

limitations regarding the thesis as a whole and in the context of its objectives. 

Scope of the model 

As previously stated, the premise of this thesis was the possibility of developing a 

generic model for assessing the cost-effectiveness of early warning systems. This 

prospect was grounded on the identification of common mechanism of action of EWS 

– periodically measuring individual patient characteristics in order to anticipate 

health deterioration and to trigger prompt clinical intervention –, regardless of their 

target disease. However, the work that led to the development of the model and the 

model itself are focused on heart failure as the chronic disease and home 

telemonitoring as the EWS intervention. There are two main reasons for having taken 

this approach. 

Firstly, as previously discussed, we restricted the systematic literature review to 

chronic heart failure, although it is likely that at the time of the review there were 
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published models for other chronic diseases (e.g., COPD, diabetes) that could provide 

valuable information for the development of our own model. 

Secondly and more importantly, the availability of high-quality data is often a 

bottleneck in the development of valid health economic models. Since we had access 

to a comprehensive patient-level database of a home telemonitoring system used in 

the management of heart failure, it seemed obvious to concentrate our efforts in that 

disease and start off with a strong base for the inputs for a model that was likely to be 

demanding in terms of data requirements. 

That said, the findings in the thesis do not contradict its initial premise and they 

definitely contribute to the overall objective of reaching a generic model for chronic 

disease management using EWS, especially when taking into account the type of 

model and the coding platform used for its development. The DES simulation and the 

fact that the model consists of code written in R allow for adapting the model to other 

EWS interventions and diseases, as the core model structure can remain fairly similar. 

The time-to-event concept of the model is adaptable to other diseases and EWS 

interventions, as the event of interest that is being predicted and avoided by the EWS 

can be changed, as well as the regression equations predicting those events. Inevitably 

the code needs to be changed, but the gist of the code is a good starting point for 

future modelling endeavours for EWS used in the management of other chronic 

diseases. 

Data used in the model 

Although we had access to the comprehensive database generated in the TEN-HMS 

study (314), those data had some limitations, mainly derived from the small sample 

size. 

Given the DES nature of the model, patient-level data were a requisite. The database 

consisted of a total of 426 subjects, split into 168 for home telemonitoring, 173 for 

nurse telephone support, and 85 for usual care. Since nurse telephone support was 

not an intervention of interest in the context of the thesis, those patients were not 

used for estimating time-to-event regression equations, although the full 426 subjects 

were included for drawing the simulated model population – justified by the 

randomised nature of the trial. While the outcomes from the nurse telephone support 

arm were not usable in the modelling scope of the thesis, the baseline characteristics 

of those patients are not proven to be different from the other two arms and using 

them in the simulation resulted in a larger population, thus decreasing the uncertainty 

around the patient baseline characteristics. 
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Regression equations 

For the estimation of the regression equations predicting time-to-death and time-to-

hospitalisation we used the 14 patient and disease characteristics that were deemed 

significant independent predictors of mortality in HF patients in the study by Pocock 

et al. (33). The TEN-HMS dataset was fairly complete, but missing data in any of the 14 

characteristics used in the regression equations would result in excluding the patient 

from the analysis (see Online Appendix 5.1). Due to the small number of patients 

available for estimating the regression equations, this was not an option in our study. 

As such, we replaced missing data with the average of the whole TEN-HMS population, 

although we know that those were not the actual values for those patients if they 

would have been registered in the database. There are other techniques used for 

replacing missing data in health economic studies (227-231). We did not test whether 

handling missing data in a different way would significantly change the results of the 

model. 

The issue of missing data also pertains to the logistic regression equation predicting 

death in hospital. For that particular regression equation there is the additional issue 

of determining the correct covariates for the model. In our study we used age, gender, 

previous history of myocardial infarction and/or chronic atrial fibrillation, 

comorbidities (diabetes and/or COPD), and the number of previous hospitalisations. 

Other covariates can be argued to have an impact on in-hospital mortality. Again, due 

to the small number of patients – which further shrinks for the subgroup of patients 

that die in the hospital –, using covariates based simply on the statistical significance 

of the estimated coefficient can be misleading and we chose clinical reasoning over the 

mathematical one. 

Concerning time-to-hospitalisation, there is a limitation that also stems from the low 

number of patients in the dataset. The time-to-first-hospitalisation may not be the 

same as the time-to-second-hospitalisation and so forth. However, the number of 

patients in the database that experience consecutive hospitalisations is ever 

decreasing. A decision had to be made between assuming that the time-to-

hospitalisation is the same regardless of how many previous hospitalisations a 

particular patient has experienced or to increase the uncertainty of the estimate for 

the time-to-hospitalisation with every increasing hospitalisation number. We assumed 

that time-to-hospitalisation was the same regardless of number of previous 

hospitalisations, as the number of patients experiencing multiple hospitalisations 

quickly dropped, thereby leading to highly uncertain estimates beyond the time-to-

first-hospitalisation. 



Chapter 8 

230 

Utilities 

Utilities are a critical part of health economic models. The utilities used in the model 

were estimated elsewhere (205), in a study that also used the TEN-HMS dataset. 

Utilities reported in that study depended on the NYHA class of the patient, although 

we did not model the change of NYHA class in the simulation. Thus, since the critical 

event predicted in the model is hospitalisation, we aimed at determining the impact of 

hospitalisation on patient utility (see Chapter 3). The results of that study ended up 

not being used as an input in the model. There was evidence of utility changes due to 

hospitalisation, but the direction of those changes greatly depended on the reason for 

hospitalisation, which was not determined in the simulation. Further, the results of 

the impact of hospitalisation in utilities showed that there were some inconsistencies, 

as the TEN-HMS trial was not designed for that particular purpose and there were 

uncontrolled variables in the utility measurements pre- and post-hospitalisation. For 

instance, the utility measurements were periodical (every 4 months), regardless of the 

time of the hospitalisation in relation to utility measurements. 

Resource use and costs 

A distinction should be made between the data used for resource use and costs in 

Chapter 5 and Chapter 6. The data used in the construction and validation of the 

model (Chapter 5) were overly simplified, as the focus was not to provide an accurate 

cost-effectiveness estimate but rather to assess whether the model was able to 

generate credible outcomes. On the other hand, the data used in Chapter 6 had a 

higher level of detail and they were suited to the particular setting of the Netherlands. 

In that sense, the cost-effectiveness results of each chapter should be interpreted in 

line with the previous explanation: in Chapter 5 they should be loosely compared to 

other studies for the purpose of validating the model, while in Chapter 6 they should 

be usable for the purpose of decision making about the home telemonitoring system 

and a diagnostic algorithm in the management of heart failure in the Netherlands. 

Sensitivity and specificity: population vs. individual 

The conceptualisation of the EWS and the diagnostic algorithm was explained in detail 

in the Conceptualisation of early warning systems and the diagnostic algorithm for the 

management of heart failure in Chapter 5. The inclusion of the effect of the diagnostic 

algorithm was done through the measures for sensitivity and specificity. It should be 

noted that the figures for sensitivity and specificity pertain to the population and not 

the individual. At a first glance it seems an inconsistency to use these figures when we 

are using a DES model, which has the big advantage of being able to assess the effect of 

patient-level characteristics on the clinical and economic outcomes generated by the 

model. So, it would seem logical to use the patient characteristics to calculate the 

probability of being hospitalised – using, for instance, a logistic regression – and to 
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model the patient pathway according to the calculated probability and the thresholds 

previously defined for taking any particular action for the patient. However, the ability 

to use the actual values of the patient characteristics in real time (at shorter time 

intervals, to be more precise) is not straightforwardly implementable in the model. In 

order for that to happen, the model should be able to predict the trends/evolution of 

each of the patient characteristics as regularly as the diagnostic test is performed by 

the algorithm. Although we tried to estimate the evolution of patient characteristics 

using the TEN-HMS dataset, this was not possible, as we are dealing with 14 variables, 

which are often correlated and for which we only had quarterly measurements. Using 

daily values for each of the characteristics, although conceptually desirable, would 

introduce noise in the model that would be difficult to explain and that could make it 

harder to identify the signal from the noise. 

Scarcity of data sources 

Besides the limitations of the TEN-HMS dataset discussed above, the lack of other 

reliable data sources should be pointed out. When looking for data that could inform 

the model, we were inevitably confronted with the lack of data concerning early 

warning systems and diagnostic algorithms. Notably, we were unable to find 

alternative patient-level datasets to validate the model against the outcomes 

generated using those input data. The alternative to split the data from the TEN-HMS 

dataset and to use one part for the model training and the other part for the model 

validation was impossible due to the small size of the sample, which would raise 

questions concerning the validity and certainty of generated results from either of the 

sub-datasets. 

Also, ROC curves of diagnostic algorithms were not always available, even when those 

algorithms were described in scientific publications. We used the ROC curve published 

by Koulaouzidis et al. (244), although the diagnostic algorithm presented in the 

publication was not used for the same intervention as we investigated and they did 

not use the whole array of variables that we used for estimating the regression 

equations in our model. 

That said, the challenges encountered in getting access to other data sources were the 

basis for the development of the hypothesis that the lower standards for the approval 

of medical devices when compared to drugs could be hindering the correct 

assessment of those devices (in this case, EWS). In fact, that hypothesis triggered the 

work that was presented in Chapter 7, where we present evidence that the 

hypothesis was true. 

The discussion above concerns the scarcity of data specific to the model developed in 

this thesis. However, there are wider limitations of modelling that relate to their 
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inherent structure and the availability of data for describing that same structure in 

mathematical terms. 

Model features: the inevitable dilemma of simplifying reality 

In the words of George E. P. Box: “All models are wrong, but some are useful”. Although 

a commonplace, this statement could not be closer to the truth. The reason why all 

models are wrong is the inevitable need for simplifying reality, i.e. to focus the model 

on its key factors when, in fact, we are fully aware that we are disregarding other 

factors that may have an impact on the outcomes we are trying to simulate. From a 

pragmatic approach, model development and the features included in the model 

present a trade-off between accuracy (loyal representation of the reality) and 

technical feasibility. The feasibility issues often derive from the lack of adequate data 

to model some phenomena in a mathematical framework. 

Working on a DES framework, it is easy to envision a super model that simulates 

every step of the patient pathway from the moment he/she enters the model until 

his/her death. For instance, our model could include equations for predicting the 

change over time for every patient and disease characteristic, which would result in 

an update at every event. Based on the updated characteristics, medication could be 

changed, which would not only influence the change in the patient characteristics but 

also the probabilities for experiencing a future event. Continuously (or, at least, daily) 

updating patient characteristics would allow calculating the risk score for the 

individual patient and determine whether it would exceed the predefined threshold 

(which could also be individualised on account of patient history and correlation 

between repeated measurements) and if an alarm should be raised. Based on the risk 

score and individual patient characteristics, a plethora of follow-up actions could be 

simulated (see Figure 8.1), each with different consequences, such as changes in the 

medication or changes in the risk threshold for that patient. These are only the most 

obvious features that are not part of the model but that would make perfect sense 

from a clinical standpoint; one could keep going about all the possible pathways for 

HF patients. Further, although we focused on hospitalisation as the key event in HF 

modelling, in other disease areas multiple events may be relevant. 

So, why not including the above features in the model? The simple answer is “data and 

computational constraints”. Although those features would accurately represent 

reality, it would be virtually impossible to find reliable data to accurately inform the 

model on them. By overcomplicating the model we would be forced to make too many 

assumptions, greatly undermining the validity of the results. In addition, running all 

the calculations for the hypothesised features above would be extremely demanding 

in computational terms. For instance, the daily computation of the risk score, the 

logical decisions the model would have to take following the results, the updated of 
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patient characteristics, and so on would have to run 365 times for every year a patient 

would survive in the model. 

From the discussion above, it is crucial to extract that the trade-off between accuracy 

and technical feasibility should be found in the principle of parsimony. The model 

should be as complex as needed in order to be informative for helping decision 

makers in their ungrateful task of making decisions. 

Decision making using economic evaluations in health care 

We have discussed some of the limitations of economic evaluations and the 

implications they may have in the results obtained from those studies. Making 

decisions in health care using results of economic evaluation should take into account 

the points made in the previous discussion. Although economic evaluation 

methodologies have evolved significantly since they were first introduced in decision 

making in health care, the intrinsic problem concerning their scope did not change 

significantly. Economic evaluations use a cost-effectiveness logic that generates 

results in cost per QALY gained (captured by the ICER). Under this framework, QALY 

gains using the new intervention and the costs associated with generating these gains 

are compared to a reference case, which is normally the current standard of care for 

the problem under analysis. 

Economic evaluations of new health technologies are normally conducted from a 

wider societal perspective or a narrower healthcare perspective (81, 87). Decisions 

are made upon the monetary investment that needs to be made in order to generate 

an extra QALY. From a societal perspective, the underlying goal is to maximise social 

welfare from the healthcare budget and, as such, the allocation of resources towards a 

new health technology is done when its ICER is lower than the threshold value 

specified in terms of the societal willingness to pay for a QALY; in other words, when 

the new health technology is considered welfare improving (87, 318). From a 

healthcare perspective, the goal consists in maximising population health from a 

(fixed) healthcare budget. In this setting, the monetary value of a QALY represents the 

opportunity costs of resource allocation decisions within health care (87, 318, 319). 

However, there are many more criteria that should matter for decision makers when 

setting healthcare priorities. Decision makers should go beyond cost-effectiveness 

considerations and include other concepts in the overall value of a new health 

technology, such as equity, affordability, innovation, disease burden, or others that 

may be valued by society. In fact, those who work in the field are aware that other 

criteria besides cost-effectiveness are used for making decision, many times in a non-

systematic manner. 
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An emerging alternative for overcoming the restricted framework of typical economic 

evaluations is Multi-criteria Decision Analysis (MCDA). Keeney and Raiffa first defined 

MCDA as “an extension of decision theory that covers any decision with multiple 

objectives. A methodology for appraising alternatives on individual, often conflicting 

criteria, and combining them into one overall appraisal…” (320).  So, MCDA supports 

decision making by allowing for a systematic trade-off between multiple, sometimes 

conflicting, criteria. The trade-off is done in an explicit, transparent, and consistent 

way through establishing preferences between alternative interventions by reference 

to an explicit set of objectives for which measurable criteria are established (321). In 

the case of early warning systems, one can think about criteria that are not included in 

traditional economic evaluation, such as the increased feeling of security for stemming 

from frequent monitoring of their health status, the additional comfort of being 

followed at home, or the release of specialised healthcare professionals for other tasks 

that may be short on personnel. All these criteria and others, which may be important 

for deciding upon the uptake of early warning systems, are not captured under a QALY 

framework. 

The extent to which the criteria are fulfilled is the basis for making decision for 

preferred alternatives and, as consequence, setting healthcare priorities. Recent 

literature advocates that MCDA, divided into three main categories – qualitative 

MCDA, quantitative MCDA, and MCDA with decision rules –, despite having a large 

potential to support HTA agencies in setting healthcare priorities, should see its 

implementation improved (322). The authors further argue that HTA agencies should 

include a deliberative component in their process of formulating recommendations 

and that they should report these deliberations, including the considerations 

underlying a recommendation in order to ensure the consistency and transparency of 

recommendations. Further, the authors recommend agencies, at a minimum, to 

undertake qualitative MCDA, i.e. using explicit criteria as a way for improving the 

quality, consistency, and transparency of recommendations, which is indisputably 

better when compared with employing no specific method at all. 

Decision making will always be cursed by uncertainty. One of the main issues of 

nowadays decision making is the seeming need to substantiate every decision with 

quantitative data, as if quantification would shield us from the inherent uncertainty of 

the world. As previously noted, using data, although fascinating in its nature and from 

a human development point of view, is covered in extensive challenges and 

limitations. We should not fall into the trap of using bad quantitative studies in 

detriment of logical and rational arguments based on good rhetorical principles. 
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Implications for different stakeholders 

The findings of this thesis have underlying implications for various stakeholders and 

at different levels of the healthcare system. 

Health economic researchers 

The model presented in Chapter 5 is a unique patient-level simulation model that can 

be used for simulating a wide range of outcomes for different patient subgroups and 

treatment scenarios in HF patients. It provides useful information for guiding research 

and for developing new treatment options by showing the hypothetical impact of 

these interventions on a large number of important heart failure outcomes. Although 

the model was developed especially for assessing early warning systems for the 

management of HF patients, its core structure allows for adapting it to other diseases. 

We have also developed the model in R and we have made it publicly available to 

anyone who may be interested in the topic 

(https://github.com/fernandoalbuquerquealmeida/EWS_HF_DES_model). Our 

approach to the problem set in the thesis was from a purely collaborative standpoint, 

i.e. there was a preoccupation that the work we did could be useful for others and not 

another black box model. In this way, any researcher with access to data concerning 

the problem of EWS for chronic disease management can save some time and obtain 

ideas from the modelling work that we have performed. 

