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Background
In the last century, life expectancy has increased substantially and, as a consequence, 
we are now living longer than ever before (Cutler et al., 2006). This increase in life 
expectancy is related to various interventions ranging from the early improvements 
in sanitation in urban areas, vaccination campaigns to prevent infectious diseases, to 
improved treatments for cardiovascular disease such as statins (Cutler et al., 2006). 
Outbreaks of severe infectious diseases, which for a long period were relatively 
common, have decreased significantly due to higher vaccination rates or, as in the case 
of smallpox, have even been eradicated (Fenner et al., 1988). However, although the 
most important causes of death have shifted to non-communicable diseases, in some 
poorer parts of the world communicable diseases remain the most important cause of 
death (GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, 2017). 
Furthermore, with the global increase in population density, urbanization, and global 
travel and trade, the chance of widespread outbreaks of high-threat infectious diseases 
has increased (Smith et al., 2014), as evidenced by recent examples of outbreaks of 
Ebola, Zika, Lassa fever, and of course COVID-19. Furthermore, there are examples 
of endemic diseases, for instance, the measles, that have the potential to threaten 
health and lives, of which the incidence has more recently increased due to decreasing 
vaccination rates (CDC, 2019). To combat these threats, improvements in disease 
surveillance, public health campaigns, and medical technologies are needed, which can 
be very costly. These interventions must compete with other spending opportunities 
for finite (healthcare) resources, and hence decisions need to be made regarding 
whether or not they can be funded, reimbursed, and implemented. The pressure on 
the budgets is increasing, with increasing technological possibilities, higher demands, 
and the aging of the population, while healthcare expenditures continue to increase. 
In 2018, healthcare spending constituted on average almost nine percent of GDP in 
OECD countries, implying an increase of almost one percentage point during the last 
15 years (OECD, 2019a). 

As the proportion of GDP that is spent on health care increased and these increases 
are predicted to continue in the future (OECD, 2019b), there are worries about the 
rate of return (‘value for money’) of additional investments in medical care (Chandra 
and Skinner, 2012). Improvements in health are made (Gheorghe et al., 2014) and 
healthcare expenditures continue to increase, however, the pace of gains in terms of 
increases in life-expectancy has decreased (Cardona and Bishai, 2018), suggesting 
that the marginal benefits of additional health spending may be decreasing (van Baal 
et al., 2013b). In many countries, health care and public health interventions are to 
a large extent collectively financed. Therefore, decisions need to be made regarding 
which health-improving interventions are to be funded from public resources. When 
evaluating the options available the most popular form of economic evaluation is a 
so-called cost-effectiveness analysis (CEA) or cost-utility analysis (CUA) in which 
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costs are expressed in monetary terms but health gains in terms of Quality Adjusted 
Life Years (QALYs) (Drummond et al., 2015). Such QALYs comprise both length and 
quality of life. Cost-effectiveness analyses have become a more prominent tool in 
certain jurisdictions in informing decision-makers about the costs and consequences of 
funding or implementing certain health policies or medical technologies (Drummond et 
al., 2015). The results of economic evaluations are typically one element of information 
in the total decision-making process regarding funding some new technology, next to 
broader considerations related to the health system and societal goals, including for 
instance considerations related to equity, ethics, organizational or cultural issues, 
etcetera. It has been recognized that economic evaluations do not capture all aspects 
relevant to reach a final decision regarding funding a technology (Hutton et al., 2008; 
Nielsen et al., 2011). Next to broader considerations than those captured in an economic 
evaluation, important questions and debates remain regarding the methodology of 
performing these economic evaluations (Meltzer and Smith, 2011).  

To name one important example of such a debate, the issue of which costs and 
effects should be included in an economic evaluation of health technology remains 
controversial. The answer to the question of which cost categories should be included 
in an economic evaluation to a large extent depends on the perspective chosen for 
the evaluation (Drummond et al., 2015; Meltzer and Smith, 2011). Two important 
perspectives taken are the health care perspective and the societal perspective. 
Adopting a healthcare perspective implies that only costs that occur within the 
healthcare sector (or fall on the health budget) should be accounted for and only health 
effects are relevant benefits. The implicit assumption underlying this perspective is 
that economic evaluations aid a health care decision-maker with a finite health care 
budget to maximize the health gained from that budget. Adopting a societal perspective 
implies that all costs and benefits flowing from an intervention should be included in 
the analyses, no matter where they fall or in whom (and what form) they occur. The 
implicit assumption here is that the health care decision maker ultimately wishes to 
contribute to the maximization of social welfare through funding health technologies. 
The healthcare perspective is prescribed in countries such as Wales and England (NICE, 
2013), while in other countries, such as the Netherlands, the US, and Sweden, adopting 
a societal perspective is recommended (Eldessouki and Dix Smith, 2012). However, in 
practice, even studies claiming to take the same perspective can importantly differ in 
terms of the costs included in the evaluation. This partly reflects differences in national 
guidelines that prescribe the same perspective but nonetheless differ in their specific 
recommendations as to which cost-categories to include (van Lier et al., 2018). The 
differences are even larger when also considering how the different cost-categories 
are included (Pike and Grosse, 2018). These differences can reflect a theoretical or 
practical lack of consensus on whether and how to include certain cost-categories. To 
make optimal use of economic evaluations, such issues should ideally be resolved. This 
increases the consistency and comparability between and potentially confidence in 
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the results of economic evaluations. This is important for the application of economic 
evaluations in general, but also specifically in the context of performing economic 
evaluations in challenging contexts, such as that of infectious disease outbreaks, where 
economic evaluations have been conducted less frequently (Drake et al., 2016), and 
currently appear to lack consistency in terms of used methods (Rennert-May et al., 
2018). Applying economic evaluation in these important fields brings up new questions 
regarding how the costs and benefits of interventions should best be captured.

The societal perspective and infectious diseases
In evaluating the costs and benefits of interventions targeted at (outbreaks of) infectious 
diseases, including pandemic outbreaks, adopting a broad perspective and long time-
horizon appears to be most relevant for several reasons. First, many strategies for the 
prevention of and response to infectious disease outbreaks are not necessarily initiated 
or financed from the health care sector. Interventions such as improved hygiene or 
sanitation, disease surveillance, contact tracing, and border control can fall outside 
the (direct) healthcare system and budget and motivate a broad perspective that fully 
captures all relevant costs. Second, the consequences of outbreaks can affect many 
more sectors than only the health care sector. In extreme cases, it can affect the full 
functioning of a society, which school closures, quarantine of affected individuals, 
major losses of production, and so on. In establishing, for instance, the benefits of 
preventing an outbreak, such broad consequences must be included in the evaluation 
in order to be able to make a realistic trade-off of costs and benefits. Third, in contrast 
to some other diseases, such as oncology, people who survive the acute phase of the 
illness often have no further health consequences from the illness and live their lives 
similar to those who were not infected after the disease is cured. Often treatment 
duration and treatment costs are relatively low. Of course, the effect of saving the life 
of a young person is that a stream of future health is gained. Besides the health gains, 
this may lead to benefits such as increased production. However, when an intervention 
or technology averts a premature death and adds life-years, during these years not only 
benefits but also costs will be incurred. Hence, the effects of an effective intervention 
include positive elements (benefits) such as productivity gains during the added life-
years, but negative ones (costs) in the form of consumption of medical and non-medical 
goods and services. These costs are often referred to as ‘survivor costs’ or ‘future costs’. 
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Future costs can be divided into three distinct categories (de Vries et al., 2018): 

(i)	 Related medical costs. These are costs that are directly related to the illness 
or disability at which the intervention was targeted. A child that has been 
infected with, but recovered from, pneumococcal meningitis may be at risk of 
experiencing long-term health consequences due to that disease such as hearing 
loss. An example of future related medical costs in this instance would be the 
costs of a hearing aid. 

(ii)	 Unrelated medical costs. These are costs that result from the consumption of 
medical goods in the added life-years but are not directly related to the initial 
illness. For instance, using the previous example, the same child lives until old 
age after surviving the infection but then is affected by an age-related illness, 
such as dementia. The care costs related to dementia would be categorized as 
unrelated medical costs. 

(iii)	 Non-medical costs, or future consumption costs. These can be seen as the costs 
of consumption of all other goods and services during the added life-years. 
So, the costs of housing, food, and clothing during added life years would for 
instance fall in this category. These costs are sometimes netted against the 
productivity gains of the individual during added life-years to calculate ‘net 
consumption costs’. Since this consumption implies using scarce resources, it 
represents real opportunity costs to society.  

The inclusion of future costs in economic evaluation is still a topic of much debate (de 
Vries et al., 2018). Which of the three cost categories should be included in an economic 
evaluation is partially determined by the perspective chosen in the evaluation. For 
evaluations conducted from the healthcare perspective, only costs that fall within the 
healthcare budget should be considered. Therefore, the non-medical consumption of 
individuals, whether in normal life years or in life-years gained, should not be included. 
However, future (related and unrelated) medical costs may still be of relevance. For 
economic evaluations performed from the societal perspective, all future costs are at 
least theoretically relevant and hence in principle should be included in the analysis. 
However, national guidelines recommending the societal perspective nonetheless 
differ in their recommendations regarding the inclusion of these costs. While both 
types of future medical costs are more commonly recommended for inclusion, future 
non-medical consumption is only recommended for inclusion by the US Panel on Cost-
Effectiveness in Health and Medicine (Sanders et al., 2016). Future related medical 
costs are the least controversial, probably because these costs are a direct consequence 
of the intervention evaluated, and typically included in economic evaluations. Although 
there were arguments early on regarding the inclusion of future unrelated medical 
costs (Drummond et al., 2015; Weinstein et al., 1980), their inclusion remained much 
more controversial. One of the main arguments in favor of their inclusion is that the 
added quality and length of life (which assume common care use) are already included 
in economic evaluations and therefore, using the argument of symmetry, so should the 
costs that facilitate these improvements. 
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The consensus regarding future non-medical consumption has been to not include it 
in economic evaluations, even though they represent real societal costs. However, the 
debate is ongoing and importantly revolves around the argument of symmetry. More 
specifically, an unresolved issue is whether the utility gained from future consumption 
is adequately captured in the QALY measure (de Vries et al., 2018; Meltzer, 1997a; 
Nyman, 2011). If these utility benefits are not captured, that could be an argument to 
also leave out consumption costs (or to argue for broader outcome measures). Due to 
the theoretical debates surrounding the inclusion of future costs and the fact that most 
guidelines for a long time did not discuss or recommend the inclusion of future costs, 
empirical studies estimating these costs and assessing the impact of their inclusion in 
economic evaluations are scarce. This means, especially for economic evaluations in 
contexts such as (outbreaks of) infectious diseases, that the estimation of these costs 
as well the impact of their inclusion requires further attention.   

Aim of this thesis
This thesis aims to contribute to applying a full societal perspective in economic 
evaluations1 within the field of infectious diseases. The different chapters will explore 
the current practice of conducting economic evaluations of interventions in the context 
of infectious diseases, to establish shortcomings in the inclusion and estimation of 
broader societal benefits and costs. We focus on the inclusion of future costs as these 
are particularly relevant in this context and are currently much debated. If all future 
costs are to be included in economic evaluations, and guidelines would increasingly 
prescribe their inclusion, then the methods of estimating these costs must be sound 
and the implications of their inclusion need to be clear. The included studies in this 
thesis will attempt to address current methodological issues in the estimation of these 
costs and aim to facilitate the standardization of their inclusion. This may indirectly 
contribute to future guidelines recommending their inclusion. While there is more 
consensus regarding the inclusion of future medical costs than regarding that of future 
non-medical costs, there is a lack of ready-to-use estimates in both areas. To date, 
internationally there has not been much research on standardizing the estimation 
of future medical costs across diseases. The few available figures (e.g van Baal et al., 
2011) require updating, to better reflect the current situation. For future non-medical 
consumption, the available estimates have not accounted for issues such as household 
size, cohort effects, and period effects (Kruse et al., 2012; Manns et al., 2003a; Meltzer, 
1997a; Meltzer et al., 2000a), which nonetheless can be highly relevant. 

1   From here on the terms economic evaluation, cost-utility analysis and cost-effectiveness 
analysis will be used interchangeably and will refer to economic evaluations using the QALY as 
outcome measure, although these terms are not necessarily synonyms.
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The insights gained from studying the aforementioned methodological issues will be 
applied to economic evaluations of infectious disease interventions; an area in which 
economic evaluations are relatively new and numerous methodological challenges 
exist (Drake et al., 2016). By doing so, this thesis will also address the issue of modeling 
infectious diseases and the costs and consequences of interventions in that area. The 
insights from this thesis will especially contribute to the understanding of the role of 
future costs in economic evaluations, and the methods for and implications of their 
inclusion in economic evaluations aimed at informing reimbursement decisions. 

The main research questions addressed in this thesis are:

1.	 What is the current practice of inclusion of costs and benefits in economic 
evaluations of interventions aimed at infectious diseases?

2.	 How can the current methods for the estimation and inclusion of broader costs in 
economic evaluations of infectious disease interventions be improved?

3.	 What are the implications of broadening the perspective of economic evaluations 
of infectious disease interventions?

Structure of this thesis
These three research questions will be addressed in the different chapters of this thesis. 
The structure of the thesis is as follows.  

First, Chapter 2 aims to review the published literature and answer the first research 
question regarding current practices of inclusion of costs and benefits in economic 
evaluations of infectious diseases. Specifically, the study reported in this chapter 
investigates published literature on economic evaluations of interventions for some of 
the prominent infectious disease threats of modern times. This chapter also highlights 
existing knowledge gaps and provides an indication of important areas for improving 
economic evaluations. The inclusion of future costs is such an area. 

Chapter 3 will explore the costs associated with extreme outbreaks and begin to 
answer what the implications of the inclusion of future costs in economic evaluations 
are, focusing on productivity gains in a low-income setting. This chapter presents 
an evaluation that is conducted in line with current practice (as observed in Chapter 
2). This increases our understanding of the limited operationalization of the societal 
perspective in many current economic evaluations and the consequences thereof. 