Clinicians 

From the point of view of the clinicians, the findings of this thesis suggest an 

improvement of health outcomes when using home telemonitoring systems in the 

management of heart failure, especially when a diagnostic algorithm is added to the 

intervention. 

The Dutch setting was the one used for the analysis and the transferability of the 

results to other jurisdictions has not been assessed in this thesis. However, the 

assumption that the clinical inputs for the model are valid for the Netherlands, 

underpinned by the fact that one third of the patients included in the TEN-HMS trial 

were treated in the Dutch setting, could also be applied to Germany and the UK – the 

other two countries where the trial took place and that also included approximately 

one third of the remaining patients each. 

Although it should be subject to a more careful analysis, we can hypothesise that the 

clinical results can also be transferred to other European jurisdictions, as the 

guidelines for heart failure management are consistent across Europe (12) and the 

determinants for the better outcomes when using remote patient monitoring systems 

should not change dramatically across different European countries. Still, caution 

https://github.com/fernandoalbuquerquealmeida/EWS_HF_DES_model
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should be taken for the different organisation of healthcare systems and how that 

could change the HF patient pathway within the care system. Context can really 

matter. 

For the US, the issue of the healthcare system organisation differences should be 

further emphasised, as the larger differences in healthcare organisation when 

compared to European systems can lead to different outcomes when using remote 

patient monitoring systems. The difference in relative prices of healthcare services – 

much higher relative savings if you prevent a hospital admission – can also tip the 

scale in favour of remote monitoring solutions when they reduce hospitalisations. In 

the opposite direction, there is a cultural difference when compared to European 

countries, as there is a tendency to avoid legal claims at any price in the US. For that 

reason, clinicians or healthcare providers might not be willing to take risks when 

keeping patients at home, particularly for the well-insured, resulting in lower rates of 

uptake for remote patient monitoring systems. 

Patients 

There is a dimension of patient preferences that has not been assessed in this thesis. 

Moving from a face-to-face type of care to a remote environment implies a change in 

the behaviour of patients and their interaction with the healthcare system, which 

should be assessed more carefully. Therefore, there is room for co-creating HTM 

systems together with the patients, based on their needs, preferences, and 

capabilities. 

The COVID-19 pandemic can be used as an example of the success of the transition 

from the traditional health care facilities to home, as during this time citizens were 

forced to change their interaction with almost every service to a remote environment. 

However, it should be noted that heart failure patients tend to be older and, for older 

age groups, the transition has not been as smooth as for younger age groups. Many 

actions taken by older citizens in a remote environment normally have the help of 

younger family members or dedicated carers. So, it should be properly assessed 

whether changing the reality of heart failure management to a remote environment 

could not have undesired outcomes for the patients and whether it would be their 

preference to do so. In addition, although there was an apparent success in the 

transition to remote care, the real impact of this transition is yet to be properly 

assessed in terms of health outcomes. 

Despite the considerations above, the World does not stop and the transition seems 

inevitable. It is expected that the use of early warning systems for chronic disease 

management will become hegemonic in healthcare systems across the globe. Society 
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should thus be prepared to empower patients and to include them in taking the 

decisions regarding the transformation that healthcare systems will experience. 

Regulators and lawmakers 

As previously noted, it is extremely likely that the use of early warning systems – as 

well as other healthcare interventions supported by digital technologies, eHealth, or 

mHealth – for chronic disease management will increase in the near future. Thus, the 

main implications for regulators and lawmakers in the context of this thesis come 

from the findings presented in Chapter 7. It is imperative that the standards for the 

approval of medical devices, where most of the previously mentioned health 

technologies fit in, match the ones in force for drugs, especially when it comes to 

evidence generation on their safety and effectiveness. Those data will be crucial for 

using health technology assessment methodology for properly appraising new health 

care interventions leveraged by digital technologies. 

There is a need for a conceptual change in the way medical devices are perceived in 

the healthcare sector, especially when they fall under the umbrella of interventional 

devices, i.e. health technologies intended for the treatment of a disease, injury or 

disability. Interventional medical devices ought to be seen as treatments and, as any 

other treatment in healthcare space, they should be assessed using the best practices 

of regulatory assessment that is used for drugs, which demands high-quality data. 

Lawmakers should legislate accordingly, taking into account the risks and 

uncertainties associated with new health technologies coming into the market and the 

information needed for correctly deciding upon the incorporation of new health 

technologies in health care. 

Policy makers and payers: reimbursement and clinical guidelines 

We have previously touched upon the implications of the findings of the thesis for 

clinicians and patients, which focused mainly on clinical outcomes. Policy makers and 

payers are equally interested in the economic outcomes or, in other words, in the cost-

effectiveness of the interventions under analysis. 

The results presented in Chapter 6 determine that the home telemonitoring system 

under analysis, especially when complemented with a diagnostic algorithm, is cost-

effective for the management of heart failure in the Dutch setting and, therefore, 

should be reimbursed and included in the clinical guidelines for heart failure 

management. It is unwise to extrapolate this recommendation to other countries, as 

specific costs for each of the resources used may differ, as well as the perspective of 

the analysis used by the health technology assessment bodies responsible for issuing 

recommendations on reimbursement of health technologies in those jurisdictions. 
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On a larger scale, it is critical to raise awareness that the arsenal for providing care is 

becoming more diverse and that methodology for properly assessing new health 

technologies should follow that trend. In fact, the Federal Institute for Drugs and 

Medical Devices in Germany is assessing digital health applications for reimbursement 

(323). Other countries’ policy makers ought to learn from this experience and 

collaboratively work on solutions for the assessment of healthcare interventions 

supported by digital technologies, eHealth, and mHealth. Only then can healthcare 

systems move in the direction of optimal allocation of resources in a value for money 

framework in the present reality of their existence. 

Concluding remarks and recommendations for future 

research 

This thesis contributed to the development of the methodology used in the economic 

evaluation of early warning systems for chronic disease management. Firstly, by 

exploring the main concepts embodied in early warning and thus suggesting an 

overarching definition of early warning systems in the context of health care. 

Following that definition, methods used in the search of bibliographic electronic 

databases have also been advanced, mainly through defining sensitive filters that 

successfully captured studies about early warning systems in the literature review. 

Although the impact of hospitalisation on health-related quality of life in patients with 

chronic heart failure was estimated in this thesis, some uncertainty remains in regards 

to its actual impact, as the data used in the TEN-HMS study were not generated for 

answering that particular research question. This thesis also presented an ensemble 

algorithm to predict clinical deterioration in heart failure patients using a telehealth 

programme, thereby contributing to the advance of the methods that utilise data 

generated by early warning systems with the goal of predicting and avoiding 

undesirable events in clinical practice. 

The largest contribution of this thesis for the methodology used in the economic 

evaluation of early warning systems for chronic disease management was the 

development and validation of a discrete event simulation model able to model heart 

failure patients and to account for the impact of individual patient characteristics in 

their health outcomes. The main goal of the thesis was to develop a generic model for 

assessing the cost-effectiveness of early warning systems. Although the developed 

model was specific for heart failure patients, the model itself and the discussion 

around it certainly constitute a stepping stone for the wider goal. The model 

framework and the open environment in which the model was developed constitute 

important features that help to recognise that significant contributions were made. 

Those contributions were tested by estimating the cost-effectiveness analysis of a 
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home telemonitoring system and a diagnostic algorithm in the management of heart 

failure in the Netherlands. During this endeavour, some challenges regarding available 

data were encountered, which spurred the review and comparison of the legal 

framework for the approval of medical devices and drugs and the investigation of the 

available information on manufacturer sponsored clinical studies and HTA-supported 

recommendations for medical devices and drugs. From this study and from the overall 

work done in the thesis, some recommendation for future research can be issued. 

Firstly, early warning systems could be introduced as a thesaurus term in the 

bibliographical databases containing scientific literature. From our point of view, it 

would be worthwhile to harmonise the definition and to direct efforts of healthcare 

researchers to find common ground in early warning systems, regardless of the 

specificities of each intervention falling under that umbrella. This would save time and 

resources, as some inefficient and repeated work could be avoided. 

Secondly, the impact of hospitalisation on health-related quality of life of heart failure 

patients should be further investigated, as there is limited information on this topic. 

This is likely to be true for other chronic diseases. Considering that health-related 

quality of life is such an important factor in decision making in health care, it is critical 

to have the best possible evidence so that decision can be made with a high degree of 

confidence. 

Thirdly, the developed model could and should be further improved in order to be 

more comprehensive and more easily usable for other diseases and early warning 

system interventions. These recommendations would results in lesser adaptations 

than currently needed and in a more user-friendly environment for the non-

experienced programmer in R that would allow for generating outcomes by simply 

changing key model parameters. 

Fourthly, the model should be validated with another dataset. Unfortunately we did 

not have access to one, but other researchers interested in the topic will be able to do 

so by accessing the publicly available code and replacing the inputs for the performed 

analyses. 

Fifthly, future economic evaluations studies should be developed in R or other open 

source software. One problem that we often found was the lack of real access to 

models, besides the information contained in the publication – which is often 

oversimplified for publication purposes. In fairness, this seems to be the righteous 

approach to Science and the one that is more truthful to its core principles. 

Sixthly, we recommend that interested parties in other jurisdictions make use of the 

model and the cost-effectiveness analysis presented in this thesis in order to 

appropriately transfer results and contribute to the rational decision making on home 
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telemonitoring systems and diagnostic algorithms in the management of heart failure 

in their countries. 

Seventhly, health economic researchers should liaise with experts in artificial 

intelligence and machine learning in order to understand how the current 

developments in those fields can be linked to the topics address in this thesis. From a 

broad perspective, it seems likely that a coding environment like R can introduce 

artificial intelligence and machine learning in the developed model, both for the cost-

effectiveness assessment and for the diagnostic algorithm predictions. For the 

algorithm, one can think of constant improvement through checking predictions and 

outcomes, thus improving the accuracy of the algorithm. As a consequence, this input 

could be used in the cost-effectiveness calculations. In this way, the improvement of 

the algorithm predictions and consequent follow-up actions – based on the risk score 

and the individual patient characteristics – could be driven by the improvement of the 

overall cost-effectiveness of the intervention. 

Finally, besides the implications for different stakeholders that have been previous 

pointed out, we would like to emphasise that a different approach to early warning 

systems (also in their capacity of medical devices) is needed. These health 

technologies will inevitably flood the health care space in the upcoming years. For that 

reason, it is critical that researchers act preventively and that some serious work is 

done for developing methods used for accurately assess early warning systems. As the 

innovation in health care keeps on providing new solutions for patients, the ones who 

are responsible for assessing and deciding upon their uptake have a moral duty to do 

it in the best possible way. For we will all be patients one day. 
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Background 

Chronic diseases represent 71% of worldwide mortality, with an estimated 41 million 

deaths in 2016. Cardiovascular diseases, cancer, chronic respiratory diseases are 

responsible for approximately 80% of the death toll of chronic diseases. Along with 

mortality comes a huge financial burden on health care systems around the world, 

especially in highly developed countries, where between 70-90% of the money spent 

on health care is allocated to chronic disease management. The 2030 Agenda for 

Sustainable Development adopted by the United Nations recognised chronic disease 

management as one of the major challenges for improving health of the populations. 

The World Health Organisation Sustainable Development Goals targets by 2030 clearly 

state that countries need comprehensive strategies to reduce death from chronic 

diseases more effectively. 

Chronic disease management consists of detecting, diagnosing, treating, and 

monitoring chronic diseases and providing access to palliative care for those in need. 

Managing chronic diseases is a major challenge for healthcare systems worldwide, 

which have been primarily designed to address acute episodic care rather than to 

provide organised care for people with long-term medical conditions. Orthodox 

chronic disease management models face notorious problems in their 

implementation, mainly related to the communication between professionals from 

different disciplines and organisations, the engagement of patients in the self-

management of their disease, the recording and keeping track of clinical records, and 

the burden of regular review and follow-up of patients. Digital technologies 

(electronic processes and communications, the internet, and other information 

technologies) – usually labelled under eHealth, or mHealth if involving mobile devices 

– are seen as part of the solution to these problems. The promise of technology in the 

treatment of chronic disease rests on two essential pillars: (i) providing a framework 

for patient engagement in changing modifiable behavioural risk factors and (ii) 

generating, collecting, processing, and analysing disease-related data that can be used 

for predicting important events related to the disease and for fine-tuning the 

treatment of patients. 

Early warning systems are timely surveillance systems that collect information on 

diseases in order to anticipate health deterioration and to trigger prompt clinical 

intervention, thereby improving prognosis and treatment outcomes. Generally 

speaking, early warning systems in health care consist of three main elements: (i) 

monitoring and collection of clinical data (e.g., vital signs, biomarkers, self-reported 

health status); (ii) a framework allowing for the identification of patterns and trends 

in these data, indicating significant changes in the health status of the patients; and 

(iii) the establishment of pre-determined conditions – such as the existence of 
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statistically uncommon patterns in the data, threshold values or ranges for specific 

parameters within the collected data, or the presence of a particular combination of 

signs and symptoms – that trigger an alarm and follow-up actions. 

Health technology assessment is the systematic evaluation of properties, effects, 

and/or impacts of health technology through a multidisciplinary process that assesses 

the social, economic, organisational and ethical issues of a health intervention or 

health technology with the main purpose informing a policy decision making. 

Economic evaluation is a topic of growing interest in the context of the assessment of 

health technologies, as policy makers have turned to evidence based decision making 

for supporting their reimbursement decisions. By focusing in the comparison of two 

or more alternative healthcare interventions in terms of their costs and effects, 

economic evaluations provide cost-effectiveness results on the implementation of new 

health technologies versus current standard of care, and they allow for a rational 

allocation of healthcare resources within a value for money framework. Because 

estimating the cost-effectiveness of an intervention in the health care field inevitably 

comprises the synthesis of information, the increasing use of economic evaluations for 

decision making in health care led to higher requirements in terms of analytic 

methodology, which helped to establish decision models as supporting tools in health 

technology assessment research. In brief, decision models allow to: (i) synthesise all 

relevant information in an analytical framework that reflects the possible prognoses 

and the disease pathways and their relationship with the interventions under 

evaluation; (ii) consider of all relevant comparators, expanding from randomised 

control trials, which are normally limited to head-to-head comparisons; (iii) use the 

appropriate time horizon for the context of decision making by extrapolating both 

costs and effects into the future; and (iv) address variability and uncertainty in a 

systematic and/or probabilistic manner. 

Objective 

The main objective of this thesis is to study the methodology used in the economic 

evaluation of early warning systems for chronic disease management, with a 

particular focus on the decision modelling methods used in this framework. 

Considering that early warning systems, regardless of their target disease, have in 

common that they are aimed at monitoring patients’ health status through 

periodically measuring individual patient characteristics in order to anticipate health 

deterioration and to trigger prompt clinical intervention, the possibility to develop a 

more generic decision model for assessing the cost-effectiveness of early warning 

systems was explored. 
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Findings 

Chapter 2 consists of a systematic literature review describing the general 

characteristics of decision models used in the economic evaluation of early warning 

systems for the management of chronic heart failure patients and the assessment of 

their methodological quality using the checklist for the critical appraisal of decision-

analytic models for health technology assessment developed by Philips et al. (2004). 

Nine electronic databases were searched, retrieving, after deduplication, 4765 

references. From the 27 studies identified for full-text reading, seven studies 

containing decision models were considered for data extraction and data analysis. The 

retrieved models showed some variability with regards to their general study 

characteristics and they displayed satisfactory methodological quality overall. 

However, the consideration and discussion of any competing theories regarding 

model structure and disease progression, identification of key parameters and the use 

of expert opinion, and uncertainty analyses were identified as key areas for 

improvement in the development of future decision models. 

Knowing the impact of hospitalisation on health-related quality of life is particularly 

relevant for informing cost-effectiveness models designed to assess health 

technologies aimed at reducing hospital admissions. The estimates for (dis)utility are 

normally used in the calculation of the effectiveness of interventions, especially when 

discrete event simulations are the employed modelling technique and hospitalisation 

is a key event considered in the model. Chapter 3 aims at determining the impact of 

nonfatal hospitalisations on the health-related quality of life for a cohort of patients 

previously diagnosed with heart failure by using their quality of life measurements 

performed with EQ-5D-3L before and after their hospitalisation. The mean difference 

between health-related quality of life measurement pre and post hospitalisation was 

found to be 0.020 [95% CI: -0.020, 0.059] when measured with the EQ-5D index, while 

a mean decrease of -0.012 [95% CI: -0.043, 0.020] in the utility measured with the 

visual analogue scale was found. Differences in utility variation according to the 

primary cause for hospitalisation were encountered: hospitalisations due to 

respiratory/chest infection and ventricular tachycardia showed an improvement in 

quality of life when considering the index utilities measured before and after 

admission, while hospital admissions attributed to atrial fibrillation and myocardial 

infarction showed a negative variation in index utilities measured before and after 

hospital admission. 

Chapter 4 describes a diagnostic algorithm for predicting the clinical deterioration in 

heart failure patients using a telehealth remote patient monitoring programme. The 

main objective of the algorithm is to raise an alarm indicating that the patient should 

be screened considering the risk to be hospitalised. In other words, the alarm should 
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be raised when the risk score calculated by the algorithm exceeds a predefined 

threshold. This threshold was estimated using the therapeutic threshold concept, 

which aims at determining whether to administer or to withhold a treatment given 

the expected value of either option. Using the average daily costs of heart failure-

related hospitalisation of Medicare beneficiaries with heart failure and the expected 

average weighted length of stay in hospital with and without the telehealth remote 

patient monitoring programme, it was estimated that a patient should be screened if 

the probability of being hospitalised calculated by the algorithm is higher than 11.7%. 

Considering the limitations of the therapeutic threshold, the added value of the 

diagnostic algorithm in a clinical setting would be better investigated through a full 

cost-effectiveness analysis that could properly assess the costs of implementing and 

using the technology versus the anticipated effectiveness resulting from the early 

detection of disease deterioration and the subsequent reduction of hospitalisations. 

Chapter 5 presents the construction and validation of a discrete event simulation 

model that is able to model heart failure patients managed with usual care or an early 

warning system (with or without a diagnostic algorithm) and to account for the 

impact of individual patient characteristics in their health outcomes. The model was 

developed using patient-level data from the TEN-HMS study, coded using R, and 

validated along the lines of the Assessment of the Validation Status of Health-

Economic decision models tool. The model includes 20 patient and disease 

characteristics and generates 8 different outcomes. It showed robustness and validity 

of generated outcomes when comparing them to other models addressing the same 

problem and to external data. Therefore, the patient-level simulation model was 

deemed suitable to be used for simulating a wide range of outcomes for different 

patient subgroups and treatment scenarios, as well as providing useful information 

for guiding research and development of new treatment options by showing the 

hypothetical impact of these interventions on a large number of important heart 

failure outcomes. 

Chapter 6 assesses the cost-effectiveness a home telemonitoring system and a 

diagnostic algorithm in the management of heart failure in the Netherlands. Three 

interventions were analysed: (i) usual care (patient management plan implemented 

by the patient’s primary care physician), (ii) home telemonitoring, and (iii) home 

telemonitoring with the addition of a diagnostic algorithm. According to the Dutch 

guidelines for economic evaluations in healthcare, a societal perspective was adopted, 

with considered costs including all costs inside the healthcare sector, patient and 

family, and other sectors, and productivity losses assessed using the friction cost 

method. Home telemonitoring with the addition of a diagnostic algorithm extendedly 

dominated home telemonitoring, while it had an incremental cost-effectiveness ratio 

of €27,712 per quality-adjusted life year against usual care. The estimated cost-
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effectiveness threshold for the population under analysis in the Netherlands according 

to the proportional shortfall method was €80,000 per quality-adjusted life year. At 

that threshold, the home telemonitoring with the addition of a diagnostic algorithm 

intervention had a 96.0% probability of being cost-effective versus usual care and it 

should be adopted in the Netherlands with a high degree of confidence. 

Early warning systems are normally medical devices, which traditionally have been 

less regulated than drugs. As such, there is a generalised idea that the standards of 

evidence collection for placing medical devices on the market are generally lower than 

those for drugs, which may ultimately hinder comparison between those health 

technologies, in particular when they have the same goal and are targeted at the same 

disease and/or population. With that in mind, Chapter 7 reviews and compares the 

legal framework in the United States and the European Union for the approval of 

medical devices and drugs, with a particular focus on the changes brought by 

Regulation (EU) 2017/745. It also compares the available information on clinical 

research and health technology assessment-supported recommendations in each of 

the considered jurisdictions for the health technologies under analysis. The developed 

work found different standards for approval of medical devices and drugs on their 

quality, safety, and performance/efficacy dimensions, as well as substantially lower 

number of manufacturer-sponsored clinical studies and health technology 

assessment-supported recommendations for medical devices versus drugs and an 

indication of lower standards of evidence used in recommendations for medical 

devices. Therefore, it was concluded that policy changes ought to be implemented in 

order to promote an integrated evidence-based assessment system for a better 

allocation of resources in healthcare, namely: a consensual classification of medical 

devices from an health technology assessment perspective, which could be used as a 

guide for generating outcomes in clinical investigation, and the adoption of 

conditional coverage practices including mandatory post-approval evidence 

development for performing periodic technology assessments. 

The general discussion of the thesis is presented in Chapter 8, where the main 

findings are summarised, discussed, and interpreted in the context of the objectives of 

the thesis. The implications for different stakeholders resulting from the thesis’ 

findings thesis are explored, as well as the challenges and limitations encountered 

during the research that led to the thesis. Finally, the discussion ends with some 

concluding remarks and recommendations for future research. 
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Achtergrond 

Chronische ziekten vertegenwoordigen 71% van de wereldwijde mortaliteit, waarbij 

in 2016 naar schatting 41 miljoen patiënten zijn overleden. Hart- en vaatziekten, 

kanker en chronische respiratoire aandoeningen zijn verantwoordelijk voor 80% van 

het aantal doden door chronische ziekten. Deze mortaliteit brengt een enorme 

financiële belasting voor gezondheidszorgstelsels overal ter wereld met zich mee, met 

name in de hoogontwikkelde landen, waar 70-90% van het geld dat aan de 

gezondheidszorg wordt besteed, wordt toegewezen aan de medische zorg voor 

chronische ziekten. In de door de Verenigde Naties aangenomen Agenda 2030 voor 

Duurzame Ontwikkeling wordt medische zorg voor chronische ziekten onderkend als 

een van de belangrijkste uitdagingen als het gaat om verbetering van de gezondheid 

van populaties. In de doelstellingen voor 2030 in het kader van de Duurzame 

Ontwikkelingsdoelstellingen van de Wereldgezondheidsorganisatie wordt duidelijk 

aangegeven dat landen brede strategieën nodig hebben om overlijden tengevolge van 

chronische ziekten effectief te verminderen. 

Medische zorg voor chronische ziekten bestaat uit opsporing, diagnostiek, 

behandeling en follow-up van chronische ziekten, en waar nodig uit het bieden van 

toegang tot palliatieve zorg. Medische zorg voor chronische ziekten is een grote 

uitdaging voor gezondheidszorgstelsels wereldwijd, die primair zijn ingesteld op het 

bieden van tijdelijke acute medische zorg en niet op het bieden van georganiseerde 

medische zorg voor mensen met chronische medische aandoeningen. Bij 

conventionele modellen voor medische zorg voor chronische ziekten is er sprake van 

notoire problemen bij de implementering, die hoofdzakelijk verband houden met de 

communicatie tussen professionals van verschillende disciplines en organisaties, de 

betrokkenheid van patiënten bij zelfbehandeling van hun aandoening, het vastleggen 

van en toegang blijven houden tot klinische gegevens en de belasting van regelmatige 

herevaluatie en follow-up van patiënten. Digitale technologieën (elektronische 

processen en informatieuitwisseling, het internet en andere informatietechnologieën) 

– die gewoonlijk worden aangeduid met e-Health, of m-Health als er mobiele 

apparaten bij betrokken zijn – worden gezien als onderdeel van de oplossing voor 

deze problemen. De belofte van technologie bij de behandeling van chronische 

aandoeningen berust op twee essentiële pijlers: (i) het bieden van wegen voor 

betrokkenheid van patiënten bij de verandering van voor verandering vatbare uit 

gedrag voortvloeiende risicofactoren en (ii) het genereren, verzamelen, verwerken en 

analyseren van ziektegerelateerde gegevens die kunnen worden gebruikt voor het 

voorspellen van belangrijke voorvallen in verband met de aandoening en voor het 

nauwkeurig afstemmen van de behandeling van patiënten. 
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Systemen voor vroegtijdige signalering (early warning systems) zijn systemen voor 

tijdige controle waarmee gegevens over aandoeningen worden verzameld, met het 

doel verslechtering van de gezondheidstoestand te zien aankomen en snelle klinische 

interventie te initiëren, en zo de prognose en behandelingsuitkomsten te verbeteren. 

In het algemeen gesproken bestaan systemen voor vroegtijdige signalering uit drie 

hoofdelementen: (i) het detecteren en verzamelen van klinische gegevens (bijv. vitale 

functies, biomarkers, patiëntgerapporteerde gezondheidstoestand); (ii) een systeem 

waarmee patronen en trends in deze gegevens kunnen worden herkend, die kunnen 

wijzen op relevante veranderingen in de gezondheidstoestand van patiënten; en (iii) 

het vaststellen van gepredetermineerde aandoeningen – zoals aanwezigheid van 

statistisch ongebruikelijke patronen in de gegevens, drempelwaarden of 

waardenbereiken voor specifieke parameters binnen de verzamelde gegevens of de 

aanwezigheid van een bepaalde combinatie van klachten en symptomen – die een 

waarschuwing en follow-upacties genereren. 

Health technology assessment is de systematische evaluatie van eigenschappen, 

effecten en/of gevolgen van medische technologie door middel van een 

multidisciplinair proces waarbij ook de sociale, economische, organisatorische en 

ethische kwesties van een medische interventie of medische technologie worden 

beoordeeld, met als hoofddoel materiaal aan te bieden voor besluitvorming rond een 

beleid. Economische evaluatie is een onderwerp dat in de context van beoordeling van 

medische technologieën toenemende belangstelling geniet, omdat beleidsvormers 

zich zijn gaan toeleggen op evidence-based besluitvorming ter ondersteuning van hun 

vergoedingsbeslissingen. Economische evaluaties – waarbij twee of meer medische 

interventies wat betreft kosten en effecten met elkaar worden vergeleken – voorzien 

in kosteneffectiveitsresultaten met betrekking tot de implementering van nieuwe 

medische technologieën in vergelijking met de standaard medische zorg, en ze maken 

een rationele toewijzing van gezondheidszorgmiddelen binnen een 'value for money'-

kader mogelijk. Omdat bij de bepaling van de kosteneffectiviteit van een interventie 

op het gebied van de gezondheidszorg onvermijdelijk informatie moet worden 

samengesteld, heeft het toenemend gebruik van economische evaluaties voor 

besluitvorming in de gezondheidszorg geleid tot hogere eisen wat betreft analytische 

methodologie, zodat er beslissingsmodellen zijn ingesteld als ondersteunende 

middelen bij health technology assessment research. Om kort te gaan, 

beslissingsmodellen bieden de mogelijkheid: (i) alle relevante informatie samen te 

stellen binnen een analytische structuur die een overzicht biedt van de mogelijke 

prognoses en ziekteverlopen en hun relatie met de te evalueren interventies; (ii) alle 

relevante comparatoren in aanmerking te nemen, in aanvulling op gerandomiseerde 

gecontroleerde onderzoeken, die zich gewoonlijk beperken tot rechtstreekse 

vergelijkingen; (iii) voor de context van de besluitvorming de gepaste tijdshorizon te 

gebruiken door zowel kosten als effecten naar de toekomst te extrapoleren; en (iv) 
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variabiliteit en onzekerheid op een systematische en/of probabilistische wijze te 

behandelen. 

Doel 

Het hoofddoel van deze thesis is onderzoek naar de methodologie die wordt gebruikt 

bij de economische evaluatie van systemen voor vroegtijdige signalering in de 

medische zorg voor chronische ziekten, met speciale aandacht voor de methoden voor 

beslissingsmodellen die in dit kader worden gebruikt. Gezien dat systemen voor 

vroegtijdige signalering, ongeacht de aandoening waarvoor ze worden gebruikt, 

gemeenschappelijk hebben dat ze zich richten op bewaking van de 

gezondheidstoestand van de patiënt via periodieke bepaling van individuele 

kenmerken van de patiënt – teneinde verslechtering van de gezondheidstoestand te 

zien aankomen en snelle klinische interventie te initiëren – is onderzoek gedaan naar 

de mogelijkheid om een algemener beslissingsmodel voor beoordeling van de 

kosteneffectiviteit van systemen voor vroegtijdige signalering te ontwikkelen. 

Bevindingen 

Hoofdstuk 2 bestaat uit een systematische literatuurstudie met beschrijving van de 

algemene kenmerken van beslissingsmodellen die worden gebruikt bij de 

economische evaluatie van systemen voor vroegtijdige signalering in de medische 

zorg voor patiënten met chronisch hartfalen en beoordeling van de methodologische 

kwaliteit van deze modellen met de door Philips et al. ontwikkelde checklist (2004) 

voor kritische waardering van besliskundige modellen voor health technology 

assessment. Er zijn negen elektronische databases doorzocht, waarbij, na deduplicatie, 

4765 referenties zijn verkregen. Van de 27 studies die zijn gevonden voor lezen van 

de volledige tekst, zijn zeven studies met beslissingsmodellen in aanmerking genomen 

voor gegevensextractie en gegevensanalyse. Bij de verkregen modellen was er sprake 

van enige variabiliteit met betrekking tot de algemene kenmerken van de 

corresponderende studies en de modellen hadden over het geheel genomen een 

toereikende methodologische kwaliteit. Er zijn echter belangrijke elementen voor 

verbetering van de ontwikkeling van toekomstige beslissingsmodellen 

geïdentificeerd, zoals bestudering en bespreking van concurrerende theorieën met 

betrekking tot modelstructuur en ziekteprogressie, identificatie van belangrijke 

parameters en het gebruik van deskundigenadvies en onzekerheidsanalyses. 

Kennis van de gevolgen van ziekenhuisopname op gezondheidsgerelateerde kwaliteit 

van leven is met name van belang bij het opstellen van kosteneffectiviteitsmodellen 

die zijn bestemd voor de evaluatie van medische technologie die is gericht op 

vermindering van het aantal ziekenhuisopnames. De schattingen voor (dis)utiliteit 
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worden gewoonlijk gebruikt in de berekening van de effectiviteit van interventies, met 

name wanneer 'discrete event'-simulaties als techniek voor het opstellen van 

modellen worden gebruikt en ziekenhuisopname als een belangrijk voorval in het 

model wordt beschouwd. 

Hoofdstuk 3 richt zich op bepaling van het effect van ziekenhuisopnames zonder 

fatale afloop op de gezondheidsgerelateerde kwaliteit van leven voor een groep 

patiënten bij wie eerder de diagnose hartfalen is gesteld, door gebruik te maken van 

de metingen van hun kwaliteit van leven die voorafgaand aan en na 

ziekenhuisopname met de EQ-5D-3L-vragenlijst waren uitgevoerd. Het gemiddelde 

verschil tussen de meting van gezondheidsgerelateerde kwaliteit van leven 

voorafgaand aan en na de ziekenhuisopname bleek 0,020 [95%-BI: -0,020, 0,059] te 

zijn bij meting met de EQ-5D-3L-vragenlijst, terwijl de utiliteit die met de visueel 

analoge schaal was gemeten een gemiddelde afname van -0,012 [95%-BI: -0,043, 

0,020] liet zien. Er werden verschillen in utiliteiten aangetroffen volgens de primaire 

reden voor ziekenhuisopname: bij ziekenhuisopnames vanwege een onderste 

luchtweginfectie en ventriculaire tachycardie werd er een verbetering van de 

kwaliteit van leven gezien op basis van de utiliteiten die voorafgaand aan en na de 

ziekenhuisopname met de EQ-5D-3L-vragenlijst waren gemeten, terwijl bij 

ziekenhuisopnames vanwege atriumfibrilleren en myocardinfarct op basis van de 

utiliteiten bij dezelfde meting een vermindering van de kwaliteit van leven werd 

gezien. 

Hoofdstuk 4 beschrijft een diagnostisch algoritme voor voorspelling van klinische 

achteruitgang bij patiënten met hartfalen bij gebruik van een telegeneeskundig 

programma voor patiëntbewaking op afstand. Het voornaamste doel van het 

algoritme is om een waarschuwing te genereren wanneer een patiënt dient te worden 

gecontroleerd gezien het risico van ziekenhuisopname. Met andere woorden, de 

waarschuwing dient te worden gegenereerd wanneer de risicoscore die door het 

algoritme wordt berekend boven een vooraf gedefinieerde drempelwaarde komt. De 

drempelwaarde werd berekend door gebruik te maken van het concept 

behandeldrempel, waarbij het gaat om beantwoording van de vraag een behandeling 

geven of geen behandeling geven op basis van de verwachte afzonderlijke waarde van 

beide opties. Bij gebruik van de gemiddelde dagelijkse kosten van ziekenhuisopname 

in verband met hartfalen, in het geval van patiënten met hartfalen die in aanmerking 

komen voor Medicare-vergoedingen, en de verwachte gewogen gemiddelde duur van 

verblijf in het ziekenhuis met en zonder gebruik van het telegeneeskundige 

programma voor patiëntbewaking op afstand, werd er berekend dat een patiënt dient 

te worden gecontroleerd als de waarschijnlijkheid van ziekenhuisopname volgens 

berekening met het algoritme hoger is dan 11,7%. 
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Gezien de beperkingen van de drempelwaarde voor behandeling, zou het beter zijn 

om de toegevoegde waarde van het diagnostische algoritme in een klinische setting te 

onderzoeken door middel van een volledige kosteneffectiviteitsanalyse, waarbij de 

kosten van de invoering en het gebruik van de technologie naar behoren kunnen 

worden bepaald in vergelijking met de verwachte effectiviteit als gevolg van de 

vroegtijdige detectie van klinische achteruitgang en de daaropvolgende vermindering 

van het aantal ziekenhuisopnames. 