Chapters 4 and 5 will be specifically devoted to the estimation and practical inclusion of 
future costs. The aim of chapter 4 is to improve on the methods used to estimate future non-
medical consumption to address the question of how these costs can be reliably estimated. 
Second, building on previously published studies, it provides estimates for future costs in 
the Dutch context, allowing their standardized inclusion in economic evaluations. 
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Chapters 6 and 7 focus on the inclusion of future costs and highlight the (joint and 
separate) impact of different elements of future costs on outcomes when included in 
economic evaluations. More specifically, Chapter 6 will consider the distributional 
consequences of including future non-medical consumption, and Chapter 7 highlights 
the impact of these estimates by including future costs in a case-study of adult 
pneumococcal conjugate vaccination.

Finally, Chapter 8 will discuss the above studies in relation to the general research 
questions and aim of this thesis. This Chapter will also highlight some policy 
implications and areas for future research. 

As a final remark, we note that the different chapters are all based on separate 
publications. While this may have resulted in some repetition of arguments in the 
different chapters, it also allows reading them independently.
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Abstract
Pandemics and major outbreaks have the potential to cause large health losses and 
major economic costs. In order to prioritize preventive and responsive interventions it 
is important to understand the costs and health losses interventions may prevent. We 
review the literature, investigating the type of studies performed, the costs and benefits 
included, and the methods employed against perceived major outbreak threats. We 
searched PubMed and SCOPUS for studies concerning the outbreaks of SARS in 
2003, H5N1 in 2003, H1N1 in 2009, Cholera in Haiti in 2010, MERS-CoV in 2013, 
H7N9 in 2013, and Ebola in West-Africa in 2014. We screened titles and abstracts of 
papers, and subsequently examined remaining full-text papers. Data were extracted 
according to a pre-constructed protocol. We included 34 studies of which the majority 
evaluated interventions related to the H1N1 outbreak in a high-income setting. Most 
interventions concerned pharmaceuticals. Included costs and benefits, as well as the 
methods applied, varied substantially between studies. Most studies used a short time 
horizon and did not include future costs and benefits. We found substantial variation 
in the included elements and methods used. Policymakers need to be aware of this 
and the bias towards high-income countries and pharmaceutical interventions, which 
hampers generalizability. More standardization of included elements, methodology, 
and reporting would improve economic evaluations and their usefulness for policy.
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Introduction
Historically, infectious disease outbreaks have proven to be potentially devastating. 
A prominent example is the Spanish influenza which may have claimed as many as 
50 million lives (Johnson and Mueller, 2002). The number of outbreaks of infectious 
diseases has been increasing since 1980, as has the number of unique pathogens 
(Smith et al., 2014). In order to prevent and effectively combat outbreaks, reporting 
agreements such as those arranged in the International Health Regulations (IHR) 
between national governments and international organizations, were established 
(International Health Regulations, (2005), 2nd ed, 2008). The current IHR require 
the countries which ratified them to develop a minimum capacity of core functions 
related to surveillance and response (International Health Regulations, (2005), 2nd 
ed, 2008). However, with new threats emerging and given the fragile health systems 
in many parts of the world, outbreaks still have the potential to occur with potentially 
severe consequences in multiple countries. Therefore, there is a continuous pressure 
to improve available detection and response systems, and to increase the possibilities 
of preventing new threats from doing too much harm. 

A recent example that illustrates the relevance of outbreak containment, is the Ebola 
outbreak of 2014. The response to this outbreak received important criticisms, and, 
as a consequence, the World Health Organization reformed, improving its response 
to infectious threats (Lough, 2015). Aside from international organizations and non-
governmental organizations, under the IHR nations are obliged to have at least a 
minimum threat handling capacity. However, countries are usually faced with limited 
healthcare budgets, which require prioritization of what to fund and in which disease 
areas to invest. Funding of detection and response facilities in case of an outbreak also 
needs to compete for available resources. Preferably, decisions on how to optimally 
allocate scarce health care resources are informed by sound estimates of potential costs 
and benefits of various policy scenarios. Assessing the cost-effectiveness of different 
prevention and treatment strategies is of utmost importance in order to ensure value 
for money and optimal health and welfare from the available budgets (Drummond et 
al., 2015). However, obtaining sound estimates of both costs and effects of intervention 
strategies, compared to a relevant comparator (such as the current situation or doing 
nothing) is not a straightforward task, and one that is full of methodological challenges. 

To comprehensively capture the costs and benefits related to an intervention, numerous 
issues need to be considered, including the costs of the intervention itself, the incurred 
and avoided health losses, and the incurred and avoided treatment costs. A full analysis 
may also include elements such as production losses due to illness and premature death 
from the disease, or even broader economic impacts such as those due to reduced trade 
and tourism. Clearly, some of these elements may be more difficult to estimate and 
quantify. Importantly, in applied cost-effectiveness analyses, the decision regarding 
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which costs to include, depends on the perspective chosen. The societal perspective 
aims to capture all relevant costs and effects, regardless of where, when or on whom 
in society they fall (Gold et al., 1996). Narrower perspectives, such as the patient’s 
perspective or a healthcare perspective are sometimes used, which limits the scope of 
the evaluation. Especially for interventions targeted at preventing outbreaks, which can 
have rather broad impacts, adopting a societal perspective seems warranted (Drummond 
et al., 2008). Indeed, the impact of outbreaks is not confined to the healthcare sector 
and interventions to prevent or mitigate these outbreaks are often not confined to 
healthcare interventions (or funding).  Note that when evaluating pandemics not only a 
broad range of cost categories in various sectors of the economy need to be considered 
but also the fact that a pandemic may trigger non-marginal changes in the health care 
sector and possibly the entire economy. Non-marginal changes in the health-sector may 
occur when outbreaks cause capacity problems and displace a large portion of usual 
care within health care and outside the health-care sector entire industries might be 
threatened. This suggests that the usual micro-economic perspective which is taken in 
economic evaluations is insufficient and a more macro-economic perspective might be 
more appropiate (Beutels et al., 2008; Keogh-Brown et al., 2010).

Simulation models are often used to estimate the consequences of preventing or 
mitigating disease outbreaks (Anderson and May, 1992). Modeling of infectious 
diseases is typically done using either so-called static or dynamic transmission models 
(Vynnycky and White, 2010). Static models, such as decision trees and Markov models, 
assume that the probability of infection between individuals is constant over time. 
Dynamic models allow for the force of infection to be varied, and can include possible 
herd immunity effects (Pitman et al., 2012). Dynamic models are often considered 
to be more complex, but may be preferred to static models because they are able to 
take into account a varying transmission rate, which is highly relevant in this context 
(Vynnycky and White, 2010). Both types of models offer the ability to model different 
scenarios and interventions, and costs and benefits can be estimated using these 
models by linking them to events and/or states distinguished in the model (Vynnycky 
and White, 2010). 

An important challenge in infectious disease modeling is to account for behavioral 
responses that occur when under the threat of an infection (Drake et al., 2012; Funk et 
al., 2015). Whether or not individuals themselves take action in the face of an outbreak 
(threat), may introduce bias in the evaluation of a policy to mitigate an outbreak 
(Philipson, 1999). For instance, when the actual severity and the perceived severity of an 
illness diverge, this may complicate forecasts of the impact of interventions. Apart from 
the challenges in modeling the disease itself, there is also room for improvement in other 
parts of infectious outbreak policy evaluation. Previous research indicated that outbreak 
evaluations are often biased towards high-income settings and that little research is done 
in low-income regions (Drake et al., 2012). High-income and low-income countries may 
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face a different set of challenges, including different resource and capacity constraints, 
different threats and different living environments. Such differences need to be accounted 
for in evaluations and when attempting to translate results of interventions across 
settings. Furthermore, it should be acknowledged that an intervention, like setting up a 
surveillance system or response protocol, targeted at one specific disease may strengthen 
the health care system more generally. This means that the effects of such a measure 
could go beyond preventing and mitigating one particular type of outbreak. Such “policy 
spill-over effects” are rarely included (Morton et al., 2016). 

The aim of this study is to review cost-effectiveness studies of major outbreak threats, 
based on WHO publications (World Health Organization, 2017). The focus of this 
review will be on investigating the methodological approaches used to estimate costs 
and (health) benefits, with the aim of improving our understanding of how evaluations 
of interventions related to outbreaks are currently conducted. This is key, because if 
decisions are to be based on available evidence, the evidence itself should preferably be 
comparable, valid and broad enough for policymakers to consider all relevant elements 
in the decision-making process.

Methods
To determine how costs and benefits in economic evaluations of interventions aimed at 
(potential) outbreaks are estimated, we first compiled a list of major outbreak threats 
of the 21st century. We based this on publications of the WHO which were produced 
for the meeting ‘’Anticipating Emerging Infectious Disease Epidemics’ (World Health 
Organization, 2017). The aim of selecting diseases based on this list was not to capture 
the most severe diseases or those that, in retrospect, turned out to be found the most 
costly outbreaks, rather we aimed to collect a broad sample of diseases that have the 
potential of causing large-scale health and economic damage. Future major outbreaks 
may have similar characteristics to their predecessors, implying that policy decisions 
regarding preventing or countering them will (need to) be based on similar information 
as found in the economic evaluations included here. In this review, we extracted 
information on study outcomes and methods, using a pre-determined protocol. 

Data
We searched PubMed and SCOPUS in April 2018 for the following major outbreaks 
in the 21st century; SARS in 2003, H5N1 in 2003, H1N1 in 2009, Cholera in Haiti in 
2010, MERS-CoV in 2013, H7N9 in 2013 and the West African Ebola outbreak in 2014. 
For this search, we constructed three blocks, which we used in combination and all 
terms were searched for in title and/or abstract. The full syntax for both Pubmed and 
SCOPUS is available in Appendix 1. The first block was the list of the relevant diseases 
in various combinations: Middle East respiratory syndrome coronavirus OR SARS OR 
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H5N1OR H1N1 OR Cholera OR MERS-CoV OR H7N9 OR Ebola. The second block 
defined the study type:  economic OR cost* OR costing. The third block complemented 
the second: benefits OR effectiveness OR cost-effectiveness OR cost-benefit OR cost-
utility. Lastly, filters were applied to include studies from 2003 and onwards and 
exclude studies with only animal subjects. We only considered articles published from 
2003, given that we focused on the outbreaks of 2003 and later. We assumed that no 
articles had been published on the relevant outbreaks before their occurrence.

Study selection
We performed two screening rounds. In the first round, we screened articles based on 
title and abstract. In the second round, we screened full-text articles. Studies reviewed in 
full-text, but subsequently excluded, are shown with a justification for their exclusion in 
Appendix 2. We included peer-reviewed studies that conducted a quantitative economic 
evaluation of any form (cost-minimization, cost-effectiveness, cost-utility, or cost-benefit 
evaluations) with one or more comparators, and evaluated one or more interventions 
within the context of the outbreaks previously mentioned. We included studies based on 
actual reported case data but also included studies using measures of how infectious a 
disease is based on observations to model the outbreak, for example force of infection. 
We excluded review papers and only included studies written in English. 

Data extraction and analysis
The in-depth reviewing of the selected studies focused on characteristics of the study 
setting (target disease, country, interventions evaluated), issues related to modeling, 
and, finally, the included costs and health gains. We will elaborate on the latter two. 

We extracted information about what type of model (dynamic or static) was used in the 
included studies, and how the studies dealt with uncertainty around estimates. Some 
models, such as microsimulations, are stochastic by definition while other models may 
employ various types of sensitivity analyses. Sensitivity analyses may be used to test 
uncertainties, but also to test different assumptions of the transmission model and 
the economic model. Such analyses may involve varying assumptions and parameters 
related to the specific setting of a study, which can inform the generalizability of 
the results to other settings, for instance other drug prices or intervention efficacies 
(Ginsberg, 2013). Thus, we also extracted information about the setting of the included 
studies and grouped these settings according to the World Bank Country and Lending 
Groups (World Bank, n.d.). 

We divided costs into two categories: (i) costs that occur within the healthcare sector 
and (ii) costs that occur outside of the healthcare sector. For both categories, we further 
divided the costs into short-term costs and future costs. We defined short-term cost as 
the costs that occur during the outbreak, and the future costs as those that occur when 



23

Costs and benefits of interventions aimed at major infectious disease threats

2

life is extended. Short term costs within the healthcare sector are for example staff, 
equipment, and current treatment costs. Future costs within the healthcare sector 
include both future consumption of healthcare related to the specific disease being 
targeted but also future utilization of healthcare due to other diseases in life years 
gained (van Baal et al., 2016). 

Short term costs outside the healthcare sector are costs that arise for example for the 
patient or the caregiver of a patient. These costs can be for transportation, time off 
from work to undergo treatment in a healthcare facility, or out-of-pocket expenses. 
Future costs outside the healthcare sector include productivity losses due to disability 
and premature mortality. Productivity losses are often estimated by methods such as 
the Human capital approach or the Friction cost method. The human capital approach 
quantifies the remaining productivity that would have occurred during all life-years 
lost (Brouwer WBF, Rutten FFH, 2001). The friction cost method quantifies the time 
required to replace a worker by someone else, like a formerly unemployed person 
(Koopmanschap et al., 1995). 

There is currently an ongoing debate on which future costs to include in health 
economic evaluations (van Baal et al., 2017). This particularly relates to costs in gained 
life years (i.e., those years that patients would not have lived without the intervention, 
but do with). If the aim is to comprehensively capture all impacts of an intervention, 
future costs and benefits, related to consumption and production, cannot be excluded 
from an analysis (Meltzer, 1997a; van Baal et al., 2016). 

For all cost categories distinguished we extracted information regarding the measurement 
and valuation of these costs and categorized them according to a micro-costing or a 
gross-costing approach. Micro-costing refers to the approach of costs estimation where 
the unit cost is multiplied by the used quantity of the referred unit, gross-costing, on the 
other hand, is when a budget is divided into sectors of usage (Barnett, 2009). Micro-
costing is considered a more precise estimation of cost but may be more demanding in 
term of data availability, and the sum may even exceed the total budget (Barnett, 2009). 
Gross costing is less data demanding but may misclassify costs between sectors. Finally, 
we checked whether studies took account of more disruptive effects on the health care 
sector and the wider economics to account for non-marginal impacts of a pandemic. 