Hoofdstuk 5 presenteert de samenstelling en validatie van een 'discrete event'-

simulatiemodel dat kan dienen als een model voor patiënten met hartfalen die de 

gebruikelijke medische zorg krijgen of bij wie een systeem voor vroegtijdige 

signalering (met of zonder een diagnostisch algoritme) wordt gebruikt en waarmee 

het effect van individuele kenmerken van de patiënt op diens gezondheidsuitkomsten 

kan worden verklaard. Het model, gecodeerd met R, is ontwikkeld met gegevens van 

individuele patiënten uit het TEN-HMS-onderzoek en gevalideerd volgens de 

principes van het hulpmiddel Assessment of the Validation Status of Health-Economic 

decision models. In het model zijn 20 patiënt- en ziektekenmerken opgenomen en het 

model genereert 8 verschillende uitkomsten. De uitkomsten die het model genereert, 

zijn robuust en geldig bij vergelijking van de uitkomsten met die van andere modellen 

voor hetzelfde probleem en bij vergelijking van de uitkomsten met externe gegevens. 

Het simulatiemodel voor individuele patiënten werd daarom geschikt geacht om te 

worden gebruikt voor simulatie van een breed scala van uitkomsten voor 

verschillende patiëntensubgroepen en behandelingsscenario's, en ook om te voorzien 

in informatie die kan worden gebruikt om richting te geven aan onderzoek en 

ontwikkeling van nieuwe behandelingsopties, door het hypothetische effect van deze 

interventies op een groot aantal belangrijke uitkomsten bij hartfalen aan te tonen. 

Hoofdstuk 6 is een hoofdstuk waarin de kosteneffectiviteit van een systeem voor 

telemonitoring thuis en een diagnostisch algoritme worden beoordeeld in de context 

van medische zorg voor hartfalen in Nederland. Er zijn drie interventies geanalyseerd: 

(i) gebruikelijke medische zorg (zorgplan voor de patiënt dat door de eerstelijnsarts 

van de patiënt wordt geïmplementeerd), (ii) telemonitoring thuis en (iii) 

telemonitoring thuis met toevoeging van een diagnostisch algoritme. Volgens de 

Nederlandse richtlijnen voor economische evaluaties in de gezondheidszorg is er een 

maatschappelijk perspectief gehanteerd, waarbij kosten in aanmerking worden 

genomen zoals alle kosten binnen de gezondheidszorgsector, kosten voor de patiënt 

en het gezin, kosten binnen andere sectoren en de kosten van productiviteitsverlies 

die met de frictiekostenmethode worden bepaald. Telemonitoring thuis werd indirect 

gedomineerd door telemonitoring thuis met de toevoeging van een diagnostisch 

algoritme, terwijl deze combinatie ten opzichte van de gebruikelijke medische zorg 

een incrementele kosteneffectiviteitsratio van € 27.712 per kwaliteit van leven 
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gecorrigeerd levensjaar had. De berekende drempelwaarde voor kosteneffectiviteit 

met betrekking tot de te analyseren populatie in Nederland was volgens de 

'proportional shortfall'-methode € 80.000 per kwaliteit van leven gecorrigeerd 

levensjaar. Bij die drempelwaarde gold voor telemonitoring thuis met toevoeging van 

een diagnostisch algoritme een waarschijnlijkheid van 96% dat deze interventie 

kosteneffectief was in vergelijking met gebruikelijke medische zorg, en deze 

interventie zou in Nederland met een hoge graad van zekerheid moeten worden 

aanvaard. 

Systemen voor vroegtijdige signalering zijn meestal medische hulpmiddelen, waarop 

in het verleden minder wet- en regelgeving van toepassing is geweest dan op 

geneesmiddelen. Als zodanig is er een wijdverbreid idee dat de normen voor 

verzameling van gegevens op grond waarvan medische hulpmiddelen in de handel 

kunnen worden gebracht, in het algemeen lager zijn dan die voor geneesmiddelen, 

wat uiteindelijk een belemmering kan vormen voor de vergelijking van deze medische 

technologieën, met name wanneer ze hetzelfde doel hebben en op dezelfde 

aandoening en/of populatie zijn gericht. 

Met het oog daarop wordt in hoofdstuk 7 de wet- en regelgeving voor de goedkeuring 

van medische hulpmiddelen en geneesmiddelen in de Verenigde Staten en de 

Europese Unie besproken en vergeleken, waarbij met name aandacht wordt besteed 

aan de veranderingen die Verordening (EU) 2017/745 met zich heeft meegebracht. In 

het hoofdstuk worden in de betreffende rechtsgebieden met betrekking tot de te 

analyseren medische technologieën ook de beschikbare informatie over klinisch-

wetenschappelijk onderzoek en door health technology assessment ondersteunde 

aanbevelingen vergeleken. Op grond van het werk dat in deze richting is verricht, is 

vastgesteld dat voor medische hulpmiddelen en geneesmiddelen wat betreft de 

kenmerken kwaliteit, veiligheid en werking/werkzaamheid verschillende normen 

voor goedkeuring gelden, dat het aantal in opdracht van fabrikanten uitgevoerde 

klinische onderzoeken en door health technology assessment ondersteunde 

aanbevelingen aanzienlijk lager is voor medische hulpmiddelen dan voor 

geneesmiddelen en dat er lagere normen lijken te worden gehanteerd voor gegevens 

die aanbevelingen voor medische hulpmiddelen ondersteunen. Daarom werd 

geconcludeerd dat er beleidsveranderingen dienen te worden doorgevoerd ter 

bevordering van een geïntegreerd evidence-based beoordelingssysteem voor een 

betere toewijzing van middelen in de gezondheidszorg, namelijk: een op consensus 

berustende classificatie van medische hulpmiddelen vanuit het gezichtspunt van 

health technology assessment, die gebruikt zou kunnen worden als richtsnoer voor 

het genereren van uitkomsten in klinisch onderzoek en invoering van regels voor 

voorwaardelijke dekking, inclusief verplichte postmarketing verzameling van 

relevante gegevens voor uitvoering van periodieke technology assessments. 



Samenvatting 

257 

De algemene bespreking van deze thesis wordt gepresenteerd in hoofdstuk 8, waarin 

de belangrijkste bevindingen worden samengevat, besproken en geïnterpreteerd in de 

context van de doelstellingen van de thesis. Er wordt op grond van de bevindingen 

van de thesis gekeken naar de implicaties voor de verschillende stakeholders en ook 

naar de moeilijkheden en beperkingen die werden ervaren tijdens het onderzoek dat 

tot de thesis heeft geleid. De bespreking eindigt met enkele afsluitende opmerkingen 

en aanbevelingen voor toekomstig onderzoek. 

 



 

 

  



 

 

PhD portfolio 
  



 

 

 



PhD portfolio 

261 

PhD candidate Fernando Guilherme França Pereira Albuquerque de 
Almeida 

Doctoral supervisor prof. dr. M.P.M.H. Rutten-van Mölken 

Daily advisor dr. M.J. Al 

dr. I. Corro Ramos 

 

PhD period October 2014 – July 2021 

 Year ECTS 

Academic training 

Courses & workshops 

Introduction to Statistics Descriptive Statistics (edX – Berkeley 
X) 

2014 1.5 

Quantitative methods in clinical & Public Health research (edX 
– HarvardX) 

2014 2.0 

How to use EndNote (Erasmus MC) 2014 0.3 

Systematic literature retrieval in PubMed, part I (Erasmus MC) 2014 0.3 

Systematic literature retrieval in PubMed, part II (Erasmus 
MC) 

2014 0.3 

Systematic literature retrieval in other databases (Erasmus 
MC) 

2014 0.3 

Academic Integrity Day (Master Class/EUR) 2015 0.5 

English academic writing for PhD students (EUR) 2015 0.3 

Biostatistics for clinicians (NIHES/Erasmus MC) 2015 1.0 

Regression analysis for clinicians (NIHES/Erasmus MC) 2015 1.0 

Survival analysis for clinicians (NIHES/Erasmus MC) 2015 1.0 

Project management – Klaar in 4 jaar (EUR) 2015 0.2 

Decision analytic modelling for economic evaluation (The 
University of York) 

2015 1.5 

R Programming (Coursera – John Hopkins University) 2016 2.0 

Writing in Sciences (Coursera – Stanford University) 2016 1.0 

Patient-level simulation modelling in R (ESHPM/EUR) 2017 1.0 

Network meta-analysis (EUR) 2018 0.5 



PhD portfolio 

262 

Symposia & congresses 

ISPOR 17th Annual European Congress 2015 1.0 

lolaHESG 2017 1.0 

Virtual ISPOR Europe 2020 2020 1.0 

Other 

Dutch courses for EUR-employees 2015-2017 3.0 

Reviewer for scientific publication (1) 2016 0.2 

Member of the ERG team in a project for NICE 2016 0.8 

President of the ESHPM ISPOR Student Chapter 2017-2018 1.5 

Teaching activities 

Mentoring, tutoring, and lecturing 

Markov modelling (post-graduation/Universidade Católica 
Portuguesa) 

2015 0.5 

Health Technology Assessment (exam correction) 2014-2015 1.0 

Health Technology Assessment (Master) 2014-2018 4.0 

Pharmaceutical Pricing and Market Access (Master) 2014-2018 4.0 

Participating in HTA Research (Master) 2014-2016 2.0 

Advanced Health Economic Modelling (Master) 2016-2018 2.0 

Supervision   

Master thesis (1 student) 2014-2015 1.5 

Master thesis (1 student) 2015-2016 1.5 

Master thesis (3 students) 2016-2017 4.5 

Master thesis (3 students) 2017-2018 4.5 

TOTAL  48.7 



 

 

List of publications 
  



 

 

 



List of publications 

265 

Included in this dissertation 

Albuquerque de Almeida, F., Ricardo, M. (2021). Medical devices rise: “We demand 

the same rights!”. Health Policy and Technology (Submitted). 

 

Albuquerque de Almeida, F., Corro Ramos, I., Rutten-van Mölken, M., & Al, M. (2021). 

Cost-effectiveness of a home telemonitoring system and a diagnostic algorithm in the 

management of heart failure in the Netherlands. JMIR mHealth and uHealth (In 

review). 

 

Albuquerque de Almeida, F., Corro Ramos, I., Rutten-van Mölken, M., & Al, M. (2021). 

Modeling Early Warning Systems: Construction and Validation of a Discrete Event 

Simulation Model for Heart Failure. Value in Health (In Press). 

https://doi.org/10.1016/j.jval.2021.04.004 

 

Albuquerque de Almeida, F., Al, M.J., Koymans, R., Riistama, J., Pauws, S., & Severens, 

J.L. (2020). Impact of hospitalisation on health-related quality of life in patients with 

chronic heart failure. Health and Quality of Life Outcomes 18(1): 1-10. 

 

Albuquerque de Almeida, F., Al, M., Koymans, R., Caliskan, K., Kerstens, A., & 

Severens, J. L. (2018). Early warning systems for the management of chronic heart 

failure: a systematic literature review of cost-effectiveness models. Expert review of 

pharmacoeconomics & outcomes research, 18(2), 161-175. 

 

Not included in this dissertation 

Albuquerque de Almeida, F. (2016). Introdução à Avaliação Económica de 

Tecnologias de Saúde. Lisboa: Pharmavalue | Focus on Evolution. 

 

Büyükkaramikli, N. C., de Groot, S., Fayter, D., Wolff, R., Armstrong, N., Stirk, L., Worthy, 

G., Albuquerque de Almeida, F., Kleijnen, J., & Al, M. J. (2018). Pomalidomide with 

dexamethasone for treating relapsed and refractory multiple myeloma previously 

treated with lenalidomide and bortezomib: an evidence review group perspective of 

an NICE single technology appraisal. PharmacoEconomics, 1-15. 

https://doi.org/10.1016/j.jval.2021.04.004


List of publications 

266 

 

Portela, M. D. C. C., Sinogas, C., Albuquerque de Almeida, F., Baptista-Leite, R., & 

Castro-Caldas, A. (2017). Biologicals and biosimilars: safety issues in Europe. Expert 

opinion on biological therapy, 17(7), 871-877. 

 

Portela, M. D. C. C., Sinogas, C., Albuquerque de Almeida, F., Baptista-Leite, R., & 

Castro-Caldas, A. (2017). Biologicals and Biosimilars: Gaps in the Pharmacovigilance 

System in Portugal. Acta medica portuguesa, 30(3), 205-212. 

 



 

 

Acknowledgements 
  



 

 

 



Acknowledgements 

269 

To everyone who stood by me during this journey, for you were the ones who suffered 

the most. I could not have written this thesis without your unwavering support. 

 



 

 

  



 

 

About the author 
  



 

 

 



About the author 

273 

Fernando Albuquerque de Almeida was born on 17 August 1986 in Lisbon. After 

following the scientific track in high school, he joined the University of Lisbon in 2005 

for pursuing his education in Pharmaceutical Sciences. During his track, Fernando did 

his ERASMUS research programme in the Freie Universität Berlin, where he 

developed the thesis entitled Hot-melt extrusion: Improving the solubility of 

carbamazepine with which he successfully defended his PharmD. For his academic 

record during the PharmD, Fernando received a “Merit Scholarship” awarded by the 

University of Lisbon. 

In early 2012, he started working as a quality assurance and quality control officer in 

OM Pharma. After obtaining a grant for postgraduate studies in Health Economics 

awarded by the Merck Sharp & Dohme Foundation during that same year, Fernando 

moved to the Netherlands to pursue his MSc in Health Economics, Policy and Law 

(specialization in Health Technology Assessment) at the Erasmus School of Health 

Policy and Management (ESHPM) in Erasmus University Rotterdam. He concluded his 

masters one year later, defending his dissertation titled Transferability assessment of a 

NICE single technology appraisal (STA) to Portugal – the case of cabazitaxel for the 

second-line treatment of metastatic hormone refractory prostate cancer, receiving a 

“Certificate of Honour” from ESHPM in the process. Between 2013 and 2014, he 

worked remotely from Lisbon as a consultant in the fields of Pricing and 

Reimbursement, Public Affairs, and Market Access. 

In October 2014, Fernando moved back to the Netherlands to start his PhD, joining a 

joint research project between Philips Research and the Erasmus School of Health 

Policy and Management in the field of decision analytic modelling for the economic 

evaluation of chronic disease management programmes. In late 2018, he returned to 

Portugal, where he continued working as an external PhD candidate at ESHPM. In 

March 2019, he started working in Pfizer as a Pricing and Access Manager. In March 

2021, Fernando started a new role as a Director in Health Economics and Outcomes 

Research in a global team within the company. 

 



 

 

  



 

 

References 
  



 

 

 



   References 

277 

1. Centers for Disease Control and Prevention (CDC). National Center for Chronic Disease 
Prevention and Health Promotion (NCCDPHP). About Chronic Diseases 2021 [12/03/2021]. Available from: 
https://www.cdc.gov/chronicdisease/about/index.htm. 

2. World Health Organization. Global health estimates 2016: deaths by cause, age, sex, by country 
and by region, 2000-2016. 2018 [12/03/2021]. Available from: 
https://www.who.int/healthinfo/global_burden_disease/estimates/en/. 

3. World Health Organization (WHO). Health technology assessment  [25/01/2021]. Available from: 
https://www.who.int/teams/health-product-and-policy-standards/access-to-assistive-technology-
medical-devices/medical-devices/assessment. 

4. Buttorff C, Ruder T, Bauman M. Multiple chronic conditions in the United States: Rand Santa 
Monica, CA; 2017. 

5. Martin AB, Hartman M, Lassman D, Catlin A, Team NHEA. National Health Care Spending In 2019: 
Steady Growth For The Fourth Consecutive Year: Study examines national health care spending for 2019. 
Health Affairs. 2021:10.1377/hlthaff. 2020.02022. 

6. European Commision. Non-communicable diseases  [12/03/2021]. Available from: 
https://ec.europa.eu/health/non_communicable_diseases/overview_en. 