To fully account for all the relevant effects the time horizon should be long enough to 
capture all costs and benefits of the intervention. Therefore, we extracted this information 
from the included articles. Additionally, we extracted information about discounting of 
cost and health effects. Discounting is common in economic evaluations as the effects 
that occur in the present are valued higher than similar effects occurring in the future. 
The WHO-CHOICE uses an annual discount rate of 3% for both health effects and costs, 
but national guidelines may recommend different rate(s) (Baltussen et al., 2004). 
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Results
The literature search resulted in 298 records, of which 76 met the inclusion criteria and 
were assessed in full-text. Of the 76 records, 34 were considered eligible for inclusion 
in our study. The 42 excluded records were excluded due to: not conducting any form 
of economic evaluation (10 records), methodology paper (6 records),  not based on 
relevant outbreaks (4 records), effectiveness study (3 records), not in English (3 records), 
studying animal subjects (3 records), not quantifying the impact of an intervention 
against outbreak (3 records), reviews (2 records), not comparing intervention against 
baseline (1 record), being a preliminary study to an already included study (1 record), 
budget impact analysis (1 record), not able to access (5 records).

As shown in Table 1, H1N1 was the most frequently studied outbreak, with 29 of the 
included studies. Few studies compared more than two interventions. Pharmaceutical 
interventions (vaccinations and antivirals) were studied in 23 included studies. 
Vaccinations were most commonly studied, followed by school closure. Evaluated 
non-pharmaceutical interventions mostly consisted of strategies aimed at decreasing 
contact between infected and susceptible individuals. Only four studies compared 
pharmaceutical interventions with non-pharmaceutical interventions.

Of the included studies, 17 were cost-effectiveness analyses (Andradottir et al., 2011; 
Brouwers et al., 2009; Carias et al., 2016; Dan et al., 2009; Gupta et al., 2005; Halder 
et al., 2011; Jamotte et al., 2016; Kelso et al., 2013; Lee et al., 2011a; Li et al., 2013; 
Mota et al., 2011; Nishiura et al., 2014; Pershad and Waters, 2012; Tsuzuki et al., 2018; 
Wong et al., 2016a; Yoo et al., 2015). Cost-utility analyses were performed in 13 studies 
(Araz et al., 2012; Beigi et al., 2009; Giglio et al., 2012; Hibbert et al., 2007; Khazeni 
et al., 2014, 2009b, 2009a; Lee et al., 2011b; McGarry et al., 2013; Prosser et al., 2011; 
Sander et al., 2010; Xue et al., 2012; You et al., 2012), and four studies performed 
cost-benefit analyses (Basurto-Davila et al., 2017; Brown et al., 2011; Mamma and 
Spandidos, 2013; Wang et al., 2012). 29 studies were conducted in a high-income 
setting, 4 were conducted in an ‘upper-middle’ income setting and only one was 
conducted in a low-income setting. Of the high-income studies, a majority (i.e. 16 out 
of 29) were situated in the US. 
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Figure 1: Schematic fl owchart of study selection process

A dynamic model was used in 19 studies, while 11 studies used a static model. Four 
studies, all evaluating interventions against H1N1, did not use a transmission model 
and instead used trial data. One study evaluated the impact of individuals taking 
own initiative to have less contact with others, thereby aiming to reduce the risk of 
contracting the disease, in a sensitivity analysis (Khazeni et al., 2014). 

Of all included studies, 30 conducted at least some sort of sensitivity analysis by varying 
parameter values. A univariate analysis was conducted in 19 studies, a probabilistic in 
10 studies and a multivariate sensitivity analysis in one study (Dan et al., 2009). For 
dynamic models, in which probabilistic sensitivity analysis is inherently diffi  cult due 
to the parameters in the model being highly inter-dependent, univariate sensitivity 
analyses on key or all parameters were performed. Only 11 out of the 34 included 
studies discounted both costs and health benefi ts. 
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Outbreak Frequency* %*

H1N1 29 85%

H5N1 3 9%

SARS 3 9%

Ebola 1 3%

H7N9 1 3%

Intervention Frequency* %*

Vaccination 16 47%

School closure 8 24%

Antivirals 6 18%

Quarantine 2 6%

Personal Protective Equipment 2 6%

Social distancing 2 6%

Screening 1 3%

Whole response program 1 3%

Sick leave policies 1 3%

Non-specified non-pharmaceutical 1 3%

Other pharmaceutical 1 3%

Setting** Frequency %

High income 29 85%

Upper middle income 4 12%

Low income 1 3%

* Sum of frequencies and/or percentages larger than number of studies included as some studies 
evaluated more than one outbreak/intervention. ** Classified accordingly to the World Bank’s 
classification of Countries and Lending Groups (World Bank, 2016.)

Nine studies did not mention the perspective used, however, several of those studies 
did include costs outside the healthcare perspective suggesting the use of a societal 
perspective. Fourteen studies used a societal perspective and six studies a healthcare 
perspective. Four studies assessed the costs and benefits from both a healthcare 
perspective and the societal perspective. One study used a patient perspective (Lee et 
al., 2011a). Of the studies stating a lifetime horizon, two included some types of future 
costs (Khazeni et al., 2014; McGarry et al., 2013). 
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Among the cost-effectiveness studies the outcome measure varied greatly: five used 
cases averted as outcome measure, four estimated the reduced attack rates, two assessed 
life years lost (Nishiura et al., 2014; Tsuzuki et al., 2018). The remaining studies all 
used different outcome measures, including: deaths averted (Dan et al., 2009), averted 
admissions (Carias et al., 2016), care quality indicators (such as turn-around time and 
emergency department recidivism) (Pershad and Waters, 2012), proportion vaccinated 
(Yoo et al., 2015), or days of sick leave per 100 healthcare workers (Mota et al., 2011).
All but two studies included treatment costs within the healthcare sector. Both of 
the studies that did not include these costs assessed the cost-effectiveness of school 
closures (Araz et al., 2012; Nishiura et al., 2014). Other included health care costs were 
administration costs (19 studies), equipment (two studies) (Basurto-Davila et al., 2017; 
Carias et al., 2016), co-payments (one study) (Andradottir et al., 2011), and costs due 
to days of sick leave of health care workers (one study) (Mota et al., 2011). One study 
mentioned healthcare costs but subsequently did not define the costs explicitly (Dan 
et al., 2009). Only one study included future non-related healthcare costs (Khazeni 
et al., 2014). With respect to costs outside the healthcare sector, 24 studies included 
productivity losses due to short-term absenteeism, transportation (two studies) 
(Jamotte et al., 2016; Xue et al., 2012), administration (one study) (Li et al., 2013), 
treatment (one study) (Jamotte et al., 2016), presenteeism (one study) (Hibbert et al., 
2007),and energy savings (one study) (Xue et al., 2012). 

Ten studies included some form of future costs. Eight of these included future 
productivity losses, one included non-related medical costs (Khazeni et al., 2014) and 
one included related medical costs  (McGarry et al., 2013). No study included more 
than one type of future costs. The studies that included productivity losses all used the 
human capital approach, basing calculations on wages and remaining life expectancy. 
One study included future related medical costs in the form of lifetime disability 
caused by the illness (McGarry et al., 2013). Another study included future non-related 
medical consumption by age based on insurance data in the US (Khazeni et al., 2014). 
Four of the ten studies including future costs did not discount these costs.  

When possible, we assessed the most likely costing method used, based on the 
(sometimes limited) information provided in the manuscripts. We refrained from 
labeling the costing method in two studies as the data used for costing was not 
described. The most common method found was micro-costing, which was used in 
27 of the studies. Mixed costing methods using both micro and gross costing were the 
second most frequently used, while gross-costing was third.  None of the studies took 
into account macro-economic effects of a pandemic. 
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Table 2. Overview of included articles.
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Basurto-Davila 
(Basurto-Davila 
et al., 2017)

CBA US H1N1 Vaccination Vaccination averted 
4,600 influenza cases 
and was cost saving 

Dynamic Probabilistic Societal NR T,ADM,EQ Not 
included

AB FNM Micro-
costing

Cases 
averted

3

Brown (Brown 
et al., 2011)

CBA US H1N1 School closure  Cost per averted 
case with a 8 week 
school closure varied 
between 14,000 and 
25,000 depending on 
the infection rate  

Dynamic Univariate Societal NR T Not 
included

AB FNM Mixed Cases 
averted

3

Mamma 
(Mamma and 
Spandidos, 
2013)

CBA Greece H1N1 Vaccination Depending on 
participation rate, % 
symptomatic the net 
cost per case averted 
ranged from -36.67 to 
35.42 EUROs

Static Univariate NR NR T Not 
included

AB Not in-
cluded

Micro-
costing

Cases 
averted

NR

Wang (Wang et 
al., 2012)

CBA China H1N1 Combination 
of preventive 
measures, testing 
and treatment 
based on polices 
enacted in Hubei 
Province

The estimated 
benefits of the Hubei 
response program 
were more than five 
times the estimated 
costs. 

Static/
mathemat-
ical

- NR NR T,ADM Not 
included

AB FNM Micro-
costing

Cases 
averted

NR

Tracht (Tracht 
et al., 2012)

CEA* US H1N1 PPE 10%, 25% and 50% 
use of facemasks in 
the population could 
reduce costs by 478, 
570, 573 billion USD 
respectively and 
decrease the number 
of cases

Dynamic Univariate NR NR T,ADM Not 
included

AB FNM Micro-
costing

Cases 
averted

NR

Lee2 (Lee et al., 
2011a)

CEA* US H1N1 Vaccination The cost per case 
averted varied 
between 14 and 2,387 
USD f depending 
on vaccine cost and 
vaccination time. 

Static Probabilistic Patient NR T Not 
included

AB Not in-
cluded

Micro-
costing

Cases 
averted

3

Andradóttir 
(Andradottir et 
al., 2011)

CEA* US H1N1 vaccination, 
antiviral, school 
closure, social 
distancing

Many scenarios 
consisting of 
combinations of 
interventions are 
presented. Most 
scenarios resulted in 
lower attack rates and 
cost savings.

Dynamic Univariate NR NR T, CP Not 
included

AB FNM Micro-
costing

Attack 
rates

NR

Brouwers 
(Brouwers et 
al., 2009)

CEA Sweden H1N1 Vaccination A vaccination rate of 
60% of the population 
was the most cost-
effective saving 2.5 
billion SEK

Dynamic Univariate Societal NR T,ADM Not 
included

AB Not in-
cluded

Mixed Cases 
averted

NR
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et al., 2011)

CBA US H1N1 School closure  Cost per averted 
case with a 8 week 
school closure varied 
between 14,000 and 
25,000 depending on 
the infection rate  

Dynamic Univariate Societal NR T Not 
included

AB FNM Mixed Cases 
averted

3

Mamma 
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2013)

CBA Greece H1N1 Vaccination Depending on 
participation rate, % 
symptomatic the net 
cost per case averted 
ranged from -36.67 to 
35.42 EUROs

Static Univariate NR NR T Not 
included

AB Not in-
cluded

Micro-
costing
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averted

NR

Wang (Wang et 
al., 2012)

CBA China H1N1 Combination 
of preventive 
measures, testing 
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based on polices 
enacted in Hubei 
Province

The estimated 
benefits of the Hubei 
response program 
were more than five 
times the estimated 
costs. 

Static/
mathemat-
ical

- NR NR T,ADM Not 
included

AB FNM Micro-
costing

Cases 
averted

NR

Tracht (Tracht 
et al., 2012)

CEA* US H1N1 PPE 10%, 25% and 50% 
use of facemasks in 
the population could 
reduce costs by 478, 
570, 573 billion USD 
respectively and 
decrease the number 
of cases

Dynamic Univariate NR NR T,ADM Not 
included

AB FNM Micro-
costing

Cases 
averted

NR

Lee2 (Lee et al., 
2011a)

CEA* US H1N1 Vaccination The cost per case 
averted varied 
between 14 and 2,387 
USD f depending 
on vaccine cost and 
vaccination time. 

Static Probabilistic Patient NR T Not 
included

AB Not in-
cluded

Micro-
costing

Cases 
averted

3

Andradóttir 
(Andradottir et 
al., 2011)

CEA* US H1N1 vaccination, 
antiviral, school 
closure, social 
distancing

Many scenarios 
consisting of 
combinations of 
interventions are 
presented. Most 
scenarios resulted in 
lower attack rates and 
cost savings.