7. Directorate for Health and Food Safety EC. Towards better prevention and management of 
chronic diseases 2016 [12/03/2021]. Available from: 
https://ec.europa.eu/health/newsletter/169/focus_newsletter_en.htm. 

8. World Health Organization. World health statistics 2020: monitoring health for the SDGs, 
sustainable development goals. Geneva: World Health Organization; 2020 2020. 

9. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases 
and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of 
Disease Study 2019. The Lancet. 2020;396(10258):1204-22. 

10. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline 
for the management of heart failure: a report of the American College of Cardiology Foundation/American 
Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 
2013;62(16):e147-e239. 

11. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA 
focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the 
American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and 
the Heart Failure Society of America. Journal of the American College of Cardiology. 2017;70(6):776-803. 

12. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for 
the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and 
treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the 
special contribution of the Heart Failure Association (HFA) of the ESC. European heart journal. 
2016;37(27):2129-200. 

13. Butler J, Fonarow GC, Zile MR, Lam CS, Roessig L, Schelbert EB, et al. Developing therapies for 
heart failure with preserved ejection fraction: current state and future directions. JACC: Heart Failure. 
2014;2(2):97-112. 

14. Levin R, Dolgin M, Fox C, Gorlin R. The Criteria Committee of the New York Heart Association: 
Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. LWW Handbooks. 
1994;9:344. 

http://www.cdc.gov/chronicdisease/about/index.htm
http://www.who.int/healthinfo/global_burden_disease/estimates/en/
http://www.who.int/teams/health-product-and-policy-standards/access-to-assistive-technology-medical-devices/medical-devices/assessment
http://www.who.int/teams/health-product-and-policy-standards/access-to-assistive-technology-medical-devices/medical-devices/assessment


References 

 

15. Pieske B, Tschöpe C, De Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart 
failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation 
from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). European heart 
journal. 2019;40(40):3297-317. 

16. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137-46. 

17. Bleumink GS, Knetsch AM, Sturkenboom MC, Straus SM, Hofman A, Deckers JW, et al. Quantifying 
the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure: The 
Rotterdam Study. European heart journal. 2004;25(18):1614-9. 

18. Dunlay SM, Roger VL. Understanding the epidemic of heart failure: past, present, and future. 
Current heart failure reports. 2014;11(4):404-15. 

19. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, et al. Demographic and 
epidemiologic drivers of global cardiovascular mortality. New England Journal of Medicine. 
2015;372(14):1333-41. 

20. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart 
failure. International journal of cardiology. 2014;171(3):368-76. 

21. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease 
and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 
2019;139(10):e56-e528. 

22. American Heart Association. Classes of Heart Failure 2017 [17/03/2021]. Available from: 
https://www.heart.org/en/health-topics/heart-failure/what-is-heart-failure/classes-of-heart-failure. 

23. Hobbs F, Kenkre J, Roalfe A, Davis R, Hare R, Davies M. Impact of heart failure and left ventricular 
systolic dysfunction on quality of life. A cross-sectional study comparing common chronic cardiac and 
medical disorders and a representative adult population. European heart journal. 2002;23(23):1867-76. 

24. Zambroski CH, Moser DK, Bhat G, Ziegler C. Impact of symptom prevalence and symptom burden 
on quality of life in patients with heart failure. European Journal of Cardiovascular Nursing. 2005;4(3):198-
206. 

25. Bekelman DB, Havranek EP, Becker DM, Kutner JS, Peterson PN, Wittstein IS, et al. Symptoms, 
depression, and quality of life in patients with heart failure. Journal of cardiac failure. 2007;13(8):643-8. 

26. Lewis EF, Lamas GA, O'Meara E, Granger CB, Dunlap ME, McKelvie RS, et al. Characterization of 
health‐related quality of life in heart failure patients with preserved versus low ejection fraction in CHARM. 
European journal of heart failure. 2007;9(1):83-91. 

27. Juenger J, Schellberg D, Kraemer S, Haunstetter A, Zugck C, Herzog W, et al. Health related quality 
of life in patients with congestive heart failure: comparison with other chronic diseases and relation to 
functional variables. Heart. 2002;87(3):235-41. 

28. Alla F, Zannad F, Filippatos G. Epidemiology of acute heart failure syndromes. Heart failure 
reviews. 2007;12(2):91-5. 

29. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. American Heart 
Association Council on epidemiology and prevention statistics committee and stroke statistics 
subcommittee. Heart disease and stroke statistics-2018 update: a report from the American Heart 
Association Circulation. 2018;137(12):e67-e492. 

http://www.heart.org/en/health-topics/heart-failure/what-is-heart-failure/classes-of-heart-failure


   References 

279 

30. Braunwald E. The war against heart failure: the Lancet lecture. The Lancet. 2015;385(9970):812-
24. 

31. Dunlay SM, Redfield MM, Weston SA, Therneau TM, Hall Long K, Shah ND, et al. Hospitalizations 
after heart failure diagnosis: a community perspective. Journal of the American College of Cardiology. 
2009;54(18):1695-702. 

32. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. European journal 
of heart failure. 2020;22(8):1342-56. 

33. Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Køber L, Squire IB, et al. Predicting survival in heart 
failure: a risk score based on 39 372 patients from 30 studies. European heart journal. 2013;34(19):1404-
13. 

34. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, et al. Risk prediction in patients 
with heart failure: a systematic review and analysis. JACC: Heart Failure. 2014;2(5):440-6. 

35. Ouwerkerk W, Voors AA, Zwinderman AH. Factors influencing the predictive power of models for 
predicting mortality and/or heart failure hospitalization in patients with heart failure. JACC: Heart Failure. 
2014;2(5):429-36. 

36. Lupón J, De Antonio M, Vila J, Peñafiel J, Galán A, Zamora E, et al. Development of a novel heart 
failure risk tool: the Barcelona bio-heart failure risk calculator (BCN bio-HF calculator). PloS one. 
2014;9(1):e85466. 

37. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, et al. The Seattle heart 
failure model. Circulation. 2006;113(11):1424-33. 

38. Mozaffarian D, Anker SD, Anand I, Linker DT, Sullivan MD, Cleland JG, et al. Prediction of mode of 
death in heart failure. Circulation. 2007;116(4):392-8. 

39. Stewart S, Jenkins A, Buchan S, McGuire A, Capewell S, McMurray JJ. The current cost of heart 
failure to the National Health Service in the UK. European journal of heart failure. 2002;4(3):361-71. 

40. Gheorghiade M, Shah AN, Vaduganathan M, Butler J, Bonow RO, Rosano GM, et al. Recognizing 
hospitalized heart failure as an entity and developing new therapies to improve outcomes: academics', 
clinicians', industry's, regulators', and payers' perspectives. Heart failure clinics. 2013;9(3):285-90. 

41. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, et al. The global 
health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart 
failure registries. Journal of the American College of Cardiology. 2014;63(12):1123-33. 

42. World Health Organization. Management of noncommunicable diseases  [13/03/2021]. Available 
from: https://www.who.int/activities/management-of-noncommunicable-diseases. 

43. Organization WH. Innovative care for chronic conditions: building blocks for actions: global 
report: World Health Organization; 2002. 

44. Rothman AA, Wagner EH. Chronic illness management: what is the role of primary care? Annals 
of Internal Medicine. 2003;138(3):256-61. 

45. Ham C. The Ten Characteristics of the High-Performing Chronic Care Systems. Health Econ Pol'y 
& L. 2010;5:71. 

http://www.who.int/activities/management-of-noncommunicable-diseases


References 

 

46. Phillips Jr RL, Starfield B. Why does a US primary care physician workforce crisis matter? 
American family physician. 2004;70(3):440. 

47. Bodenheimer T, Wagner EH, Grumbach K. Improving primary care for patients with chronic 
illness. Jama. 2002;288(14):1775-9. 

48. Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the chronic care model in the new 
millennium. Health affairs. 2009;28(1):75-85. 

49. Dennis SM, Zwar N, Griffiths R, Roland M, Hasan I, Powell Davies G, et al. Chronic disease 
management in primary care: from evidence to policy. Medical Journal of Australia. 2008;188:S53-S6. 

50. McGlynn EA, Asch SM, Adams J, Keesey J, Hicks J, DeCristofaro A, et al. The quality of health care 
delivered to adults in the United States. New England journal of medicine. 2003;348(26):2635-45. 

51. Kripalani S, LeFevre F, Phillips CO, Williams MV, Basaviah P, Baker DW. Deficits in 
communication and information transfer between hospital-based and primary care physicians: implications 
for patient safety and continuity of care. Jama. 2007;297(8):831-41. 

52. Harris MF, Zwar NA. Care of patients with chronic disease: the challenge for general practice. 
Medical Journal of Australia. 2007;187(2):104-7. 

53. Harris MF, Williams AM, Dennis SM, Zwar NA, Powell Davies G. Chronic disease self‐management: 
implementation with and within Australian general practice. Medical Journal of Australia. 2008;189:S17-
S20. 

54. Jerant AF, von Friederichs-Fitzwater MM, Moore M. Patients’ perceived barriers to active self-
management of chronic conditions. Patient education and counseling. 2005;57(3):300-7. 

55. Georgeff M. Patients and technology: Digital technologies and chronic disease management. 
Australian family physician. 2014;43(12):842-6. 

56. Milani RV, Lavie CJ. Health care 2020: reengineering health care delivery to combat chronic 
disease. The American journal of medicine. 2015;128(4):337-43. 

57. World Health Organization. eHealth at WHO 2018 [13/03/2021]. Available from: 
https://www.who.int/ehealth/about/en/. 

58. World Health Organization. Emergencies preparedness, response, "Early warning systems", 2015 
[31 August 2015]. Available from: http://www.who.int/csr/labepidemiology/projects/ewarn/en/. 

59. Albuquerque De Almeida F, Al M, Koymans R, Caliskan K, Kerstens A, Severens JL. Early warning 
systems for the management of chronic heart failure: a systematic literature review of cost-effectiveness 
models. Expert review of pharmacoeconomics & outcomes research. 2018;18(2):161-75. 

60. Health Do. Comprehensive critical care: a review of adult critical care services. 2000. 

61. McGaughey J, Alderdice F, Fowler R, Kapila A, Mayhew A, Moutray M. Outreach and Early 
Warning Systems (EWS) for the prevention of intensive care admission and death of critically ill adult 
patients on general hospital wards. Cochrane Database of Systematic Reviews. 2007(3). 

62. Field MJ. Telemedicine: A guide to assessing telecommunications for health care. 1996. 

63. Anker SD, Koehler F, Abraham WT. Telemedicine and remote management of patients with heart 
failure. The Lancet. 2011;378(9792):731-9. 

http://www.who.int/ehealth/about/en/
http://www.who.int/csr/labepidemiology/projects/ewarn/en/


   References 

281 

64. Suter P, Suter WN, Johnston D. Theory-based telehealth and patient empowerment. Population 
health management. 2011;14(2):87-92. 

65. Tu JV, Jaglal SB, Naylor CD. Multicenter validation of a risk index for mortality, intensive care unit 
stay, and overall hospital length of stay after cardiac surgery. Circulation. 1995;91(3):677-84. 

66. Tu JV, Austin PC, Walld R, Roos L, Agras J, McDonald KM. Development and validation of the 
Ontario acute myocardial infarction mortality prediction rules. Journal of the American College of 
Cardiology. 2001;37(4):992-7. 

67. Laupacis A, Sekar N. Clinical prediction rules: a review and suggested modifications of 
methodological standards. Jama. 1997;277(6):488-94. 

68. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients 
hospitalized for heart failure: derivation and validation of a clinical model. Jama. 2003;290(19):2581-7. 

69. McGinn TG, Guyatt GH, Wyer PC, Naylor CD, Stiell IG, Richardson WS, et al. Users' guides to the 
medical literature: XXII: how to use articles about clinical decision rules. Jama. 2000;284(1):79-84. 

70. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present 
and future. Stroke and vascular neurology. 2017;2(4):230-43. 

71. Beam AL, Kohane IS. Big data and machine learning in health care. Jama. 2018;319(13):1317-8. 

72. National Information Center on Health Services Research and Health Care Technology (NICHSR). 
HTA 101: II. FUNDAMENTAL CONCEPTS 2019 [15/03/2021]. Available from: 
https://www.nlm.nih.gov/nichsr/hta101/ta10104.html. 

73. European Medicines Agency. Health technology assessment bodies  [15/03/2021]. Available 
from: https://www.ema.europa.eu/en/partners-networks/health-technology-assessment-bodies. 

74. Banta D, Jonsson E. History of HTA: introduction. International journal of technology assessment 
in health care. 2009;25(S1):1-6. 

75. European Network for Health Technology Assessment (EUnetHTA).  [23/12/2020]. Available 
from: https://eunethta.eu/. 

76. European Network for Health Technology Assessment (EUnetHTA). EUnetHTA JA2 WP8 
DELIVERABLE - HTA Core Model Version 3.0. 2016. 

77. Boadway R, Bruce N. Welfare Economics Basil Blackwell. Cambridge; 1984. 

78. Hurley J. An Overview of the Normative Economics of the Health Care Sector: in: Culyer. 
Newhouse; 2000. 

79. Brouwer WB, Koopmanschap MA. On the economic foundations of CEA. Ladies and gentlemen, 
take your positions! Journal of health economics. 2000;19(4):439-59. 

80. Brouwer WB, Culyer AJ, van Exel NJA, Rutten FF. Welfarism vs. extra-welfarism. Journal of health 
economics. 2008;27(2):325-38. 

81. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic 
evaluation of health care programmes: Oxford university press; 2015. 

http://www.nlm.nih.gov/nichsr/hta101/ta10104.html
http://www.ema.europa.eu/en/partners-networks/health-technology-assessment-bodies


References 

 

82. Jakubiak-Lasocka J, Jakubczyk M. Cost-effectiveness versus cost-utility analyses: what are the 
motives behind using each and how do their results differ?—A Polish example. Value in health regional 
issues. 2014;4:66-74. 

83. Klarman HE, Rosenthal GD. Cost effectiveness analysis applied to the treatment of chronic renal 
disease. Medical care. 1968;6(1):48-54. 

84. Fanshel S, Bush JW. A health-status index and its application to health-services outcomes. 
Operations research. 1970;18(6):1021-66. 

85. Torrance GW, Thomas WH, Sackett DL. A utility maximization model for evaluation of health care 
programs. Health services research. 1972;7(2):118. 

86. Weinstein MC, Russell LB, Gold MR, Siegel JE. Cost-effectiveness in health and medicine: Oxford 
university press; 1996. 

87. Brouwer W, van Baal P, van Exel J, Versteegh M. When is it too expensive? Cost-effectiveness 
thresholds and health care decision-making. Springer; 2019. 

88. Vallejo-Torres L, García-Lorenzo B, Castilla I, Valcárcel-Nazco C, García-Pérez L, Linertová R, et al. 
On the estimation of the cost-effectiveness threshold: why, what, how? Value in Health. 2016;19(5):558-66. 

89. Thokala P, Ochalek J, Leech AA, Tong T. Cost-effectiveness thresholds: the past, the present and 
the future. Pharmacoeconomics. 2018;36(5):509-22. 

90. O'Brien BJ, Drummond MF, Labelle RJ, Willan A. In search of power and significance: issues in the 
design and analysis of stochastic cost-effectiveness studies in health care. Medical care. 1994:150-63. 

91. Wakker P, Klaassen MP. Confidence intervals for cost/effectiveness ratios. Health Economics. 
1995;4(5):373-81. 

92. Van Hout BA, Al MJ, Gordon GS, Rutten FF. Costs, effects and C/E‐ratios alongside a clinical trial. 
Health economics. 1994;3(5):309-19. 

93. Buxton MJ, Drummond MF, Van Hout BA, Prince RL, Sheldon TA, Szucs T, et al. Modelling in 
ecomomic evaluation: an unavoidable fact of life. Health economics. 1997;6(3):217-27. 

94. Briggs A, Sculpher M, Claxton K. Decision modelling for health economic evaluation: Oup Oxford; 
2006. 

95. Buxton MJ. Economic evaluation and decision making in the UK. Pharmacoeconomics. 
2006;24(11):1133-42. 

96. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke 
statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28. 

97. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the 
impact of heart failure in the United States a policy statement from the American Heart Association. 
Circulation: Heart Failure. 2013;6(3):606-19. 

98. Nichols M, Townsend N, Scarborough P, Rayner M. European cardiovascular disease 
statistics2012. 



   References 

283 

99. American Heart Association. Classes of Heart Failure 2015 [28 August 2015]. Available from: 
http://www.heart.org/HEARTORG/Conditions/HeartFailure/AboutHeartFailure/Classes-of-Heart-
Failure_UCM_306328_Article.jsp. 

100. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC Guidelines 
for the diagnosis and treatment of acute and chronic heart failure 2012. European journal of heart failure. 
2012;14(8):803-69. 

101. Klersy C, De Silvestri A, Gabutti G, Regoli F, Auricchio A. A meta-analysis of remote monitoring of 
heart failure patients. Journal of the American College of Cardiology. 2009;54(18):1683-94. 

102. Inglis SC, Clark RA, McAlister FA, Stewart S, Cleland JG. Which components of heart failure 
programmes are effective? A systematic review and meta‐analysis of the outcomes of structured telephone 
support or telemonitoring as the primary component of chronic heart failure management in 8323 patients: 
abridged Cochrane Review. European journal of heart failure. 2011;13(9):1028-40. 

103. Mejhert M, Kahan T, Persson H, Edner M. Limited long term effects of a management programme 
for heart failure. Heart. 2004;90(9):1010-5. 

104. Titler MG, Jensen GA, Dochterman JM, Xie XJ, Kanak M, Reed D, et al. Cost of hospital care for older 
adults with heart failure: medical, pharmaceutical, and nursing costs. Health services research. 
2008;43(2):635-55. 

105. Briggs AH, Claxton K, Sculpher MJ. Decision modelling for health economic evaluation. Oxford: 
Oxford University Press; 2006. 

106. Mauskopf J, Paul J, Grant D, Stergachis A. The Role of Cost—Consequence Analysis in Healthcare 
Decision—Making. PharmacoEconomics. 1998;13(3):277-88. 

107. Drummond MF, Sculpher MJ, Torrance GW, O'Brien BJ, Stoddart GL. Methods for the economic 
evaluation of health care programmes. Oxford; New York: Oxford University Press; 2005. 

108. Weinstein MC, O'Brien B, Hornberger J, Jackson J, Johannesson M, McCabe C, et al. Principles of 
Good Practice for Decision Analytic Modeling in Health-Care Evaluation: Report of the ISPOR Task Force on 
Good Research Practices—Modeling Studies. Value in Health. 2003;6(1):9-17. 

109. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and 
meta-analyses: the PRISMA statement. Annals of internal medicine. 2009;151(4):264-9. 

110. Philips Z, Ginnelly L, Sculpher M, Claxton K, Golder S, Riemsma R, et al. Review of guidelines for 
good practice in decision-analytic modelling in health technology assessment. 2004. 

111. Burri H, Sticherling C, Wright D, Makino K, Smala A, Tilden D. Cost–consequence analysis of daily 
continuous remote monitoring of implantable cardiac defibrillator and resynchronization devices in the UK. 
Europace. 2013;15(11):1601-8. 

112. Klersy C, De Silvestri A, Gabutti G, Raisaro A, Curti M, Regoli F, et al. Economic impact of remote 
patient monitoring: an integrated economic model derived from a meta‐analysis of randomized controlled 
trials in heart failure. European Journal of Heart Failure. 2011;13(4):450-9. 

113. Laramée P, Wonderling D, Swain S, Al-Mohammad A, Mant J. Cost-effectiveness analysis of serial 
measurement of circulating natriuretic peptide concentration in chronic heart failure. Heart. 
2013;99(4):267-71. 

114. Miller G, Randolph S, Forkner E, Smith B, Galbreath AD. Long-term cost-effectiveness of disease 
management in systolic heart failure. Medical Decision Making. 2009. 

http://www.heart.org/HEARTORG/Conditions/HeartFailure/AboutHeartFailure/Classes-of-Heart-Failure_UCM_306328_Article.jsp
http://www.heart.org/HEARTORG/Conditions/HeartFailure/AboutHeartFailure/Classes-of-Heart-Failure_UCM_306328_Article.jsp


References 

 

115. Moertl D, Steiner S, Coyle D, Berger R. Cost-utility analysis of NT-proBNP-guided 
multidisciplinary care in chronic heart failure. International journal of technology assessment in health 
care. 2013;29(01):3-11. 

116. Morimoto T, Hayashino Y, Shimbo T, Izumi T, Fukui T. Is B-type natriuretic peptide-guided heart 
failure management cost-effective? International journal of cardiology. 2004;96(2):177-81. 

117. Pandor A, Thokala P, Gomersall T, Baalbaki H, Stevens J, Wang J, et al. Home telemonitoring or 
structured telephone support programmes after recent discharge in patients with heart failure: systematic 
review and economic evaluation. 2013. 

118. National Clinical Guideline Centre. (2010). Chronic heart failure: the management of chronic 
heart failure in adults in primary and secondary care. London: National Clinical Guideline Centre. Available 
from: http://guidance.nice.org.uk/CG108/Guidance/pdf/English. 

119. Galbreath AD, Krasuski RA, Smith B, Stajduhar KC, Kwan MD, Ellis R, et al. Long-term healthcare 
and cost outcomes of disease management in a large, randomized, community-based population with heart 
failure. Circulation. 2004;110(23):3518-26. 

120. Paul SD, Kuntz KM, Eagle KA, Weinstein MC. Costs and effectiveness of angiotensin converting 
enzyme inhibition in patients with congestive heart failure. Archives of internal medicine. 
1994;154(10):1143-9. 

121. Delea TE, Vera-Llonch M, Richner RE, Fowler MB, Oster G. Cost effectiveness of carvedilol for 
heart failure. The American journal of cardiology. 1999;83(6):890-6. 

122. Drummond MF, Schwartz JS, Jönsson B, Luce BR, Neumann PJ, Siebert U, et al. Key principles for 
the improved conduct of health technology assessments for resource allocation decisions. International 
journal of technology assessment in health care. 2008;24(03):244-58. 

123. Goeree R, Burke N, O'Reilly D, Manca A, Blackhouse G, Tarride J-E. Transferability of economic 
evaluations: approaches and factors to consider when using results from one geographic area for another. 
Current Medical Research and Opinion®. 2007;23(4):671-82. 

124. Angermann CE, Störk S, Gelbrich G, Faller H, Jahns R, Frantz S, et al. Mode of action and effects of 
standardized collaborative disease management on mortality and morbidity in patients with systolic heart 
failure: the Interdisciplinary Network for Heart Failure (INH) study. Circulation: Heart Failure. 
2011:CIRCHEARTFAILURE. 111.962969. 

125. Chaudhry SI, Mattera JA, Curtis JP, Spertus JA, Herrin J, Lin Z, et al. Telemonitoring in patients 
with heart failure. New England Journal of Medicine. 2010;363(24):2301-9. 

126. Cleland JG, Louis AA, Rigby AS, Janssens U, Balk AH, Investigators T-H. Noninvasive home 
telemonitoring for patients with heart failure at high risk of recurrent admission and death: the Trans-
European Network-Home-Care Management System (TEN-HMS) study. Journal of the American College of 
Cardiology. 2005;45(10):1654-64. 

127. Drummond MF, Jefferson T. Guidelines for authors and peer reviewers of economic submissions 
to the BMJ. Bmj. 1996;313(7052):275-83. 

128. Eddy D. Technology assessment: the role of mathematical modeling. Assessing medical 
technologies. 1985:144-75. 

129. Goehler A, Geisler BP, Manne JM, Jahn B, Conrads-Frank A, Gazelle GS, et al. Decision-Analytic 
Models to Simulate Health Outcomes and Costs in Heart Failure. Pharmacoeconomics. 2011;29(9):753-69. 

http://guidance.nice.org.uk/CG108/Guidance/pdf/English


   References 

285 

130. Frederix GW, Afzali HHA, Dasbach EJ, Ward RL. Development and Use of Disease-Specific 
(Reference) Models for Economic Evaluations of Health Technologies: An Overview of Key Issues and 
Potential Solutions. PharmacoEconomics. 2015:1-5. 

131. Handels RL, Wolfs CA, Aalten P, Joore MA, Verhey FR, Severens JL. Diagnosing Alzheimer's 
disease: A systematic review of economic evaluations. Alzheimer's & Dementia. 2014;10(2):225-37. 

132. Getsios MD, Blume S, Ishak KJ, Maclaine GD. Cost effectiveness of donepezil in the treatment of 
mild to moderate Alzheimer’s disease. Pharmacoeconomics. 2010;28(5):411-27. 

133. Van Gestel A, Severens JL, Webers CA, Beckers HJ, Jansonius NM, Schouten JS. Modeling complex 
treatment strategies: construction and validation of a discrete event simulation model for glaucoma. Value 
in Health. 2010;13(4):358-67. 

134. Rennie D, Luft HS. Pharmacoeconomic analyses: making them transparent, making them credible. 
JAMA. 2000;283(16):2158-60. 

135. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health 
economic evaluation reporting standards (CHEERS) statement. BMC medicine. 2013;11(1):80. 

136. Raphael C, Briscoe C, Davies J, Whinnett ZI, Manisty C, Sutton R, et al. Limitations of the New York 
Heart Association functional classification system and self-reported walking distances in chronic heart 
failure. Heart. 2007;93(4):476-82. 

137. Lewis EF, Li Y, Pfeffer MA, Solomon SD, Weinfurt KP, Velazquez EJ, et al. Impact of cardiovascular 
events on change in quality of life and utilities in patients after myocardial infarction: a VALIANT study 
(valsartan in acute myocardial infarction). JACC: Heart Failure. 2014;2(2):159-65. 

138. Yao G, Freemantle N, Flather M, Tharmanathan P, Coats A, Poole-Wilson PA. Long-Term Cost-
Effectiveness Analysis of Nebivolol Compared with Standard Care in Elderly Patients with Heart Failure. 
Pharmacoeconomics. 2008;26(10):879-89. 

139. Alla F, Briançon S, Guillemin F, Juillière Y, Mertès PM, Villemot JP, et al. Self‐rating of quality of life 
provides additional prognostic information in heart failure. Insights into the EPICAL study. European 
Journal of Heart Failure. 2002;4(3):337-43. 

140. Ramos S, Prata J, Rocha-Gonçalves F, Bettencourt P, Coelho R. Quality of Life Predicts Survival and 
Hospitalisation in a Heart Failure Portuguese Population. Applied Research in Quality of Life. 
2017;12(1):35-48. 

141. Brazier J, Jones N, Kind P. Testing the validity of the Euroqol and comparing it with the SF-36 
health survey questionnaire. Quality of Life Research. 1993;2(3):169-80. 

142. The EuroQol Group. EuroQol - a new facility for the measurement of health-related quality of life. 
Health Policy. 1990;16(3):199-208. 

143. Dyer MT, Goldsmith KA, Sharples LS, Buxton MJ. A review of health utilities using the EQ-5D in 
studies of cardiovascular disease. Health and Quality of Life Outcomes. 2010;8(1):13. 

144. Calvert MJ, Freemantle N, Cleland JGF. The impact of chronic heart failure on health-related 
quality of life data acquired in the baseline phase of the CARE-HF study. European Journal of Heart Failure. 
2005;7(2):243-51. 

145. Lamers LM, Stalmeier PF, McDonnell J, Krabbe PF, van Busschbach JJ. [Measuring the quality of 
life in economic evaluations: the Dutch EQ-5D tariff]. Nederlands tijdschrift voor geneeskunde. 
2005;149(28):1574-8. 



References 

 

146. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2017. 

147. Rich MW, Beckham V, Wittenberg C, Leven CL, Freedland KE, Carney RM. A multidisciplinary 
intervention to prevent the readmission of elderly patients with congestive heart failure. New England 
Journal of Medicine. 1995;333(18):1190-5. 

148. Krumholz HM, Parent EM, Tu N, Vaccarino V, Wang Y, Radford MJ, et al. Readmission after 
hospitalization for congestive heart failure among Medicare beneficiaries. Archives of internal medicine. 
1997;157(1):99-104. 

149. Hasan A, Paul V. Telemonitoring in chronic heart failure. European heart journal. 
2011;32(12):1457-64. 

150. Janssen MF, Bonsel GJ, Luo N. Is EQ-5D-5L better than EQ-5D-3L? A head-to-head comparison of 
descriptive systems and value sets from seven countries. Pharmacoeconomics. 2018;36(6):675-97. 

151. Böckerman P, Johansson E, Saarni SI. Do established health-related quality-of-life measures 
adequately capture the impact of chronic conditions on subjective well-being? Health Policy. 
2011;100(1):91-5. 

152. Bosworth H, Steinhauser K, Orr M, Lindquist J, Grambow S, Oddone E. Congestive heart failure 
patients’ perceptions of quality of life: the integration of physical and psychosocial factors. Aging & mental 
health. 2004;8(1):83-91. 

153. Heo S, Lennie TA, Okoli C, Moser DK. Quality of life in patients with heart failure: ask the patients. 
Heart & Lung: The Journal of Acute and Critical Care. 2009;38(2):100-8. 

154. Blinderman CD, Homel P, Billings JA, Portenoy RK, Tennstedt SL. Symptom distress and quality of 
life in patients with advanced congestive heart failure. Journal of pain and symptom management. 
2008;35(6):594-603. 

155. Jaarsma T, Halfens R, Tan F, Abu-Saad HH, Dracup K, Diederiks J. Self-care and quality of life in 
patients with advanced heart failure: the effect of a supportive educational intervention. Heart & Lung: The 
Journal of Acute and Critical Care. 2000;29(5):319-30. 

156. Harrison MB, Browne GB, Roberts J, Tugwell P, Gafni A, Graham ID. Quality of life of individuals 
with heart failure: a randomized trial of the effectiveness of two models of hospital-to-home transition. 
Medical care. 2002;40(4):271-82. 

157. Caro JJ, Migliaccio-Walle K, O'Brien JA, Nova W, Kim J, Hauch O, et al. Economic implications of 
extended-release metoprolol succinate for heart failure in the MERIT-HF trial: a US perspective of the 
MERIT-HF trial. Journal of cardiac failure. 2005;11(9):647-56. 

158. de Ridder D, Schreurs K. Developing interventions for chronically ill patients: is coping a helpful 
concept? Clinical psychology review. 2001;21(2):205-40. 

159. Rector T, Cohn J. Minnesota living with heart failure questionnaire. Minnesota: University of 
Minnesota. 2004. 

160. De Craen AJ, Kaptchuk TJ, Tijssen JG, Kleijnen J. Placebos and placebo effects in medicine: 
historical overview. Journal of the Royal Society of Medicine. 1999;92(10):511-5. 

161. Johansson B, Brandberg Y, Hellbom M, Persson C, Petersson L, Berglund G, et al. Health-related 
quality of life and distress in cancer patients: results from a large randomised study. British journal of 
cancer. 2008;99(12):1975-83. 



   References 

287 

162. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke 
statistics—2013 update. Circulation. 2013;127(1):e6-e245. 

163. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke 
statistics—2008 update. Circulation. 2008;117(4):e25-e146. 

164. Kilgore M, Patel HK, Kielhorn A, Maya JF, Sharma P. Economic burden of hospitalizations of 
Medicare beneficiaries with heart failure. Risk management and healthcare policy. 2017;10:63. 

165. Mueller C, Christ M, Cowie M, Cullen L, Maisel AS, Masip J, et al. European Society of Cardiology-
Acute Cardiovascular Care Association Position paper on acute heart failure: A call for interdisciplinary 
care. European Heart Journal: Acute Cardiovascular Care. 2017;6(1):81-6. 

166. Weintraub NL, Collins SP, Pang PS, Levy PD, Anderson AS, Arslanian-Engoren C, et al. Acute heart 
failure syndromes: emergency department presentation, treatment, and disposition: current approaches 
and future aims: a scientific statement from the American Heart Association. Circulation. 
2010;122(19):1975-96. 

167. Clark RA, Inglis SC, McAlister FA, Cleland JG, Stewart S. Telemonitoring or structured telephone 
support programmes for patients with chronic heart failure: systematic review and meta-analysis. Bmj. 
2007;334(7600):942. 

168. Inglis SC, Clark RA, Dierckx R, Prieto-Merino D, Cleland JG. Structured telephone support or non-
invasive telemonitoring for patients with heart failure. BMJ Publishing Group Ltd and British Cardiovascular 
Society; 2016. 

169. Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction 
rules to make decisions. Annals of internal medicine. 2006;144(3):201-9. 

170. Zhang J, Goode KM, Cuddihy PE, Cleland JG. Predicting hospitalization due to worsening heart 
failure using daily weight measurement: analysis of the Trans‐European Network‐Home‐Care Management 
System (TEN‐HMS) study. European journal of heart failure. 2009;11(4):420-7. 

171. Ledwidge MT, O'hanlon R, Lalor L, Travers B, Edwards N, Kelly D, et al. Can individualized weight 
monitoring using the HeartPhone algorithm improve sensitivity for clinical deterioration of heart failure? 
European journal of heart failure. 2013;15(4):447-55. 