Dynamic Univariate NR NR T, CP Not 
included

AB FNM Micro-
costing

Attack 
rates

NR

Brouwers 
(Brouwers et 
al., 2009)

CEA Sweden H1N1 Vaccination A vaccination rate of 
60% of the population 
was the most cost-
effective saving 2.5 
billion SEK

Dynamic Univariate Societal NR T,ADM Not 
included

AB Not in-
cluded

Mixed Cases 
averted

NR
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Carias (Carias 
et al., 2016)

CEA west Africa Ebola Other 
pharmaceutical

Administration of 
malaria treatment 
to Ebola admitted 
patients dominated 
no malaria treatment 
resulting in fewer 
cases and cost savings 

Dynamic Probabilistic Healthcare 1-year T,ADM,EQ Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

Admis-
sions 

averted 

0

Dan (Dan et al., 
2009)

CEA Singapore SARS, 
H1N1, 
1918 

Span-
ish 

influ-
enza

PPE Protective measures 
aimed at only infected 
patients was the 
most cost-effective 
intervention at 
23,300 USD per 
death averted

Dynamic Multivariate Healthcare NR T, UNDEF Not 
included

Not 
includ-

ed

Not in-
cluded

not de-
scribed

Deaths 
averted

NR

Halder (Halder 
et al., 2011)

CEA Australia H1N1 school closure, 
antiviral

Limited school 
closure in 
combination with 
antiviral treatment 
was the most cost-
effective with 632-777 
USD per case averted

Dynamic Univariate Societal NR T,ADM Not 
included

AB FNM Micro-
costing

Attack rate 
reduction, 

cases 
averted

3

Jamotte 
(Jamotte et al., 
2016)

CEA* Australia H1N1 Vaccination Quadrivalent, 
compared  trivalent, 
vaccines were cost-
saving and averted 
almost 70,000 cases 
per year

Static univariate Societal & 
healthcare

NR T,ADM Not 
included

AB, 
TR,T

Not in-
cluded

Micro-
costing

Cases 
averted

NR

Kelso (Kelso et 
al., 2013)

CEA* Australia H5N1 school closure, 
antiviral, 
workforce 
reduction, social 
distancing

A combination of 
antiviral treatment 
and prophylaxis, 
extended school 
closure, social 
distancing was most 
effective and was 
cost-saving compared 
to no intervention

Dynamic Univariate Societal Lifetime T Not 
included

AB Not in-
cluded

Micro-
costing

Attack 
rates

3

Li (Li et al., 
2013)

CEA China H1N1 Quarantine Mandatory 
quarantine in the 
H1N1 epidemic in 
China had a cost 
of 22 USD per case 
averted which was not 
considered to be cost-
effective**

Dynamic - NR NR T Not 
included

ADM Not in-
cluded

Not de-
scribed

Cases 
averted

NR

Nishiura 
(Nishiura et al., 
2014)

CEA Japan H1N1 School closure School closure was 
not found to be 
cost-effective with 
an ICER ranging 
from approximately 
1.5E+07 to 1E+11 Yen 
per Life Year 

Dynamic Univariate Societal NR Not 
included

Not 
included

AB Not in-
cluded

Micro-
costing

Years of 
life saved

NR
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Carias (Carias 
et al., 2016)

CEA west Africa Ebola Other 
pharmaceutical

Administration of 
malaria treatment 
to Ebola admitted 
patients dominated 
no malaria treatment 
resulting in fewer 
cases and cost savings 

Dynamic Probabilistic Healthcare 1-year T,ADM,EQ Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

Admis-
sions 

averted 

0

Dan (Dan et al., 
2009)

CEA Singapore SARS, 
H1N1, 
1918 

Span-
ish 

influ-
enza

PPE Protective measures 
aimed at only infected 
patients was the 
most cost-effective 
intervention at 
23,300 USD per 
death averted

Dynamic Multivariate Healthcare NR T, UNDEF Not 
included

Not 
includ-

ed

Not in-
cluded

not de-
scribed

Deaths 
averted

NR

Halder (Halder 
et al., 2011)

CEA Australia H1N1 school closure, 
antiviral

Limited school 
closure in 
combination with 
antiviral treatment 
was the most cost-
effective with 632-777 
USD per case averted

Dynamic Univariate Societal NR T,ADM Not 
included

AB FNM Micro-
costing

Attack rate 
reduction, 

cases 
averted

3

Jamotte 
(Jamotte et al., 
2016)

CEA* Australia H1N1 Vaccination Quadrivalent, 
compared  trivalent, 
vaccines were cost-
saving and averted 
almost 70,000 cases 
per year

Static univariate Societal & 
healthcare

NR T,ADM Not 
included

AB, 
TR,T

Not in-
cluded

Micro-
costing

Cases 
averted

NR

Kelso (Kelso et 
al., 2013)

CEA* Australia H5N1 school closure, 
antiviral, 
workforce 
reduction, social 
distancing

A combination of 
antiviral treatment 
and prophylaxis, 
extended school 
closure, social 
distancing was most 
effective and was 
cost-saving compared 
to no intervention

Dynamic Univariate Societal Lifetime T Not 
included

AB Not in-
cluded

Micro-
costing

Attack 
rates

3

Li (Li et al., 
2013)

CEA China H1N1 Quarantine Mandatory 
quarantine in the 
H1N1 epidemic in 
China had a cost 
of 22 USD per case 
averted which was not 
considered to be cost-
effective**

Dynamic - NR NR T Not 
included

ADM Not in-
cluded

Not de-
scribed

Cases 
averted

NR

Nishiura 
(Nishiura et al., 
2014)

CEA Japan H1N1 School closure School closure was 
not found to be 
cost-effective with 
an ICER ranging 
from approximately 
1.5E+07 to 1E+11 Yen 
per Life Year 

Dynamic Univariate Societal NR Not 
included

Not 
included

AB Not in-
cluded

Micro-
costing

Years of 
life saved

NR
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Pershad 
(Pershad and 
Waters, 2012)

CEA US H1N1 Screening Pre-screening in tents 
compared to no use of 
tents resulted in 637 
USD per percentage 
point decrease in 
hospital elopement 
rate

Trial data Univariate Healthcare NR T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

Health 
care 

quality 
indicators

NR

Tsuzuki 
(Tsuzuki et al., 
2018)

CEA Japan H1N1 Vaccination Quadrivalent, 
compared  trivalent, 
vaccines were 
cost-saving and 
averted 528 cases per 
100,000

Dynamic Probabilistic Societal & 
healthcare

NR T,ADM Not 
included

AB FNM Micro-
costing

Years of 
life saved

2

Wong (Wong et 
al., 2016b) 

CEA Hong Kong H1N1 School closure Individual school 
closure at the lowest 
case threshold was 
the most cost-
effective with 1,145 
USD per case averted

Dynamic Probabilistic NR NR T Not 
included

AB Not in-
cluded

Micro-
costing

Attack 
rates

NR

Yoo (Yoo et al., 
2015)

CEA US H1N1 Vaccination School located season 
influenza vaccination 
resulted in a 12% 
higher vaccination 
rate with 36 USD per 
vaccination

Trial data Probabilistic Societal NR T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

Proportion 
vaccinated

NR

Mota (Mota et 
al., 2011)

CEA Brazil H1N1 Sick leave policies 
among health 
care workers

2-day sick leave with 
reassessment proved 
to be cheaper and 
more effective than a 
7-day sick leave policy 
with 609 USD per 
health care worker 
on leave

Trial data - NR NR T,AB Not 
included

Not 
includ-

ed

Not in-
cluded

Mixed Days of 
sick leave 
averted 
per 100 

health care 
workers

NR

Gupta (Gupta et 
al., 2005)

CEA* Canada SARS Quarantine Compared to care as 
usual and isolation 
of infected patients, 
quarantine of infected 
patients and contacts 
was cost saving and 
reduced transmission 

Static - NR NR T,ADM Not 
included

AB FNM Mixed Cases 
averted

NR

Araz (Araz et 
al., 2012)

CUA US H1N1 School closure In the H1N1 scenario 
school closure had 
an ICER between 
56,100 to 334,800 
USD per QALY 
gained depending on 
closure length and 
transmission intensity

Dynamic Univariate Societal NR Not 
included

Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3



33

Costs and benefits of interventions aimed at major infectious disease threats

2A
ut

ho
r

Ty
pe

Se
tt

in
g

O
ut

br
ea

k

In
te

rv
en

ti
on

R
es

ul
ts

 
su

m
m

ar
y

M
de

l t
yp

e

U
nc

er
ta

in
ty

P
er

sp
ec

ti
ve

 
st

at
ed

Ti
m

e 
ho

ri
zo

n 
st

at
ed

Costs

H
ea

lt
h 

ou
tc

om
e

D
is

co
un

t r
at

e 
(%

)

Within HC Outside HC Costing 
method

Short 
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Future Short 
term

Future

Pershad 
(Pershad and 
Waters, 2012)

CEA US H1N1 Screening Pre-screening in tents 
compared to no use of 
tents resulted in 637 
USD per percentage 
point decrease in 
hospital elopement 
rate

Trial data Univariate Healthcare NR T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

Health 
care 

quality 
indicators

NR

Tsuzuki 
(Tsuzuki et al., 
2018)

CEA Japan H1N1 Vaccination Quadrivalent, 
compared  trivalent, 
vaccines were 
cost-saving and 
averted 528 cases per 
100,000

Dynamic Probabilistic Societal & 
healthcare

NR T,ADM Not 
included

AB FNM Micro-
costing

Years of 
life saved

2

Wong (Wong et 
al., 2016b) 

CEA Hong Kong H1N1 School closure Individual school 
closure at the lowest 
case threshold was 
the most cost-
effective with 1,145 
USD per case averted

Dynamic Probabilistic NR NR T Not 
included

AB Not in-
cluded

Micro-
costing

Attack 
rates

NR

Yoo (Yoo et al., 
2015)

CEA US H1N1 Vaccination School located season 
influenza vaccination 
resulted in a 12% 
higher vaccination 
rate with 36 USD per 
vaccination

Trial data Probabilistic Societal NR T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

Proportion 
vaccinated

NR

Mota (Mota et 
al., 2011)

CEA Brazil H1N1 Sick leave policies 
among health 
care workers

2-day sick leave with 
reassessment proved 
to be cheaper and 
more effective than a 
7-day sick leave policy 
with 609 USD per 
health care worker 
on leave

Trial data - NR NR T,AB Not 
included

Not 
includ-

ed

Not in-
cluded

Mixed Days of 
sick leave 
averted 
per 100 

health care 
workers

NR

Gupta (Gupta et 
al., 2005)

CEA* Canada SARS Quarantine Compared to care as 
usual and isolation 
of infected patients, 
quarantine of infected 
patients and contacts 
was cost saving and 
reduced transmission 

Static - NR NR T,ADM Not 
included

AB FNM Mixed Cases 
averted

NR

Araz (Araz et 
al., 2012)

CUA US H1N1 School closure In the H1N1 scenario 
school closure had 
an ICER between 
56,100 to 334,800 
USD per QALY 
gained depending on 
closure length and 
transmission intensity

Dynamic Univariate Societal NR Not 
included

Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3
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Within HC Outside HC Costing 
method

Short 
term

Future Short 
term

Future

Beigi (Beigi et 
al., 2009)

CUA US H1N1 Vaccination Single dose 
vaccination in high 
prevalence scenarios 
dominated the no 
vaccination option 
with decreasing cost 
effectiveness with 
lower prevalence and 
increased doses 

Static Probabilistic Societal & 
healthcare

NR T Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3

Giglio (Giglio et 
al., 2012)

CUA Argentina H1N1 Vaccination Vaccination of 6 
months old to 5 years 
old was the most 
cost-effective with 717 
USD per QALY gained

Static Univariate NR NR T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 3

Hibbert 
(Hibbert et al., 
2007)

CUA US H1N1 Vaccination Vaccination of 
children dominated 
the no vaccination 
strategy** 

Trial data Univariate Societal 1-year T,ADM Not 
included

AB, PR Not in-
cluded

Micro-
costing

QALY
0

Khazeni 
(Khazeni et al., 
2014)

CUA US H7N9, 
H5N1

Vaccination Vaccination at 4 
months compared to 
6 months was cost-
effective with 10,689 
USD per QALY gained

Dynamic Univariate Societal Lifetime T FNRM AB Not in-
cluded

Micro-
costing

QALY 3

Khazeni2 
(Khazeni et al., 
2009b)

CUA US H5N1 Non defined non-
pharmaceutical 
interventions, 
Vaccination, 
Antiviral,

Non-pharmaceutical 
interventions, 
vaccination and 
antivirals in 
quantities similar to 
current US stockpiles 
resulted in 8,907 USD 
per QALY gained 
compared to no 
intervention

Dynamic Univariate Societal Lifetime T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3

Khazeni3 
(Khazeni et al., 
2009a)

CUA US H1N1 Vaccination Vaccination in the US 
population against 
the H1N1 pandemic 
in October instead 
of November would 
be cost-saving and 
an additional gain of 
9,200 QALYs

Dynamic Univariate Societal Lifetime T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3
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Within HC Outside HC Costing 
method

Short 
term

Future Short 
term

Future

Beigi (Beigi et 
al., 2009)

CUA US H1N1 Vaccination Single dose 
vaccination in high 
prevalence scenarios 
dominated the no 
vaccination option 
with decreasing cost 
effectiveness with 
lower prevalence and 
increased doses 

Static Probabilistic Societal & 
healthcare

NR T Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3

Giglio (Giglio et 
al., 2012)

CUA Argentina H1N1 Vaccination Vaccination of 6 
months old to 5 years 
old was the most 
cost-effective with 717 
USD per QALY gained

Static Univariate NR NR T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 3

Hibbert 
(Hibbert et al., 
2007)

CUA US H1N1 Vaccination Vaccination of 
children dominated 
the no vaccination 
strategy** 

Trial data Univariate Societal 1-year T,ADM Not 
included

AB, PR Not in-
cluded

Micro-
costing

QALY
0

Khazeni 
(Khazeni et al., 
2014)

CUA US H7N9, 
H5N1

Vaccination Vaccination at 4 
months compared to 
6 months was cost-
effective with 10,689 
USD per QALY gained

Dynamic Univariate Societal Lifetime T FNRM AB Not in-
cluded

Micro-
costing

QALY 3

Khazeni2 
(Khazeni et al., 
2009b)

CUA US H5N1 Non defined non-
pharmaceutical 
interventions, 
Vaccination, 
Antiviral,

Non-pharmaceutical 
interventions, 
vaccination and 
antivirals in 
quantities similar to 
current US stockpiles 
resulted in 8,907 USD 
per QALY gained 
compared to no 
intervention

Dynamic Univariate Societal Lifetime T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3

Khazeni3 
(Khazeni et al., 
2009a)

CUA US H1N1 Vaccination Vaccination in the US 
population against 
the H1N1 pandemic 
in October instead 
of November would 
be cost-saving and 
an additional gain of 
9,200 QALYs

Dynamic Univariate Societal Lifetime T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3
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Within HC Outside HC Costing 
method

Short 
term

Future Short 
term

Future

Lee (Lee et al., 
2011b)

CUA US H1N1 Antivirals Initialization of 
antiviral treatment 
after PCR confirmed 
test was the most 
cost-effective with 
a difference of 67 
USD per QALY to the 
second most cost-
effective strategy and 
increasing with cost 
of antivirals

Static Probabilistic Societal & 
healthcare

NR T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3

McGarry 
(McGarry et al., 
2013)

CUA US H1N1 Vaccination PCV13 vaccination 
compared to PCV7 
vaccination was cost 
saving and would 
have prevented 3,700 
deaths in a H1N1 
scenario