172. Anand IS, Tang WW, Greenberg BH, Chakravarthy N, Libbus I, Katra RP. Design and performance 
of a multisensor heart failure monitoring algorithm: results from the multisensor monitoring in congestive 
heart failure (MUSIC) study. Journal of cardiac failure. 2012;18(4):289-95. 

173. Gyllensten IC, Bonomi AG, Goode KM, Reiter H, Habetha J, Amft O, et al. Early indication of 
decompensated heart failure in patients on home-telemonitoring: a comparison of prediction algorithms 
based on daily weight and noninvasive transthoracic bio-impedance. JMIR medical informatics. 2016;4(1). 

174. Gyllensten IC, Crundall-Goode A, Aarts RM, Goode KM. Simulated case management of home 
telemonitoring to assess the impact of different alert algorithms on work-load and clinical decisions. BMC 
medical informatics and decision making. 2017;17(1):11. 

175. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society Series B (Methodological). 1996:267-88. 

176. Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical machine learning tools and techniques: 
Morgan Kaufmann; 2016. 



References 

 

177. Pauker SG, Kassirer JP. Therapeutic decision making: a cost-benefit analysis. New England 
Journal of Medicine. 1975;293(5):229-34. 

178. Inglis SC, Clark RA, Dierckx R, Prieto-Merino D, Cleland JGF. Structured telephone support or non-
invasive telemonitoring for patients with heart failure. Cochrane Database of Systematic Reviews. 2015(10). 

179. Balk AH, Davidse W, Dommelen P, Klaassen E, Caliskan K, Burgh P, et al. Tele‐guidance of chronic 
heart failure patients enhances knowledge about the disease. A multi‐centre, randomised controlled study. 
European journal of heart failure. 2008;10(11):1136-42. 

180. Dendale P, De Keulenaer G, Troisfontaines P, Weytjens C, Mullens W, Elegeert I, et al. Effect of a 
telemonitoring‐facilitated collaboration between general practitioner and heart failure clinic on mortality 
and rehospitalization rates in severe heart failure: the TEMA‐HF 1 (TElemonitoring in the MAnagement of 
Heart Failure) study. European journal of heart failure. 2012;14(3):333-40. 

181. Koehler F, Winkler S, Schieber M, Sechtem U, Stangl K, Böhm M, et al. Impact of remote 
telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart 
failure: the telemedical interventional monitoring in heart failure study. Circulation. 
2011:CIRCULATIONAHA. 111.018473. 

182. Lyngå P, Persson H, Hägg‐Martinell A, Hägglund E, Hagerman I, Langius‐Eklöf A, et al. Weight 
monitoring in patients with severe heart failure (WISH). A randomized controlled trial. European journal of 
heart failure. 2012;14(4):438-44. 

183. Soran OZ, Piña IL, Lamas GA, Kelsey SF, Selzer F, Pilotte J, et al. A randomized clinical trial of the 
clinical effects of enhanced heart failure monitoring using a computer-based telephonic monitoring system 
in older minorities and women. Journal of cardiac failure. 2008;14(9):711-7. 

184. Vuorinen A-L, Leppänen J, Kaijanranta H, Kulju M, Heliö T, van Gils M, et al. Use of home 
telemonitoring to support multidisciplinary care of heart failure patients in Finland: randomized controlled 
trial. Journal of medical Internet research. 2014;16(12). 

185. Woodend AK, Sherrard H, Fraser M, Stuewe L, Cheung T, Struthers C. Telehome monitoring in 
patients with cardiac disease who are at high risk of readmission. Heart & Lung: The Journal of Acute and 
Critical Care. 2008;37(1):36-45. 

186. Mortara A, Pinna GD, Johnson P, Maestri R, Capomolla S, La Rovere MT, et al. Home 
telemonitoring in heart failure patients: the HHH study (Home or Hospital in Heart Failure). European 
journal of heart failure. 2009;11(3):312-8. 

187. AAPC Coder. HCPCS Code G0406 Follow-up inpatient consultation, limited, physicians typically 
spend 15 minutes communicating with the patient via telehealth  [03/05/2018]. Available from: 
https://coder.aapc.com/hcpcs-codes/G0406. 

188. Centers for Medicare and Medicaid Services (CMS). License for Use of Current Procedural 
Terminology, Fourth Edition ("CPT®")  [03/05/2018]. Available from: 
https://www.cms.gov/apps/physician-fee-schedule/license-agreement.aspx. 

189. Basset A, Nowak E, Castellant P, Gut-Gobert C, Le Gal G, L'her E. Development of a clinical 
prediction score for congestive heart failure diagnosis in the emergency care setting: the Brest score. The 
American journal of emergency medicine. 2016;34(12):2277-83. 

190. Steinhart BD, Levy P, Vandenberghe H, Moe G, Yan AT, Cohen A, et al. A Randomized Control Trial 
Using a Validated Prediction Model for Diagnosing Acute Heart Failure in Undifferentiated Dyspneic 
Emergency Department Patients—Results of the GASP4Ar Study. Journal of cardiac failure. 2017;23(2):145-
52. 

http://www.cms.gov/apps/physician-fee-schedule/license-agreement.aspx


   References 

289 

191. Cubbon R, Woolston A, Adams B, Gale C, Gilthorpe M, Baxter P, et al. Prospective development 
and validation of a model to predict heart failure hospitalisation. Heart. 2014;100(12):923-9. 

192. Klerings I, Weinhandl AS, Thaler KJ. Information overload in healthcare: too much of a good 
thing? Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen. 2015;109(4):285-90. 

193. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola V-P, et al. Incremental value of 
biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the 
Multinational Observational Cohort on Acute Heart Failure (MOCA) study. International journal of 
cardiology. 2013;168(3):2186-94. 

194. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, O'meara E, et al. Cardiac structure and 
function and prognosis in heart failure with preserved ejection fraction: findings from the 
echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone 
Antagonist (TOPCAT) Trial. Circulation: Heart Failure. 2014:CIRCHEARTFAILURE. 114.001583. 

195. Shah KB, Kop WJ, Christenson RH, Diercks DB, Kuo D, Henderson S, et al. Post-discharge changes 
in NT-proBNP and quality of life after acute dyspnea hospitalization as predictors of one-year outcomes. 
Clinical biochemistry. 2010;43(18):1405-10. 

196. Steinhart B, Thorpe KE, Bayoumi AM, Moe G, Januzzi JL, Mazer CD. Improving the diagnosis of 
acute heart failure using a validated prediction model. Journal of the American College of Cardiology. 
2009;54(16):1515-21. 

197. Beattie P, Nelson R. Clinical prediction rules: what are they and what do they tell us? Australian 
Journal of Physiotherapy. 2006;52(3):157-63. 

198. Siebert U. When should decision-analytic modeling be used in the economic evaluation of health 
care? : Springer; 2003. 

199. Karnon J, Brown J. Selecting a decision model for economic evaluation: a case study and review. 
Health care management science. 1998;1(2):133-40. 

200. Weinstein MC. Recent developments in decision-analytic modelling for economic evaluation. 
Pharmacoeconomics. 2006;24(11):1043-53. 

201. Heeg BM, Damen J, Buskens E, Caleo S, de Charro F, van Hout BA. Modelling approaches. 
Pharmacoeconomics. 2008;26(8):633-48. 

202. Tran-Duy A, Boonen A, van de Laar MA, Franke AC, Severens JL. A discrete event modelling 
framework for simulation of long-term outcomes of sequential treatment strategies for ankylosing 
spondylitis. Annals of the rheumatic diseases. 2011;70(12):2111-8. 

203. Karnon J. Alternative decision modelling techniques for the evaluation of health care 
technologies: Markov processes versus discrete event simulation. Health economics. 2003;12(10):837-48. 

204. Eddy DM. Accuracy versus transparency in pharmacoeconomic modelling. Pharmacoeconomics. 
2006;24(9):837-44. 

205. Grustam AS, Severens JL, De Massari D, Buyukkaramikli N, Koymans R, Vrijhoef HJ. Cost-
effectiveness analysis in telehealth: a comparison between home telemonitoring, nurse telephone support, 
and usual care in chronic heart failure management. Value in Health. 2018;21(7):772-82. 

206. Latimer N. NICE DSU technical support document 14: survival analysis for economic evaluations 
alongside clinical trials-extrapolation with patient-level data. Sheffield: Report by the Decision Support Unit. 
2011. 



References 

 

207. Alehagen U, Rahmqvist M, Paulsson T, Levin LÅ. Quality‐adjusted life year weights among elderly 
patients with heart failure. European journal of heart failure. 2008;10(10):1033-9. 

208. Braunstein JB, Anderson GF, Gerstenblith G, Weller W, Niefeld M, Herbert R, et al. Noncardiac 
comorbidity increases preventable hospitalizations and mortality among Medicare beneficiaries with 
chronic heart failure. Journal of the American College of Cardiology. 2003;42(7):1226-33. 

209. Statistics Netherlands. CBS Statline - Annual change in consumer price index; from 1963 2020 
[13/08/2020]. Available from: 
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70936ned/table?fromstatweb. 

210. Zorginstituut Nederland. Guidelines for conducting economic evaluations in healthcare [in Dutch: 
Richtlijn voor het uitvoeren van economische evaluaties in de gezondheidszorg] 2016. Diemen: 
Zorginstituut Nederland. 2016. 

211. Hakkaart-van Roijen L, Van der Linden N, Bouwmans C, Kanters T, Tan SS. Kostenhandleiding. 
Methodologie van kostenonderzoek en referentieprijzen voor economische evaluaties in de 
gezondheidszorg In opdracht van Zorginstituut Nederland Geactualiseerde versie. 2015. 

212. Stevanovic J, Denee L, Koenders J, Postma M. Incidence Description and Costs of Acute Heart 
Failure in the Netherlands. Value in Health. 2014;17(7):A328. 

213. Hoogendoorn M, Ramos IC, Baldwin M, Guix NG-R, Rutten-van Mölken MP. Broadening the 
perspective of cost-effectiveness modeling in chronic obstructive pulmonary disease: a new patient-level 
simulation model suitable to evaluate stratified medicine. Value in Health. 2019;22(3):313-21. 

214. R Development Core Team. R: A language and environment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing; 2008. 

215. Vemer P, Ramos IC, Van Voorn G, Al M, Feenstra T. AdViSHE: a validation-assessment tool of 
health-economic models for decision makers and model users. Pharmacoeconomics. 2016;34(4):349-61. 

216. Seferovic PM, Ponikowski P, Anker SD, Bauersachs J, Chioncel O, Cleland JG, et al. Clinical practice 
update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert 
consensus meeting report of the Heart Failure Association of the European Society of Cardiology. European 
journal of heart failure. 2019;21(10):1169-86. 

217. O'connor CM, Abraham WT, Albert NM, Clare R, Stough WG, Gheorghiade M, et al. Predictors of 
mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized 
Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). 
American heart journal. 2008;156(4):662-73. 

218. Ford I, Robertson M, Komajda M, Böhm M, Borer JS, Tavazzi L, et al. Top ten risk factors for 
morbidity and mortality in patients with chronic systolic heart failure and elevated heart rate: the SHIFT 
Risk Model. International journal of cardiology. 2015;184:163-9. 

219. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, et al. Predictors of mortality 
and morbidity in patients with chronic heart failure. European heart journal. 2006;27(1):65-75. 

220. Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, et al. State-transition modeling: a 
report of the ISPOR-SMDM modeling good research practices task force–3. Medical Decision Making. 
2012;32(5):690-700. 

221. Caro JJ, Möller J, Getsios D. Discrete event simulation: the preferred technique for health 
economic evaluations? Value in health. 2010;13(8):1056-60. 



   References 

291 

222. Willis M, Fridhammar A, Gundgaard J, Nilsson A, Johansen P. Comparing the Cohort and Micro-
Simulation Modeling Approaches in Cost-Effectiveness Modeling of Type 2 Diabetes Mellitus: A Case Study 
of the IHE Diabetes Cohort Model and the Economics and Health Outcomes Model of T2DM. 
PharmacoEconomics. 2020:1-17. 

223. Caro JJ. Pharmacoeconomic analyses using discrete event simulation. Pharmacoeconomics. 
2005;23(4):323-32. 

224. Caro JJ, Möller J. Advantages and disadvantages of discrete-event simulation for health economic 
analyses. Expert review of pharmacoeconomics & outcomes research. 2016;16(3):327-9. 

225. Zhang J, Goode KM, Cuddihy PE, Cleland JG, Investigators TH. Predicting hospitalization due to 
worsening heart failure using daily weight measurement: analysis of the Trans‐European Network‐Home‐
Care Management System (TEN‐HMS) study. European journal of heart failure. 2009;11(4):420-7. 

226. Anand IS, Tang WW, Greenberg BH, Chakravarthy N, Libbus I, Katra RP, et al. Design and 
performance of a multisensor heart failure monitoring algorithm: results from the multisensor monitoring 
in congestive heart failure (MUSIC) study. Journal of cardiac failure. 2012;18(4):289-95. 

227. Briggs A, Clark T, Wolstenholme J, Clarke P. Missing.... presumed at random: cost‐analysis of 
incomplete data. Health economics. 2003;12(5):377-92. 

228. Gomes M, Díaz-Ordaz K, Grieve R, Kenward MG. Multiple imputation methods for handling 
missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster 
randomized trials. Medical decision making. 2013;33(8):1051-63. 

229. Hunter RM, Baio G, Butt T, Morris S, Round J, Freemantle N. An educational review of the 
statistical issues in analysing utility data for cost-utility analysis. Pharmacoeconomics. 2015;33(4):355-66. 

230. Hughes D, Charles J, Dawoud D, Edwards RT, Holmes E, Jones C, et al. Conducting economic 
evaluations alongside randomised trials: current methodological issues and novel approaches. 
Pharmacoeconomics. 2016;34(5):447-61. 

231. Faria R, Gomes M, Epstein D, White IR. A guide to handling missing data in cost-effectiveness 
analysis conducted within randomised controlled trials. Pharmacoeconomics. 2014;32(12):1157-70. 

232. Devin Incerti. Parametric survival modeling 2019. Available from: 
https://devinincerti.com/2019/06/18/parametric_survival.html. 

233. Volksgezondheidenzorg. Hartfalen - Cijfers & Context - Huidige situatie 2020 [06/01/2021]. 
Available from: https://www.volksgezondheidenzorg.info/onderwerp/hartfalen/cijfers-context/huidige-
situatie#node-nieuwe-gevallen-hartfalen-huisartsenpraktijk. 

234. Maric B, Kaan A, Ignaszewski A, Lear SA. A systematic review of telemonitoring technologies in 
heart failure. European journal of heart failure. 2009;11(5):506-17. 

235. Inglis SC, Clark RA, McAlister FA, Ball J, Lewinter C, Cullington D, et al. Structured telephone 
support or telemonitoring programmes for patients with chronic heart failure. Cochrane database of 
systematic reviews. 2010(8). 

236. Steventon A, Bardsley M, Billings J, Dixon J, Doll H, Hirani S, et al. Effect of telehealth on use of 
secondary care and mortality: findings from the Whole System Demonstrator cluster randomised trial. Bmj. 
2012;344:e3874. 

237. Henderson C, Knapp M, Fernández J-L, Beecham J, Hirani SP, Cartwright M, et al. Cost 
effectiveness of telehealth for patients with long term conditions (Whole Systems Demonstrator telehealth 

http://www.volksgezondheidenzorg.info/onderwerp/hartfalen/cijfers-context/huidige-situatie#node-nieuwe-gevallen-hartfalen-huisartsenpraktijk
http://www.volksgezondheidenzorg.info/onderwerp/hartfalen/cijfers-context/huidige-situatie#node-nieuwe-gevallen-hartfalen-huisartsenpraktijk


References 

 

questionnaire study): nested economic evaluation in a pragmatic, cluster randomised controlled trial. Bmj. 
2013;346:f1035. 

238. Albuquerque de Almeida F, Corro Ramos I, Rutten-van Mölken M, Al M. Modeling Early Warning 
Systems: Construction and Validation of a Discrete Event Simulation Model for Heart Failure. Value in 
Health. 

239. Zorginstituut Nederland. Ziektelast in de praktijk - De theorie en praktijk van het berekenen van 
ziektelast bij pakketbeoordelingen 2018 [06/01/2021]. Available from: 
https://www.zorginstituutnederland.nl/binaries/zinl/documenten/rapport/2018/05/07/ziektelast-in-de-
praktijk/Ziektelast+in+de+praktijk_definitief.pdf. 

240. Stolk EA, van Donselaar G, Brouwer WB, Busschbach JJ. Reconciliation of economic concerns and 
health policy. Pharmacoeconomics. 2004;22(17):1097-107. 

241. Versteegh MM, Ramos IC, Buyukkaramikli NC, Ansaripour A, Reckers-Droog VT, Brouwer WB. 
Severity-Adjusted Probability of Being Cost Effective. PharmacoEconomics. 2019;37(9):1155-63. 