Static/
mathemat-
ical

Univariate Healthcare Lifetime T FRM Not 
includ-

ed

Not in-
cluded

Mixed QALY 3

Sander (Sander 
et al., 2010)

CUA Canada H1N1 Vaccination The vaccination 
program against the 
H1N1 in Ontario was 
cost-effective with 
an ICER of 9,140 per 
QALY gained

Dynamic Probabilistic Healthcare Lifetime T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 5

Xue (Xue et al., 
2012)

CUA Norway H1N1 School closure When simulating a 
pandemic similar to 
H1N1 school closure 
as single intervention 
would not have been 
cost-effective with an 
ICER ranging from 
136 427 - 2 192 323 
USD per QALY

Dynamic Univariate Societal NR T Not 
included

AB, 
ES,TR

Not in-
cluded

Micro-
costing

QALY 4

You (You et al., 
2012)

CUA Hong Kong H1N1 Antivirals Initialization of 
antiviral treatment 
based on empirical 
assessment alone 
dominated PCR 
guided treatment and 
a combination of both

Static Probabilistic Healthcare NR T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 3

Prosser 
(Prosser et al., 
2011)

CUA US H1N1 Vaccination Vaccination prior to 
the H1N1 outbreak 
was found cost-saving 
for high-risk groups. 
For non-risk groups 
the ICER varied from 
5,000-18,000 USD 
per QALY

Static Univariate Societal 1-year T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 3

Cost abbreviations: CBA= Cost-Benefit Analysis, CEA= Cost-Effectiveness Analysis, CUA= Cost-
Utility Analysis, T= treatment, A= administrative, EQ= equipment, AB= absenteeism, PR= 
presenteeism, TR= travel expenses, CP= co-payments, ES= energy savings,, FRM= future related 
medical costs, FUM= future unrelated medical costs, FNM= future non-medical costs, NR= not 
reported. Treatment costs may include the cost of vaccination if applicable, Absenteeism may 
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Within HC Outside HC Costing 
method

Short 
term

Future Short 
term

Future

Lee (Lee et al., 
2011b)

CUA US H1N1 Antivirals Initialization of 
antiviral treatment 
after PCR confirmed 
test was the most 
cost-effective with 
a difference of 67 
USD per QALY to the 
second most cost-
effective strategy and 
increasing with cost 
of antivirals

Static Probabilistic Societal & 
healthcare

NR T,ADM Not 
included

AB Not in-
cluded

Micro-
costing

QALY 3

McGarry 
(McGarry et al., 
2013)

CUA US H1N1 Vaccination PCV13 vaccination 
compared to PCV7 
vaccination was cost 
saving and would 
have prevented 3,700 
deaths in a H1N1 
scenario

Static/
mathemat-
ical

Univariate Healthcare Lifetime T FRM Not 
includ-

ed

Not in-
cluded

Mixed QALY 3

Sander (Sander 
et al., 2010)

CUA Canada H1N1 Vaccination The vaccination 
program against the 
H1N1 in Ontario was 
cost-effective with 
an ICER of 9,140 per 
QALY gained

Dynamic Probabilistic Healthcare Lifetime T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 5

Xue (Xue et al., 
2012)

CUA Norway H1N1 School closure When simulating a 
pandemic similar to 
H1N1 school closure 
as single intervention 
would not have been 
cost-effective with an 
ICER ranging from 
136 427 - 2 192 323 
USD per QALY

Dynamic Univariate Societal NR T Not 
included

AB, 
ES,TR

Not in-
cluded

Micro-
costing

QALY 4

You (You et al., 
2012)

CUA Hong Kong H1N1 Antivirals Initialization of 
antiviral treatment 
based on empirical 
assessment alone 
dominated PCR 
guided treatment and 
a combination of both

Static Probabilistic Healthcare NR T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 3

Prosser 
(Prosser et al., 
2011)

CUA US H1N1 Vaccination Vaccination prior to 
the H1N1 outbreak 
was found cost-saving 
for high-risk groups. 
For non-risk groups 
the ICER varied from 
5,000-18,000 USD 
per QALY

Static Univariate Societal 1-year T,ADM Not 
included

Not 
includ-

ed

Not in-
cluded

Micro-
costing

QALY 3

Cost abbreviations: CBA= Cost-Benefit Analysis, CEA= Cost-Effectiveness Analysis, CUA= Cost-
Utility Analysis, T= treatment, A= administrative, EQ= equipment, AB= absenteeism, PR= 
presenteeism, TR= travel expenses, CP= co-payments, ES= energy savings,, FRM= future related 
medical costs, FUM= future unrelated medical costs, FNM= future non-medical costs, NR= not 
reported. Treatment costs may include the cost of vaccination if applicable, Absenteeism may 

include the estimated opportunity loss for students not attending school during school closures 
and the opportunity cost lost from educational professionals during school closure. *= Type of 
study determined by author as this was not explicitly mentioned in the study, **= ICERs not 
presented in article but calculated by author. 
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Discussion
This study identified a substantial number of studies evaluating intervention strategies 
for important recent major outbreaks in terms of costs and benefits. We found a strong 
focus on the H1N1 outbreak and a clear bias towards high-income settings. We also 
found a discrepancy between pharmaceutical and non-pharmaceutical interventions 
being evaluated. The majority of the studies adopted a societal perspective but its 
operationalization varied substantially between studies, also in terms of which costs 
were included in the evaluation. Furthermore, although many studies modeled future 
health gains, the inclusion of future costs was limited. Also, none of the included 
studies included non-marginal effects that outbreaks might have on the health care 
sector and the wider economy. 

In this study, we presented an overview of economic evaluations in multiple settings 
without restrictions to certain interventions. This allowed us to create an overview of 
the methods used in these economic evaluations of strategies to prevent or mitigate the 
consequences of major outbreaks. Our focus was on the economic aspects, rendering 
a comprehensive appraisal of the disease and transmission models used beyond the 
scope of this study. Still, we emphasize the need for high-quality transmission models 
in producing reliable economic estimations. In our search of the literature we did 
not find any studies that took into account more disruptive non-marginal effects of 
pandemics on the health care sector and the wider economy. This suggests that there 
is a gap between the research on the ex-post evaluation of a pandemic taking a macro-
economic perspective and ex-post economic evaluations that estimate the impact of 
specific interventions.

Some limitations of our study need mentioning. First, our search strategy was broad, 
but may have missed specific studies. It seems unlikely this would have changed our 
results. Indeed, we believe that the included studies are relevant and form a sample 
large enough to base our conclusions on.  Second, we searched for economic evaluations 
in relation to specific outbreaks. in particular, the sample of studies included in this 
review represents outbreaks that were identified as being potentially large threats. 
Other criteria could have been used for selecting outbreaks and interventions, which 
would have resulted in a different sample of studies. We cannot generalize to economic 
evaluations of interventions targeted at other outbreaks. For, example, outbreaks that 
may have or have had an even larger impact on health and society than the ones included 
here, may have been evaluated more extensively, potentially leading to different 
conclusions. Third, included articles were primarily screened by one researcher (KK). 
Having a second reviewer for all studies would have been more appropriate. Fourth, 
we encountered some difficulties in extracting the methods used and assumptions 
made in some studies. Given the level of information provided in those studies, we 
cannot rule out that some studies or methods were misclassified in this review. A more 
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detailed presentation of the included elements, methods used and the data sources 
would facilitate the interpretation of the results and add to the transparency as well as 
the ability to replicate and compare studies. 

To the best of our knowledge, there are no previous studies with a similar scope as ours. 
Previous reviews often applied a narrower scope by either restricting the search for a 
specific disease or to a specific setting. Pérez Velasco et al (Perez Velasco et al., 2012), 
reviewed the strategies against influenza pandemics. Consistent with our results they 
found an overrepresentation of pharmaceutical interventions in high-income countries. 
Pérez Velasco et al also assessed the quality of the included articles in their study, but 
focused less on variation in methods. A systematic review by Drake et al (Drake et al., 
2016), focusing on dynamic transmission economic evaluations of infectious disease 
interventions in low- and middle-income countries, highlighted the lack of reporting 
parameter values. This was also the case in our review. Drake et al. emphasized the lack 
in highlighting the uncertainty surrounding cost estimates in modelling studies. In our 
sample we found a vast majority of studies using secondary cost data, with a large 
number of the studies performing a sensitivity analysis of the cost data. Specifically, 
many studies addressed uncertainty regarding parameters influencing prices or 
volumes either using uncertainty applied as a proportion of the mean price estimate 
or uncertainty regarding the mean cost estimates directly obtained. The number of 
parameters varied in the sensitivity analyses ranged substantially, from all too just a 
few. A possible explanation for this difference with the findings from the study by Drake 
et al, is that in our sample the studies mostly originated from high-income settings 
where the availability of data might be better. Drake et al (Drake et al., 2016) proposed 
a value of information (VOI) framework to address the indicated shortcomings. This 
was also suggested by Pérez Velasco et al. (Perez Velasco et al., 2012). VOI analysis may 
provide insights about potential beneficial areas to conduct further investigation. In 
addition, other topics could be addressed such as capacity constraints of the healthcare 
providers, especially in extra resource constrained or vulnerable settings (van Baal et 
al., 2018). A major outbreak with a large number of cases will require large efforts in 
any setting, which may affect the provision of other healthcare service when resources 
are diverted. 

Our results show that there are large differences in the methods used to estimate the 
costs and benefits of different interventions. These differences can only very partially 
be explained by differences in the perspective adopted in the studies, as we found 
large differences within perspectives as well. Therefore, we conclude that there is a 
need to standardize which costs to include in economic evaluations in this context. 
Differences in the inclusion of costs will lead to difficulties comparing studies and their 
results. Moreover, excluding certain cost categories might create biases in results of 
economic evaluations and can be done strategically. By ignoring real costs, one also 
risks unwanted or unexpected effects when the intervention is actually implemented. 
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Another recommendation is to adopt a lifetime time horizon and to include all relevant 
benefits and costs during that period. This also implies that future costs need to be 
included in the evaluation. If life is prolonged due to an intervention, the life years 
gained can result in additional contributions to society (e.g. productivity) but may also 
result in additional costs, such as healthcare consumption and other consumption. 
Using long time horizons also increases the importance of discounting, which was not 
performed in all studies including costs beyond the outbreak duration. Not discounting 
future costs and effects may lead to biases in the results of an economic evaluation and 
its influence may be profound (Westra et al., 2012). As no global standards exist on 
which costs to include and which rates to use for discounting costs and effects and 
whether these should be identical presentation of results with and without discounting 
(at varying rates) and with and without future costs would be a practical approach 
(Attema et al., 2018; Claxton et al., 2011).

The lack of evaluations from non-high-income countries and regions creates difficulties 
in generalizing the results to other countries and regions. The importance of this issue 
is emphasized by the fact that most of the burden of communicable diseases still occurs 
in low- and middle-income settings. The current bias may therefore leave exactly those 
policy makers who stand to gain most from better evidence on these matters without it.  
Previous studies have addressed the challenge of incorporating behavioral aspects into 
infectious disease models (Funk et al., 2015, 2010). In the studies we selected, only 
one performed a sensitivity analysis in which the effect of individuals limiting their 
contact with others on their own initiative was explored (Khazeni et al., 2014). This 
is a topic on which further research is needed, including aimed at standardization of 
how to include such behavioral changes in economic evaluations. Another topic which 
needs further research is the impact of outbreaks on the broader economy: the so-
called disruptive effects. None of the included studies attempted to incorporate these 
effects, while they may have a substantial effect on the estimated cost-effectiveness of 
interventions. For instance, Prager et al. (Prager et al., n.d.), estimated the economic 
costs of a pandemic influenza to amount to a possible $25 billion in the US. When 
incorporating avoidance and resilience behavior the potential loss grew to $43 
billion. Further research is needed to link the outcomes of such studies to economic 
evaluations focusing on specific interventions. Based on our findings, we suggest that 
studies should strive towards more comprehensiveness in what they include and more 
standardization in terms of how to include relevant costs and (health) benefits. Future 
costs and productivity costs are two areas in which standardization is clearly required. 
We also emphasize the need for a presentation of all elements of costs and health effects 
in future studies in a manner that allows readers to scrutinize the data and methods 
used, and facilitates transferability of results. Adopting reporting standards such as 
Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement 
would be an improvement in this regard (Husereau et al., 2013).
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We note that inclusion of particular costs and benefits may have distributional consequences, 
also in the context of deciding on interventions aimed at the prevention and mitigation 
of potential outbreaks. For instance, including productivity losses in the evaluation of an 
intervention may favor interventions saving or targeted at younger, productive individuals, 
who participate in the paid labor force. Such distributional consequences should receive 
due attention, but are not solved by simply ignoring real costs like productivity costs. The 
increased costs of prolonging life also deserve mentioning in this context. These costs 
entail both costs of consuming health care in added life year but also the consumption of 
non-medical goods. It should be noted that these costs currently often are not included in 
economic evaluations (de Vries et al., 2018). 

Overall, this paper concludes that the evidence base regarding the cost-effectiveness of 
interventions targeted at preventing or mitigating the effects of major outbreaks at this 
stage is biased towards specific settings and outbreaks and methodologically diverse. 
Given the importance of the issue, effort should be taken to improve this.   
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Supplemental material

Search strings
SCOPUS:
(TITLE("Middle East respiratory syndrome coronavirus" OR sars OR n5n1 OR h1n1 
OR cholera OR mers-cov OR h7n9 OR ebola) OR ABS("Middle East respiratory 
syndrome coronavirus" OR sars OR h5n1 OR h1n1 OR cholera OR mers-cov OR h7n9 
OR ebola)) AND (TITLE(economic OR cost* OR costing) OR ABS(economic OR 
cost* OR costing)) AND (TITLE(benefits OR effectiveness OR cost-effectiveness OR 
cost-benefit OR cost-utility) OR ABS(benefits OR effectiveness OR cost-effectiveness 
OR cost-benefit OR cost-utility)) AND NOT DBCOLL(medl) AND ( EXCLUDE ( 
DOCTYPE,"re " ) OR EXCLUDE ( DOCTYPE,"ch " ) OR EXCLUDE ( DOCTYPE,"bk " ) 
OR EXCLUDE ( DOCTYPE,"sh " ) ) AND ( LIMIT-TO ( PUBYEAR,2018 ) OR LIMIT-TO 
( PUBYEAR,2017 ) OR LIMIT-TO ( PUBYEAR,2016 ) OR LIMIT-TO ( PUBYEAR,2015 
) OR LIMIT-TO ( PUBYEAR,2014 ) OR LIMIT-TO ( PUBYEAR,2013 ) OR LIMIT-TO ( 
PUBYEAR,2012 ) OR LIMIT-TO ( PUBYEAR,2011 ) OR LIMIT-TO ( PUBYEAR,2010 ) 
OR LIMIT-TO ( PUBYEAR,2009 ) OR LIMIT-TO ( PUBYEAR,2008 ) OR LIMIT-TO ( 
PUBYEAR,2007 ) OR LIMIT-TO ( PUBYEAR,2006 ) OR LIMIT-TO ( PUBYEAR,2005 
) OR LIMIT-TO ( PUBYEAR,2004 ) OR LIMIT-TO ( PUBYEAR,2003 ) ) AND ( LIMIT-
TO ( LANGUAGE,"English" ) )

PUBMED:
(Middle East respiratory syndrome coronavirus[Title/Abstract] OR SARS[Title/
Abstract] OR H5N1[Title/Abstract] OR H1N1[Title/Abstract] OR Cholera[Title/
Abstract] OR MERS-CoV[Title/Abstract] OR H7N9[Title/Abstract] OR ebola[Title/
Abstract]) AND (((economic[Title/Abstract] OR cost*[Title/Abstract] OR costing[Title/
Abstract]) AND (benefits[Title/Abstract] OR effectiveness[Title/Abstract])) OR 
cost-effectiveness OR cost-benefit OR cost-utility) AND ( "2003/01/01"[PDat] : 
"3000/12/31"[PDat] NOT Animals[Mesh:noexp])
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Excluded articles after full-text review
Author Title Year Reason for 

exclusion
Ssematimba Estimating the between-farm transmission rates for highly 

pathogenic avian influenza subtype H5N1 epidemics in 
Bangladesh between 2007 and 2013.

2017 Animal subjects

Sun Assessment of China's H5N1 routine vaccination strategy. 2017 Animal subjects

Tran An Alternative Vaccination Approach for The Prevention 
of Highly Pathogenic Avian Influenza Subtype H5N1 in 
The Red River Delta, Vietnam -A Geospatial-Based Cost-
Effectiveness Analysis.

2016 Animal subjects

Pitrelli Introduction of a quadrivalent influenza vaccine in Italy: a 
budget impact analysis.

2016 Budget impact 
analysis

Zhao [A cost-benefit analysis of the influenza H1N1 vaccination 
in the primary and junior school in Shanghai].

2011 Chinese

Lewnard Strategies to Prevent Cholera Introduction during 
International Personnel Deployments: A Computational 
Modeling Analysis Based on the 2010 Haiti Outbreak.

2016 No cost 
comparison

Cauchemez Estimating the impact of school closure on influenza 
transmission from Sentinel data.

2008 Effectiveness 
study

Ciavarella School closure policies at municipality level for mitigating 
influenza spread: a model-based evaluation.

2016 Effectiveness 
study

Xia Identifying the relative priorities of subpopulations for 
containing infectious disease spread.

2013 Effectiveness 
study

Sander Is a Mass Immunization Program for Pandemic (H1N1) 
2009 Good Value for Money? Early Evidence from the 
Canadian Experience.

2010 Final study 
included

Anparasan Resource deployment and donation allocation for epidemic 
outbreaks

2017 Methodology 
paper

Jeuland Incorporating Cholera Vaccine Herd Protection into 
Economic Cost-Benefit and Cost-Effectiveness Models

2009 Methodology 
paper

Park A real option analysis for stochastic disease control and 
vaccine stockpile policy: An application to H1N1 in Korea

2016 Methodology 
paper

Harling Leveraging contact network structure in the design of 
cluster randomized trials.

2016 Methodology 
paper

Mubayi A cost-based comparison of quarantine strategies for new 
emerging diseases.

2010 Methodology 
paper

Phelps Beyond cost-effectiveness: Using systems analysis for 
infectious disease preparedness.

2016 Methodology 
paper

Praditsuwan The efficacy and effectiveness of influenza vaccination 
among Thai elderly persons living in the community.

2005 No access

Cao Evaluating the impacts of vaccination, antiviral treatment 
and school closure on H1N1 influenza epidemic 

2014 No access 
(conference)

Yarmand Cost-effectiveness analysis of vaccination and self-isolation 
in case of H1N1

2010 No access 
(conference)

Yarmand A simulation-based analysis of different control policies 
for H1N1

2010 No access 
(conference)
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Author Title Year Reason for 
exclusion

Clemens When, how, and where can oral cholera vaccines be used to 
interrupt cholera outbreaks?

2014 No access (book 
chapter)

Sandhu An intelligent system for predicting and preventing MERS-
CoV infection outbreak 

2015 No economic 
evaluation

Sandhu Smart monitoring and controlling of Pandemic Influenza 
A (H1N1) using Social Network Analysis and cloud 
computing 

2016 No economic 
evaluation

Basili Swine influenza and vaccines: an alternative approach for 
decision making about pandemic prevention.

2013 No economic 
evaluation

Shim Optimal H1N1 vaccination strategies based on self-interest 
versus group interest.

2011 No economic 
evaluation

Tracht Mathematical modeling of the effectiveness of facemasks 
in reducing the spread of novel influenza A (H1N1).

2010 No economic 
evaluation

Tuite Optimal pandemic influenza vaccine allocation strategies 
for the canadian population.

2010 No economic 
evaluation

Wells Accuracy, Precision, Ease-Of-Use, and Cost of Methods to 
Test Ebola-Relevant Chlorine Solutions.

2016 No economic 
evaluation

Weng Early detection for cases of enterovirus- and influenza-
like illness through a newly established school-based 
syndromic surveillance system in Taipei, January 2010 ~ 
August 2011.

2015 No economic 
evaluation

Srivastav Analysis of a simple influenza A (H1N1) model with 
optimal control

2016 No economic 
model

Dorratoltaj Epidemiological and economic impact of pandemic 
influenza in Chicago: Priorities for vaccine interventions.

2017 Not based 
on relevant 
outbreak

Fast Cost-Effective Control of Infectious Disease Outbreaks 
Accounting for Societal Reaction.

2015 Not based 
on relevant 
outbreak

Franke Comparison of two control groups for estimation of oral 
cholera vaccine effectiveness using a case-control study 
design.

2017 Not based 
on relevant 
outbreak

Yaesoubi Identifying cost-effective dynamic policies to control 
epidemics.

2016 Not based 
on relevant 
outbreak

Gamache Development and Assessment of a Public Health Alert 
Delivered through a Community Health Information 
Exchange.

2010 Not evaluating 
interventions 
against 
outbreak

Gache The 2009 A(H1N1) influenza pandemic in the French 
Armed Forces: evaluation of three surveillance systems.

2012 Not 
quantitative

Deans Influenza vaccines provide diminished protection but are 
cost-saving in older adults.

2010 Review

Mogasale Oral Cholera Vaccination Delivery Cost in Low- and 
Middle-Income Countries: An Analysis Based on 
Systematic Review.

2016 Review
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Author Title Year Reason for 
exclusion

Chocontá-
Piraquive

[Cost-effectiveness of vaccinating pregnant women against 
pandemic influenza in Colombia].

2012 Spanish

González-
Canudas

[Cost-effectiveness in the detection of influenza H1N1: 
clinical data versus rapid tests].

2011 Spanish

Rosello Infectious disease risk and international tourism demand 2017 Not quantifying 
impact of 
intervention

Wilson A national estimate of the hospitalisation costs for the 
influenza (H1N1) pandemic in 2009

2012 Not quantifying 
impact of 
intervention
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Abstract
The 2014-2016 Ebola virus disease (EVD) outbreak in West Africa was the largest 
EVD outbreak recorded, which has triggered calls for investments that would facilitate 
an even earlier response. This study aims to estimate the costs and health effects of 
earlier interventions in Sierra Leone. A deterministic and a stochastic compartment 
model describing the EVD outbreak was estimated using a variety of data sources. 
Costs and Disability-Adjusted Life Years were used to estimate and compare scenarios 
of earlier interventions. Four weeks earlier interventions would have averted 10,257 
(IQR 4,353–18,813) cases and 8,835 (IQR 3,766–16,316) deaths. This implies 456 
(IQR 194-841) thousand DALYs and 203 (IQR 87-374) million $US saved. The greatest 
losses occurred outside the healthcare sector. Earlier response in an Ebola outbreak 
saves lives and costs. Investments in healthcare system facilitating such responses are 
needed and can offer good value for money. 
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Background
The West African Ebola virus disease (EVD) outbreak was the largest EVD outbreak 
since the virus was discovered. The outbreak mainly affected Guinea, Liberia, and Sierra 
Leone which together reported 28,616 confirmed, probable and suspected cases and 
11,310 deaths  (World Health Organization, 2016). Disruptive effects also affected health-
seeking behavior and healthcare delivery (Elston et al., 2015; Parpia et al., 2016; UNICEF 
and Ministry of Sanitation of Health, 2014; Walker et al., 2015) .  As the case counts 
grew, the outbreak drew international attention. In August 2014 the WHO published 
the Roadmap for response, outlining three phases of response initiatives to combat the 
outbreak (Organization, 2014). In October 2014, during the first phase, the UN Mission 
for Ebola Emergency Response (UNMEER) was launched (Ki-moon, 2014a). UNMEER 
had several aims: that 70 percent of cases would be isolated and that 70 percent of the 
burials would be conducted in a safe manner. Approximately two months after the 
UNMEER initiated interventions were implemented, the national weekly case counts 
decreased (WHO, 2016). Although the response operations seemed to effectively control 
the outbreak, critical voices raised an issue with the timeliness of the responses. Both the 
recognition of the outbreak and the implementation of the interventions came too late 
according to critics (Currie et al., 2016; Moon et al., 2015; UN High-Level Panel on the 
Global Response to Health Crises Protecting humanity from future health crises, 2016). 
The EVD epidemic highlighted the importance of surveillance systems for early detection 
as the virus remained undetected for the first three months of the EVD outbreak (CDC, 
2016; Tambo et al., 2014; UN High-Level Panel on the Global Response to Health Crises 
Protecting humanity from future health crises, 2016).  

Previous studies have estimated the effectiveness of various interventions, both real 
and hypothetical aimed at mitigating the outbreak (Barbarossa et al., 2015; Camacho 
et al., 2014; Dong et al., 2015; Fisman et al., 2014; Fisman and Tuite, 2014; Kucharski 
et al., 2015; Nishiura and Chowell, 2014; Rivers et al., 2014; Siettos et al., 2016; Towers 
et al., 2014; White et al., 2015; WHO Ebola Response Team, 2014).  In an early stage 
of the outbreak Rivers et al. explored several different interventions and found that 
those would not effectively control the outbreak (Rivers et al., 2014). Kucharski et al. 
estimated the number of averted cases due to the introduction of additional hospital 
beds in Sierra Leone, and found that the increased capacity averted approximately 
56,000 cases (Kucharski et al., 2015). Barbarossa et al,  estimated the effect of the 
response efforts on the number of cases and concluded that a five-week earlier 
implementation would halve the outbreak size (Barbarossa et al., 2015). Other studies 
have investigated the health effects of the EVD outbreak caused by disruption of the 
health care system (Bolkan et al., 2014; Evans et al., 2015; Takahashi et al., 2015).  Apart 
from interventions, the economic effect of the outbreak has also been studied (Bartsch 
et al., 2015; Kirigia et al., 2015; World Bank, 2016a). Bartsch et al. performed a cost 
of illness study comprising EVD treatment costs and productivity losses, suggesting 
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that the total cost of the epidemic in Sierra Leone was approximately 30 million US$ 
(Bartsch et al., 2015). Additionally, Kirigia et al. estimated future production losses 
due to EVD mortality to approximately 60 million international$ in Sierra Leone 
(Kirigia et al., 2015). Finally, The World Bank estimated the outbreaks’ impact on the 
GDP of the outbreak-affected economies affected to be 2.8 billion US$, where Sierra 
Leone was most affected and incurred a loss of 1.9 billion US$ (World Bank, 2016a). 

Although studies have investigated the effects of the outbreak in different intervention 
scenarios little work has been performed on the combination of potential health benefits 
and cost savings of earlier interventions. In this paper, we focus on providing estimates 
of costs and health consequences of the outbreak and the potential benefits of an earlier 
response. Moreover, this study also provides relevant input for discussions on more 
general investments to strengthen relatively weak health systems (Fallah et al., 2015). To 
enable comparability, we measure health losses in Disability Adjusted Life Years (DALY) 
and take into account the costs associated with an outbreak both within and outside the 
healthcare sector. DALYs are a summary measure of health that comprise both length 
and quality of life (Murray et al., 2002), being widely used in cost-effectiveness studies 
which facilitates comparison with similar studies. Furthermore, DALYs lost because of 
early death are closely linked to productivity losses as health facilitates productivity. 
Given that the EVD outbreak affects people in their working age/productive years, 
an exclusive focus on the costs incurred within the health system would result in an 
incomplete picture of the impact of earlier response (Baltussen et al., 2004). 

Methods
To estimate the incremental health benefits and potential costs of earlier interventions 
in the scenario of the EVD outbreak in Sierra Leone we used a compartment model to 
describe the transmission under the baseline scenario- the actual outbreak -, and several 
counterfactual scenarios. The counterfactual scenarios mimic earlier interventions 
varying from one day earlier up to four weeks earlier. We attached treatment costs and 
production losses to the transmission model compartments. We also attached disability 
weights to the compartments, from which DALYs were calculated. The sum of costs and 
DALYs were calculated under the baseline and the two counterfactual scenarios. We 
assessed the uncertainty of our results with respect to the uncertainty surrounding input 
parameters and carried out a sensitivity analysis for several key parameters.  