242. Institute for Medical Technology Assessment: iMTA. The iMTA Disease Burden Calculator (iDBC) 
for absolute and shortfall  [06/01/2021]. Available from: https://imta.shinyapps.io/iDBC/. 

243. Centraal Bureau voor de Statistiek (CBS). Landelijke Basisregistratie Ziekenhuiszorg 2020 
[06/01/2021]. Available from: https://bronnen.zorggegevens.nl/Bron?naam=Landelijke-Basisregistratie-
Ziekenhuiszorg. 

244. Koulaouzidis G, Iakovidis D, Clark A. Telemonitoring predicts in advance heart failure admissions. 
International journal of cardiology. 2016;216:78-84. 

245. Z-index. 2019 [06/01/2021]. Available from: https://www.z-index.nl. 

246. Kanters TA, Bouwmans CA, van der Linden N, Tan SS, Hakkaart-van Roijen L. Update of the Dutch 
manual for costing studies in health care. PLoS One. 2017;12(11):e0187477. 

247. Ramos IC, Versteegh MM, de Boer RA, Koenders JM, Linssen GC, Meeder JG, et al. Cost 
effectiveness of the angiotensin receptor neprilysin inhibitor sacubitril/valsartan for patients with chronic 
heart failure and reduced ejection fraction in the Netherlands: a country adaptation analysis under the 
former and current Dutch Pharmacoeconomic Guidelines. Value in Health. 2017;20(10):1260-9. 

248. Evans M, Moes RG, Pedersen KS, Gundgaard J, Pieber TR. Cost-Effectiveness of Insulin Degludec 
Versus Insulin Glargine U300 in the Netherlands: Evidence From a Randomised Controlled Trial. Advances 
in therapy. 2020;37(5):2413-26. 

249. van Baal PH, Wong A, Slobbe LC, Polder JJ, Brouwer WB, de Wit GA. Standardizing the inclusion of 
indirect medical costs in economic evaluations. Pharmacoeconomics. 2011;29(3):175-87. 

250. Ara R, Brazier JE. Populating an economic model with health state utility values: moving toward 
better practice. Value in Health. 2010;13(5):509-18. 

251. Briggs A, Sculpher M, Buxton M. Uncertainty in the economic evaluation of health care 
technologies: the role of sensitivity analysis. Health economics. 1994;3(2):95-104. 

252. Oakley JE, O'Hagan A. Probabilistic sensitivity analysis of complex models: a Bayesian approach. 
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2004;66(3):751-69. 

http://www.zorginstituutnederland.nl/binaries/zinl/documenten/rapport/2018/05/07/ziektelast-in-de-praktijk/Ziektelast+in+de+praktijk_definitief.pdf
http://www.zorginstituutnederland.nl/binaries/zinl/documenten/rapport/2018/05/07/ziektelast-in-de-praktijk/Ziektelast+in+de+praktijk_definitief.pdf
http://www.z-index.nl/


   References 

293 

253. Briggs A. Probabilistic analysis of cost-effectiveness models: statistical representation of 
parameter uncertainty. Value in Health. 2005;8(1). 

254. Corro Ramos I, Hoogendoorn M, Rutten-van Mölken MP. How to Address Uncertainty in Health 
Economic Discrete-Event Simulation Models: An Illustration for Chronic Obstructive Pulmonary Disease. 
Medical Decision Making. 2020;40(5):619-32. 

255. Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics. 
2000;17(5):479-500. 

256. Doubilet P, Begg CB, Weinstein MC, Braun P, McNeil BJ. Probabilistic sensitivity analysis using 
Monte Carlo simulation: a practical approach. Medical decision making. 1985;5(2):157-77. 

257. Al MJ. Cost-effectiveness acceptability curves revisited. Pharmacoeconomics. 2013;31(2):93-100. 

258. Claxton K. The irrelevance of inference: a decision-making approach to the stochastic evaluation 
of health care technologies. Journal of health economics. 1999;18(3):341-64. 

259. Claxton K, Sculpher M, Drummond M. A rational framework for decision making by the National 
Institute for Clinical Excellence (NICE). The Lancet. 2002;360(9334):711-5. 

260. Rijksinstituut voor Volksgezondheid en Milieu (RIVM). Volksgezondheid Toekomst Verkenning. 
2018. 

261. Linssen G, Veenis JF, Brunner-La Rocca HP, van Pol P, Engelen D, van Tooren R, et al. Differences 
in guideline-recommended heart failure medication between Dutch heart failure clinics: an analysis of the 
CHECK-HF registry. Netherlands Heart Journal. 2020;28:334-44. 

262. Boyne JJ, Di Van Asselt A, Gorgels AP, Steuten LM, De Weerd G, Kragten J, et al. Cost–effectiveness 
analysis of telemonitoring versus usual care in patients with heart failure: The TEHAF–study. Journal of 
telemedicine and telecare. 2013;19(5):242-8. 

263. Boyne JJ, Vrijhoef HJ, De Wit R, Gorgels AP. Telemonitoring in patients with heart failure, the 
TEHAF study: Study protocol of an ongoing prospective randomised trial. International journal of nursing 
studies. 2011;48(1):94-9. 

264. Boyne JJ, Vrijhoef HJ, Crijns HJ, De Weerd G, Kragten J, Gorgels AP, et al. Tailored telemonitoring 
in patients with heart failure: results of a multicentre randomized controlled trial. European journal of heart 
failure. 2012;14(7):791-801. 

265. Inglis SC, Clark RA, Dierckx R, Prieto‐Merino D, Cleland JG. Structured telephone support or non‐
invasive telemonitoring for patients with heart failure. Cochrane Database of Systematic Reviews. 2015(10). 

266. European Medicines Agency (EMA). Medical Devices  [30/12/2020]. Available from: 
https://www.ema.europa.eu/en/human-regulatory/overview/medical-devices. 

267. European Patent Office (EPO). Annual reports  [30/12/2012]. Available from: 
https://www.epo.org/about-us/annual-reports-statistics/annual-report.html. 

268. MedTech Europe. The European Medical Technology Industry in figures 2020. 2020. 

269. Fargen KM, Frei D, Fiorella D, McDougall CG, Myers PM, Hirsch JA, et al. The FDA approval process 
for medical devices: an inherently flawed system or a valuable pathway for innovation? Journal of 
neurointerventional surgery. 2013;5(4):269-75. 

http://www.ema.europa.eu/en/human-regulatory/overview/medical-devices
http://www.epo.org/about-us/annual-reports-statistics/annual-report.html


References 

 

270. Sorenson C, Drummond M. Improving medical device regulation: the United States and Europe in 
perspective. The Milbank Quarterly. 2014;92(1):114-50. 

271. Kramer DB, Xu S, Kesselheim AS. How does medical device regulation perform in the United 
States and the European union? A systematic review. PLoS Med. 2012;9(7):e1001276. 

272. Fattore G, Maniadakis N, Mantovani LG, Boriani G. Health technology assessment: what is it? 
Current status and perspectives in the field of electrophysiology. Europace. 2011;13(suppl_2):ii49-ii53. 

273. Schreyögg J, Bäumler M, Busse R. Balancing adoption and affordability of medical devices in 
Europe. Health Policy. 2009;92(2-3):218-24. 

274. Taylor RS, Iglesias CP. Assessing the clinical and cost-effectiveness of medical devices and drugs: 
are they that different? Value in Health. 2009;12(4):404-6. 

275. Eikermann M, Gluud C, Perleth M, Wild C, Sauerland S, Gutierrez-Ibarluzea I, et al. Commentary: 
Europe needs a central, transparent, and evidence based regulation process for devices. Bmj. 2013;346. 

276. European Union. Types of EU law  [02/01/2021]. Available from: 
https://ec.europa.eu/info/law/law-making-process/types-eu-law_en#primary-vs-secondary-law. 

277. Craig P, De Búrca G. EU law: text, cases, and materials: Oxford university press; 2020. 

278. Bradford A. The Brussels effect: How the European Union rules the world: Oxford University 
Press, USA; 2020. 

279. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the 
Community code relating to medicinal products for human use (OJ L 311, 28.11.2001, p. 67–128), 
(Medicinal Products Directive). 

280. Regulation (EC) No 726/2004 of the European Parliament and of the Council of 31 March 2004 
laying down Community procedures for the authorisation and supervision of medicinal products for human 
and veterinary use and establishing a European Medicines Agency (Text with EEA relevance) (OJ L 136, 
30.4.2004, p. 1–33), (Medicinal Products Regulation). 

281. U.S. National Library of Medicine. ClinicalTrials.gov  [23/12/2020]. Available from: 
https://clinicaltrials.gov/. 

282. Thokala P, Carlson JJ, Drummond M. HTA’d in the USA: A Comparison of ICER in the United States 
with NICE in England and Wales. Journal of Managed Care & Specialty Pharmacy. 2020;26(9):1162-70. 

283. Haute Autorité de Santé (HAS).  [23/12/2020]. Available from: https://www.has-sante.fr/. 

284. Gemeinsamer Bundesausschuss (G-BA).  [23/12/2020]. Available from: https://www.g-ba.de/. 

285. Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG).  [23/12/2020]. 
Available from: https://www.iqwig.de/. 

286. Agenzia Italiana del Farmaco (AIFA).  [23/12/2020]. Available from: 
https://www.aifa.gov.it/en/web/guest/home. 

287. Agenzia Nazionale per i Servizi Sanitari Regionali (AGENAS).  [23/12/2020]. Available from: 
https://www.agenas.gov.it/. 

http://www.has-sante.fr/
http://www.g-ba.de/
http://www.iqwig.de/
http://www.aifa.gov.it/en/web/guest/home
http://www.agenas.gov.it/


   References 

295 

288. National Institute for Health and Care Excellence (NICE).  [23/12/2020]. Available from: 
https://www.nice.org.uk/. 

289. Red Española de Agencias de Evaluación de Tecnologías Sanitarias y Prestaciones del Sistema 
Nacional de Salud (RedETS).  [23/12/2020]. Available from: https://redets.sanidad.gob.es/. 

290. Agencia Española de Medicamentos y Productos Sanitarios (AEMPS).  [23/12/2020]. Available 
from: https://www.aemps.gob.es/. 

291. COUNCIL DIRECTIVE of 20 June 1990 on the approximation of the laws of the Member States 
relating to active implantable medical devices (90/385/EEC) (OJ L 189, 20.7.1990, p. 17), (Active 
Implantable Medical Devices Directive). 

292. COUNCIL DIRECTIVE 93/42/EEC of 14 June 1993 concerning medical devices (OJ L 169, 
12.7.1993, p. 1), (Medical Devices Directive). 

293. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on 
medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 
1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC (Text with EEA relevance.), 
(Medical Devices Regulation). 

294. Regulation (EU) 2020/561 of the European Parliament and of the Council of 23 April 2020 
amending Regulation (EU) 2017/745 on medical devices, as regards the dates of application of certain of its 
provisions (Text with EEA relevance), PE/10/2020/REV/1, (OJ L 130, 24.4.2020, p. 18–22), (Medical 
Devices Directive Amendment). 

295. French-Mowat E, Burnett J. How are medical devices regulated in the European Union? Journal of 
the Royal Society of Medicine. 2012;105(1_suppl):22-8. 

296. REGULATION (EU) No 536/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 
April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC, 
(Clinical Trials Regulation). 

297. de Morpurgo M. The E uropean U nion as a Global Producer of Transnational Law of Risk 
Regulation: A Case Study on Chemical Regulation. European Law Journal. 2013;19(6):779-98. 

298. Naci H, Salcher-Konrad M, Kesselheim AS, Wieseler B, Rochaix L, Redberg RF, et al. Generating 
comparative evidence on new drugs and devices before approval. The Lancet. 2020;395(10228):986-97. 

299. Fraser AG, Butchart EG, Szymański P, Caiani EG, Crosby S, Kearney P, et al. The need for 
transparency of clinical evidence for medical devices in Europe. The Lancet. 2018;392(10146):521-30. 

300. Dhruva SS, Bero LA, Redberg RF. Strength of study evidence examined by the FDA in premarket 
approval of cardiovascular devices. Jama. 2009;302(24):2679-85. 

301. Rathi VK, Krumholz HM, Masoudi FA, Ross JS. Characteristics of clinical studies conducted over 
the total product life cycle of high-risk therapeutic medical devices receiving FDA premarket approval in 
2010 and 2011. Jama. 2015;314(6):604-12. 

302. Chen CE, Dhruva SS, Redberg RF. Inclusion of comparative effectiveness data in high-risk 
cardiovascular device studies at the time of premarket approval. JAMA. 2012;308(17):1740-2. 

303. Commission welcomes the move towards more innovative health technologies for patients 
(IP/21/3142) [press release]. 2021. 

http://www.nice.org.uk/
http://www.aemps.gob.es/


References 

 

304. Garrett Z. An Analysis Of HTA And Reimbursement Processes In Eunethta Partner Countries: 
Implications For Implementing HTA Cooperation. Value in Health. 2017;20(9):A678. 

305. Zhao Y, Feng H-m, Qu J, Luo X, Ma W-j, Tian J-h. A systematic review of pharmacoeconomic 
guidelines. Journal of medical economics. 2018;21(1):85-96. 

306. Drummond M, Griffin A, Tarricone R. Economic evaluation for devices and drugs. Same or 
different? 2009. 

307. Tarricone R, Torbica A, Drummond M, Group MP. Key recommendations from the MedtecHTA 
project. Health economics. 2017;26:145-52. 

308. Schnell-Inderst P, Hunger T, Conrads-Frank A, Arvandi M, Siebert U. Ten recommendations for 
assessing the comparative effectiveness of therapeutic medical devices: a targeted review and adaptation. 
Journal of clinical epidemiology. 2018;94:97-113. 

309. EUnetHTA JA2. Guideline ”Therapeutic medical devices”. 2015. 

310. Henschke C, Panteli D, Perleth M, Busse R. Taxonomy of medical devices in the logic of health 
technology assessment. 2015. 

311. United Nations (UN). Early Warning Systems  [18/04/2021]. Available from: 
https://www.un.org/en/climatechange/climate-solutions/early-warning-systems. 

312. Bussiere M, Fratzscher M. Towards a new early warning system of financial crises. journal of 
International Money and Finance. 2006;25(6):953-73. 

313. United Nations Development Programme (UNDP). Five approaches to build functional early 
warning systems. 2018. 

314. Cleland JG, Louis AA, Rigby AS, Janssens U, Balk AH. Noninvasive home telemonitoring for 
patients with heart failure at high risk of recurrent admission and death: the Trans-European Network-
Home-Care Management System (TEN-HMS) study. Journal of the American College of Cardiology. 
2005;45(10):1654-64. 

315. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 
statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. 

316. Perera WR, Hurst JR, Wilkinson TM, Sapsford RJ, Müllerova H, Donaldson GC, et al. Inflammatory 
changes, recovery and recurrence at COPD exacerbation. European Respiratory Journal. 2007;29(3):527-34. 

317. Toy EL, Gallagher KF, Stanley EL, Swensen AR, Duh MS. The economic impact of exacerbations of 
chronic obstructive pulmonary disease and exacerbation definition: a review. COPD: Journal of Chronic 
Obstructive Pulmonary Disease. 2010;7(3):214-28. 

318. Gravelle H, Brouwer W, Niessen L, Postma M, Rutten F. Discounting in economic evaluations: 
stepping forward towards optimal decision rules. Health economics. 2007;16(3):307-17. 

319. van Baal P, Perry‐Duxbury M, Bakx P, Versteegh M, Van Doorslaer E, Brouwer W. A cost‐
effectiveness threshold based on the marginal returns of cardiovascular hospital spending. Health 
economics. 2019;28(1):87-100. 

320. Keeney RL, Raiffa H, Meyer RF. Decisions with multiple objectives: preferences and value trade-
offs: Cambridge university press; 1993. 

http://www.un.org/en/climatechange/climate-solutions/early-warning-systems


   References 

297 

321. Thokala P, Devlin N, Marsh K, Baltussen R, Boysen M, Kalo Z, et al. Multiple criteria decision 
analysis for health care decision making—an introduction: report 1 of the ISPOR MCDA Emerging Good 
Practices Task Force. Value in health. 2016;19(1):1-13. 

322. Baltussen R, Marsh K, Thokala P, Diaby V, Castro H, Cleemput I, et al. Multicriteria decision 
analysis to support health technology assessment agencies: benefits, limitations, and the way forward. 
Value in Health. 2019;22(11):1283-8. 

323. Bundesinstitut für Arzneimittel und Medizinprodukte. Digital health applications (DiGA)  
[08/06/2021]. Available from: https://www.bfarm.de/DE/Medizinprodukte/DVG/_node.html. 

http://www.bfarm.de/DE/Medizinprodukte/DVG/_node.html


 

 

 