Transmission model
To explore the potential benefits of earlier response we used an extended SEIR 
compartment model, based on the model of Kucharski et al. (Kucharski et al., 2015). 
The model aims at describing the natural course of the disease and incorporating 
setting specific context such as hospitalization in either holding centers or treatment 
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centers, which is then run on a district level.  Figure 1 depicts the model schematics: 
upon contracting the virus the individual leaves the Susceptible compartment (S) and 
enters the latent compartment (E). From the E compartment the individuals' transition 
to the infectious compartment (I). When entering the I compartment, the individuals 
are infectious to others. As not all cases are assumed to be reported, the I compartment 
is differentiated in reported cases and cases not being reported. We assumed that 
the infection rate is the same for both I compartments and from there on infected 
individuals may die or recover from the EVD. If the infected individuals are reported 
then, if district beds are available, they are hospitalized. During hospitalization, they 
are assumed not to be infectious to others. During the outbreak, facilities with different 
functions existed such as holding centers and treatment centers. In our model we 
treated the different facilities as the same, assuming that the fatality rates did not differ. 
Within each district, homogenous mixing was assumed and no spatial interaction was 
accounted for. The whole population was assumed to be susceptible. Due to the small 
number of reported cases we excluded the Bonthe district. 

Figure 1: Compartment model schematic. Solid lines indicate transition paths; dashed lines 
indicate transmission routes. With the following compartments, Susceptible (S), Exposed (E), 
Infectious and reported (IR), Infectious and not reported (IU), Hospitalized (H), Dead (D) and 
lastly Recovered (R)

The transmission rate and parameters capturing the effect of the interventions 
implemented during the outbreak were fitted to the reported number of cases by 
weighted least squares, from the WHO’s situation reports (World Health Organization, 
2016). The parameters were fitted separately for each district, to reduce identifiability 
issues we derived some parameter values from other studies (see supplementary 
material for more information). In Table 1 the parameters used in the model that are 
not district dependent are presented. 
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Table 1. Parameters used in the simulation model and their sources

Parameter Description Value Reference
Maximum value of transmission rate Estimated See supplementary material 

Slope of transmission rate parameter Estimated

Midpoint of transmission rate 
parameter

Estimated

Slope of intervention rate parameter Estimated

Midpoint of intervention rate 
parameter

Estimated

1/σ Latent period 10.4 days (WHO Ebola Response Team et 
al., 2015)

1/γCR
Time to recovery in the community 11.7 days (WHO Ebola Response Team et 

al., 2015)

1/γCD
Time to death in the community 6.8 days (WHO Ebola Response Team et 

al., 2015)

1/γHR
Discharge rate 11.6 days (WHO Ebola Response Team et 

al., 2015)

1/γHD
Time to death for hospitalized 5.2 days (WHO Ebola Response Team et 

al., 2015)

Proportion reported 83% (WHO Ebola Response Team et 
al., 2015)

1/ ω Time to notification 4.8 days (WHO Ebola Response Team et 
al., 2015)

1/η Hospitalization rate 4.6-1.3 days See supplementary material 

δC
Fatality rate in the community 91.9% (WHO Ebola Response Team et 

al., 2015)

δH
Fatality rate for hospitalized 60.3% (WHO Ebola Response Team et 

al., 2015)

We allowed the infection rate to vary to accommodate different outbreak paces between 
districts. After the 1st of October 2014, the date of the UNMEER implementations (Ki-moon, 
2014b), we introduced the effect of interventions in the model. We allowed the effect of the 
interventions to vary between districts. As the weekly number of reported cases declined at 
different speeds we did not force a linear decrease on the effect of the interventions. 

Translating morbidity and mortality effects into DALYs and costs 
The health loss due to EVD expressed in DALYs is the sum of health losses during 
an illness and the health lost because of an early death. To estimate health losses we 
attached disability weights from the Global Burden of Disease (GBD) study to the 
relevant compartments (Vos et al., 2015). Health losses because of early death were 
assumed to be equal to Health Adjusted Life Expectancy (HALE) estimates for Sierra 
Leone from GBD. To estimate the remaining HALE for each case the observed age 
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distribution of reported cases was applied to the final outbreak size (WHO Ebola 
Response Team, 2014). The full societal costs as a consequence of EVD include not only 
direct costs such as treatment costs for EVD but also indirect costs such as production 
losses, due to sickness and death at a young age. As in Bartsch et al. two treatment 
options were included: supportive and extensive supportive care (Bartsch et al., 2015). 
Supportive care consists of paracetamol, oral rehydration salts, metoclopramide for 
nausea. Extensive care adds morphine for pain, diazepam for convulsions, Ringer's 
lactate against shock and broad-spectrum antibiotics. As no proportion of the severity 
of cases was available a random number was drawn from a uniform distribution from 
0 and 1 for each run representing the proportion of cases receiving supportive care. 
For treatment costs, the costs estimated by Bartsch et al. were used (Bartsch et al., 
2015). For reasons of international comparability, we calculated the production losses 
according to the Human capital method (Krol and Brouwer, 2014). GDP per capita was 
used as a proxy for annual production losses and was multiplied by the HALE lost for 
early deaths to estimate lifetime production losses. An implicit assumption here is that 
life years spent in poor health do not result in productivity gains in our estimation. 
For recoveries, the productivity loss from Bartsch et al. due to absenteeism was used 
(Bartsch et al., 2015). Costs are all expressed in 2014 US dollars. 



54

CHAPTER 3

Ta
bl

e 
2.

 C
os

ts
 a

nd
 h

ea
lth

 p
ar

am
et

er
s i

nc
lu

de
d,

 m
ea

n 
an

d 
95

%
 C

on
fid

en
ce

 In
te

rv
al

 in
 b

ra
ck

et
s. 

By
 a

ge
 g

ro
up

s a
nd

 co
st

s g
ro

up
s. 

Ex
pr

es
se

d 
in

 2
01

4 
$U

S.
 

A
ge

 g
ro

up
:

R
ef

er
en

ce
:

Co
st

 g
ro

up
:

<1
5 

ye
ar

s
15

–4
4 

ye
ar

s
≧

45
 y

ea
rs

Su
pp

or
tiv

e 
ca

re
: 

 P
at

ie
nt

 re
co

ve
rs

43
1 (

41
3–

45
0)

44
6 

(4
28

–4
66

)
44

7 
(4

28
–4

64
)

(B
ar

ts
ch

 e
t a

l.,
 2

01
5)

 P
at

ie
nt

 d
ie

s
17

8 
(1

63
–1

95
)

18
5 

(1
69

–2
02

)
18

5 
(1

68
–2

02
)

(B
ar

ts
ch

 e
t a

l.,
 2

01
5)

Ex
te

ns
iv

e 
su

pp
or

tiv
e 

ca
re

:

 P
at

ie
nt

 re
co

ve
rs

59
8 

(5
76

–6
22

)
83

0 
(8

00
–8

62
)

83
0 

(8
01

–8
59

)
(B

ar
ts

ch
 e

t a
l.,

 2
01

5)

 P
at

ie
nt

 d
ie

s
23

8 
(2

17
–2

59
)

32
1 (

29
2–

35
1)

32
2 

(2
91

–3
51

)
(B

ar
ts

ch
 e

t a
l.,

 2
01

5)

Pe
rs

on
ne

l c
os

ts
:

 P
at

ie
nt

 re
co

ve
rs

59
 (5

7–
61

)
59

 (5
7–

61
)

59
 (5

7–
61

)
(B

ar
ts

ch
 e

t a
l.,

 2
01

5)

 P
at

ie
nt

 d
ie

s
21

 (1
9–

23
)

21
 (1

9–
23

)
21

 (1
9–

23
)

(B
ar

ts
ch

 e
t a

l.,
 2

01
5)

Pr
od

uc
tiv

ity
 lo

ss
es

 d
ue

 to
:

 A
bs

en
te

ei
sm

 d
ur

in
g 

ill
ne

ss
 e

pi
so

de
23

 (2
2–

24
)

23
 (2

2–
24

)
23

 (2
2–

24
)

(B
ar

ts
ch

 e
t a

l.,
 2

01
5)

 M
or

ta
lit

y
42

 7
47

.2
(1

2 
35

5.
9-

12
8 

27
3.

4)
29

 6
40

(7
 5

99
.2

-9
0 

04
0.

3)
13

 2
27

.5
(2

 9
34

.1
-4

2 
39

3.
5)

Ca
lc

ul
at

ed
 u

si
ng

 th
e 

w
ea

lth
 d

is
tr

ib
ut

io
n 

(W
or

ld
 B

an
k,

 2
01

6b
)

D
is

ab
ili

ty
 w

ei
gh

ts
:

Ac
ut

e 
ph

as
e 

of
 il

ln
es

s
0.

13
3 

(0
.0

88
-0

.1
9)

(V
os

 e
t a

l.,
 2

01
5)

Po
st

-s
eq

ue
la

e
0.

21
9 

(0
.1

48
-0

.3
08

)  
(V

os
 e

t a
l.,

 2
01

5)

M
or

ta
lit

y,
 H

AL
E 

(r
an

ge
)

51
.3

 (4
8.

11
 –

 5
3.

51
)

34
 (2

4.
76

 –
 4

3.
84

)
13

.9
2 

(7
.3

2 
- 2

1.
38

)
(V

os
 e

t a
l.,

 2
01

5)

D
ur

at
io

n 
of

 il
ln

es
s:

Ac
ut

e 
ph

as
e,

 re
co

ve
r

15
.1

 (1
4.

6 
– 

15
.6

) d
ay

s
(V

os
 e

t a
l.,

 2
01

5)

Ac
ut

e 
ph

as
e,

 d
ea

th
8.

2 
(7

.9
 –

 8
.4

)
(V

os
 e

t a
l.,

 2
01

5)

Po
st

-s
eq

ue
la

e
0.

75
 y

ea
rs

 (0
.4

17
–1

.1
35

)
(V

os
 e

t a
l.,

 2
01

5)



55

Costs and benefits of early response in the Ebola virus disease outbreak in Sierra Leone

3

Interventions and counterfactual scenarios
To explore the potential benefits and costs of timely interventions we created 
counterfactual scenarios of earlier interventions. In our initial analysis we compare 
the baseline scenario - interventions as they were implemented by the UNMEER - to 
a counterfactual scenario of interventions taking place four weeks earlier. We then 
continued to investigate the effect on health and costs with interventions taking 
place between the baseline scenario and four weeks earlier in steps of one day. The 
counterfactual scenarios were modeled by moving the time of interventions in the 
transmission model four weeks earlier. This affected the transmission parameter and 
also the hospitalization rate and the case fatality rates for those hospitalized.

Assessment of uncertainties of transmission models
We assessed the uncertainty of our outcomes by taking into account the uncertainty 
around the input parameters of the compartment model and our health and cost 
estimates. In our main scenario of a four week earlier counterfactual we implemented 
a stochastic model using the tau-leaping approximation of the Gillespie’s algorithm 
with a time step of .01 days (Gillespie, 1977; Gillespie, 2001). The approximation treats 
individuals as discrete units and translates the rates into probabilities allowing for 
stochasticity in all transitions. We performed several univariate sensitivity analysis to 
explore the impact of key input parameters on our outcomes. We varied the proportion 
of underreporting by ten percentage points, the time for cases to be reported, the time 
to hospitalization and the timing of interventions by one day each.

Results
Model fit
Fig. 2 shows the fit of the reported cases of the models median and interquartile range 
by district and nationally against the reported number of weekly cases. Our model 
estimated 8 609 (3882-8609) reported cases which is a bit lower than the number 
actually of reported cases, with the largest discrepancy being in the Western Area 
Rural district reported cases. Distinct temporal differences between districts can be 
observed such as in Kailahun and Kenema, which experienced a peak of reported cases 
earlier than other districts. These two districts displayed a decrease in cases before the 
implementation of the UNMEER interventions. For the fitted parameter values per 
district and results per district, see supplementary materials.
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Figure 2: Stochastic model fit on the national and district level. Solid line shows the median 
number of reported cases of 1500 model runs. Blue areas are the interquartile range. Reported 
cases by the WHO patient database are given as black dots. Vertical line shows the date of 
implementation of interventions 

Effect of earlier interventions
Districts with a large number of cases and exponential growth showed the greatest 
savings of costs and health. In a large number of the districts, the time of interventions 
and the decrease of cases correlated well. Four weeks earlier interventions resulted in 
cost savings and health gains compared to the baseline scenario. The savings in both 
costs and health were largely due to the averted mortality as seen in Table 3 where 
results are shown based on outcomes of the stochastic model. Our result suggests that 
interventions implemented four weeks earlier would have halved both the costs and 
the health losses. Results by district are available in Supplementary Material 2.
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Table 3. Incremental results of scenarios compared to baseline. Median and interquartile range 
based on outcomes produced with the stochastic mode

4 weeks earlier (IQR)
Cases averted 10257

(4353 - 18813)

Deaths averted 8835
(3766 - 16316)

DALY s averted (thousand) 455.8
(194.1 - 841.11)

DALYs averted by preventing Ebola episodes 
(time spent with Ebola times number of cases)

0.23
(0.1 - 0.41)

DALYs averted by preventing premature deaths
(deaths averted times remaining health adjusted life expectancy)  

455.57
(194 - 840.7)

Costs saved (million US$) 202.82
(87.42 - 373.86)

Within health care sector: ebola treatment 1.77
(0.86 - 2.52)

Outside healthcare sector: productivity losses 201.05
(86.56 - 371.34)

Figure 3 shows the incremental benefits of intervening earlier, from one day to 8 
weeks, using the deterministic model. At four weeks, the same number of days earlier 
as in our main scenario, the estimated benefits gained from earlier interventions were 
estimated to 182 million US$. One week later would have averted 32 million US$ and 
47 thousand DALYs less. Conversely, implementation one week earlier would yield 
an additional 25 million US$ and 38 thousand DALYs gained. Beyond our main 
scenario intervention date, the incremental benefits are diminishing in returns. Note 
that the average outcomes of the stochastic model as displayed in Table 3 differ from 
the outcomes produced with the deterministic model given the non-linearities in the 
model. Therefore, the numbers in Figure 3 differ somewhat of those reported in Table 3. 

Figure 3: Benefits of earlier interventions in one-day increments based on outcomes produced 
with the deterministic model. Left-hand panel shows the costs saved, right-hand panel shows 
the DALYs gained.
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From the univariate sensitivity analysis, presented in Figure 4, we found that the 
parameter with the greatest impact is time to hospitalization. Reducing the time of 
intervention by one day would avoid 500 cases and reducing the time to hospitalization 
by one day would avoid 3,671 cases, for the time to notification the estimate is 668 cases 
avoided. When decreasing the underreporting by one percentage point it showed a 
smaller effect of 28 cases avoided. The relative decrease in values is substantially larger 
for the time to notification and hospitalization than for the timing of interventions. 

Figure 4: Sensitivity analysis of key parameters based on outcomes produced with the 
deterministic model. The parameters of interest are located on the y-axis and difference in 
cases compared to the baseline scenario on the x-axis. Estimates are on the left-hand side varied 
with ten percentage points less for the percentage of underreported, one day less for the time 
to notification, time to hospitalization and time of intervention. Right-hand side shows the 
difference in cases from an increase of the same amounts for the same parameter values 

Discussion
This paper estimated the costs and health losses of the EVD outbreak in Sierra 
Leone from a societal perspective and provided estimates of the benefits from earlier 
interventions. The results suggest that timely interventions can reduce the loss of 
health and drastically reduce the economic impact of outbreaks. This emphasizes the 
importance of timely interventions. The largest contribution to the total cost in all 
scenarios was productivity losses, which arise from mortality at a young age. In our 
deterministic analysis, we showed that much benefit may be gained by even earlier 
interventions, albeit at a diminishing rate. 
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Before we highlight some implications of our findings, we note some limitations of this 
study. Importantly, several assumptions had to be made due to lacking data or poor 
quality data. Models previously used for EVD (e.g. (Legrand et al., 2007)), allowed for 
explicit modeling of several transmission routes. To avoid fitting several transmission 
parameters and identifiability problems we did not model funeral transmissions or 
hospital transmissions explicitly. Evidently, funeral transmissions were an important 
driver of the outbreak and a facilitator of super-spreading events (Lau et al., 2017). 
We assumed in our model that infectiousness remains the same throughout the 
symptomatic period, which may not be fully accurate and may rather be increasing 
closer to death (Towner et al., 2004). The implication of this assumption is that we 
may have underestimated the benefits of earlier interventions, as the infected are 
hospitalized sooner after interventions and transmission rates are lower in hospitalized 
settings. Our model assumed homogenous mixing within compartments, meaning that 
all individuals have the same probability of contact. In reality, this assumption may not 
hold as individuals mix within their respective contact network primarily which may 
limit spread. For the current purpose, we did not include transmission caused by district 
interaction of individuals in different districts. This may again have underestimated 
the impact of the health gained and costs saved due to earlier interventions, as earlier 
interventions may prevent infected individuals from spreading the virus to other 
districts. Underreporting is assumed to occur during an EVD outbreak, however, few 
studies have provided concrete evidence of the proportion of underreporting. We, 
therefore, assumed a moderate estimate (compared to estimates by the CDC)   whereby 
for each reported case, 2.5 cases were not reported (Meltzer et al., 2014). As uncertainty 
exists regarding the interventions performed, assumptions had to be made to calculate 
the effects of the interventions. We assumed that the decline in transmission after the 
1st of October 2014 was solely caused by the interventions, and not taking into account 
independent behavior which was not due to for example information campaigns or 
community leader engagement. We did not differentiate between different types of 
interventions as this was not our aim, we were interested in the total effect. However, 
in our sensitivity analysis we saw that time to hospitalization proved very important 
in limiting the number of new cases. Another limitation is in the use of a single date 
to account for the interventions performed by the UNMEER. This assumes that the 
interventions and the effects were more homogenous than in reality. Our estimate of 
the production losses is much larger than that of the cost of illness study by Bartsch 
et al. (Bartsch et al., 2015). Our approach estimated the years of productivity lost due 
to EVD mortality as the HALE lost multiplied by average annual GDP of Sierra Leone 
and also included the latest data on reported cases. The total estimated economic loss 
in the baseline scenario mounted to 635 million US$. This is a smaller estimate than 
previously estimated by the World Bank (WB). The difference is due to the choice of 
approach, as the WB applied a macroeconomic level to determine the GDP loss in short 
and medium term. Our focus remained on individual costs to the health care system 
and the long-term production losses arising from deaths. An underexplored issue here 
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is which approach is most suitable to estimate these productivity costs. In economic 
evaluations sometimes the human capital approach is replaced with the friction cost 
method, under the assumption that replacement of ill or deceased workers (through 
a reshuffling of labor or employing previously unemployed) will help to reduce 
total productivity costs (e.g. Brouwer et al. (Brouwer et al., 1997)). In countries and 
circumstances like the outbreak studied, it is unclear whether similar mechanisms 
exist and would lower productivity cost estimates. If we would assume this to be the 
case and production levels would be restored after 1 or 5 years, production costs would 
be estimated to be 7.07 (3.08-13.08) and 34.14 (14.61-63.29) million US$ respectively.

Conclusions
The consequences of this outbreak proved devastating. However, it has been shown 
that EVD can be stopped in an early phase. Illustrated by the example of Nigeria, where 
quick response and actions managed to halt the outbreak containing the number of 
cases to 19 with seven deaths (Shuaib et al., 2014), however, this occurred at a later 
phase when the outbreak was known and the responders ready.  Swift detection and 
isolation saved not only lives but was done at a cost of approximately 13 million US$ 
using the existing Polio surveillance infrastructure. This cost estimate is approximately 
6 percent of the cost savings with interventions four weeks earlier in Sierra Leone. 
This study does not provide guidance on which preventive measures are best suited 
to preventing or limiting outbreaks. However, we do know that the virus was first 
discovered after several months of circulating in the population which advocates for 
systems capable of detecting emerging viruses before they spread more widely. The 
most important result from this study is that is considerable gains to be made from 
timely interventions, and that the losses primarily occurred outside the healthcare 
sector. To improve the capabilities for handling the next outbreak preferably before a 
new outbreak occurs. Timeliness is not only important in intervening, but also in the 
context of clear policy action. 
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Supplementary material
Equation set 1 describes the equations governing the transmission model. In the 
susceptible compartment β is the force of infection, φ is the effectiveness parameter of 
the interventions whose value before the time of intervention is fixed to 1 and thereafter 
decreases. In the compartment of the latent stage (E compartment) σ is the time 
individuals spent in the phase of being infectious but not showing symptoms or being 
infectious to others. The proportion of ρ is set to move to the infectious compartment 
and eventually become reported cases, while the remaining proportion transitions to 
the infectious compartment and will not become reported cases. The IC compartment 
represents individuals that are infectious to others but not reported. The infected 
compartment has a recovery rate of γCR and the proportion 1-δC, while the proportion 
δC dies at rate γCD. The IR0 compartment contains those infected that will become but 
are not yet reported. They become reported cases at rate ω and die and recover at the 
same rate and proportion as those in the IC. After the transition to the IR1, the infected 
in the model are considered reported; they die and recover at the previously mentioned 
proportion and rates minus the time spent in the IR0, but they may be hospitalized if 
beds are available at rate η. When hospitalized, compartment H, a proportion of 1-δH 
individuals recover and are discharged at rate γHR; the other proportion dies at rate 
γHD. Values used from the literature are available in table 1 and estimated values are 
available in table 2.

!"
!#
= −	 $

%
(βφI&S + 	βφI'S), 

!(
!#
= $

%
(βφI&S + 	βφI'S) − σE, 

!)!
!#
= (1 − ρ)σE −	(1 − δ&)γ&'I& − δ&	γ&*I&, 

!)"#
!#
= ρσE − 	ωI'+ −	(1 − δ&)γ&'I'+ −	δ&γ&*I'+, 

!)"$
!#
= ωI'+ −	(1 − δ&)(γ&' − ω)I'$ −	δ&(γ&* − ω)I'$ − 	ηI'$, 

!,
!#
= ηI −	(1 − δ,)γ,'H −	δ,γ,*H, 

!'
!#
= (1 − δ&)γ&'I& +	(1 − δ&)γ&'I'+ + (1 − δ&)(γ&' − ω)I'$ + (1 − δ,)γ,'H	, 

!*
!#
= δ&	γ&*I& +	δ&γ&*I'+ +	δ&(γ&* − ω)I'$ + δ,γ,*H, 

(1) 

 

 

 N = 	S + 	E +	I& +	 I'+ +	 I'$ + 	R   (2) 

 

β(t) =
a-

1 + e.$(#0.%)
 (3) 

 

 

φ(t) = 9
1, for	t < intervention	start

(1 −
1

1 + e1$(#01%)
), for	t ≥ intervention	start (4) 

 

 

…bed constraints modeled through roots, the two models corresponded well. 

 

η = 	η −
η

((HD#,3 + 1) − H#,3)-
 (5) 

 

and the total population (N) being:

!"
!#
= −	 $

%
(βφI&S + 	βφI'S), 

!(
!#
= $

%
(βφI&S + 	βφI'S) − σE, 

!)!
!#
= (1 − ρ)σE −	(1 − δ&)γ&'I& − δ&	γ&*I&, 

!)"#
!#
= ρσE − 	ωI'+ −	(1 − δ&)γ&'I'+ −	δ&γ&*I'+, 

!)"$
!#
= ωI'+ −	(1 − δ&)(γ&' − ω)I'$ −	δ&(γ&* − ω)I'$ − 	ηI'$, 

!,
!#
= ηI −	(1 − δ,)γ,'H −	δ,γ,*H, 

!'
!#
= (1 − δ&)γ&'I& +	(1 − δ&)γ&'I'+ + (1 − δ&)(γ&' − ω)I'$ + (1 − δ,)γ,'H	, 

!*
!#
= δ&	γ&*I& +	δ&γ&*I'+ +	δ&(γ&* − ω)I'$ + δ,γ,*H, 

(1) 

 

 

 N = 	S + 	E +	I& +	 I'+ +	 I'$ + 	R   (2) 

 

β(t) =
a-

1 + e.$(#0.%)
 (3) 

 

 

φ(t) = 9
1, for	t < intervention	start

(1 −
1

1 + e1$(#01%)
), for	t ≥ intervention	start (4) 

 

 

…bed constraints modeled through roots, the two models corresponded well. 

 

η = 	η −
η

((HD#,3 + 1) − H#,3)-
 (5) 

 



62

CHAPTER 3

And β being:

!"
!#
= −	 $

%
(βφI&S + 	βφI'S), 

!(
!#
= $

%
(βφI&S + 	βφI'S) − σE, 

!)!
!#
= (1 − ρ)σE −	(1 − δ&)γ&'I& − δ&	γ&*I&, 

!)"#
!#
= ρσE − 	ωI'+ −	(1 − δ&)γ&'I'+ −	δ&γ&*I'+, 

!)"$
!#
= ωI'+ −	(1 − δ&)(γ&' − ω)I'$ −	δ&(γ&* − ω)I'$ − 	ηI'$, 

!,
!#
= ηI −	(1 − δ,)γ,'H −	δ,γ,*H, 

!'
!#
= (1 − δ&)γ&'I& +	(1 − δ&)γ&'I'+ + (1 − δ&)(γ&' − ω)I'$ + (1 − δ,)γ,'H	, 

!*
!#
= δ&	γ&*I& +	δ&γ&*I'+ +	δ&(γ&* − ω)I'$ + δ,γ,*H, 

(1) 

 

 

 N = 	S + 	E +	I& +	 I'+ +	 I'$ + 	R   (2) 

 

β(t) =
a-

1 + e.$(#0.%)
 (3) 

 

 

φ(t) = 9
1, for	t < intervention	start

(1 −
1

1 + e1$(#01%)
), for	t ≥ intervention	start (4) 

 

 

…bed constraints modeled through roots, the two models corresponded well. 

 

η = 	η −
η

((HD#,3 + 1) − H#,3)-
 (5) 

 

And φ being:

!"
!#
= −	 $

%
(βφI&S + 	βφI'S), 

!(
!#
= $

%
(βφI&S + 	βφI'S) − σE, 

!)!
!#
= (1 − ρ)σE −	(1 − δ&)γ&'I& − δ&	γ&*I&, 

!)"#
!#
= ρσE − 	ωI'+ −	(1 − δ&)γ&'I'+ −	δ&γ&*I'+, 

!)"$
!#
= ωI'+ −	(1 − δ&)(γ&' − ω)I'$ −	δ&(γ&* − ω)I'$ − 	ηI'$, 

!,
!#
= ηI −	(1 − δ,)γ,'H −	δ,γ,*H, 

!'
!#
= (1 − δ&)γ&'I& +	(1 − δ&)γ&'I'+ + (1 − δ&)(γ&' − ω)I'$ + (1 − δ,)γ,'H	, 

!*
!#
= δ&	γ&*I& +	δ&γ&*I'+ +	δ&(γ&* − ω)I'$ + δ,γ,*H, 

(1) 

 

 

 N = 	S + 	E +	I& +	 I'+ +	 I'$ + 	R   (2) 

 

β(t) =
a-

1 + e.$(#0.%)
 (3) 

 

 

φ(t) = 9
1, for	t < intervention	start

(1 −
1

1 + e1$(#01%)
), for	t ≥ intervention	start (4) 

 

 

…bed constraints modeled through roots, the two models corresponded well. 

 

η = 	η −
η

((HD#,3 + 1) − H#,3)-
 (5) 

 

To allow the infection rate to vary due to reasons other than the interventions of 
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Parameter inference
For fitting the model, we used data from the patient database provided by the WHO 
website. The data are the weekly reported cases counts on a district level which we fitted 
against the weekly difference of the IR1 compartment. We fixed the following parameters 
with values observed by the WHO Ebola Response Team et al., 2015. The time of the 
latent phase as 10.4 days, the time from onset to death in the community: 6.8 days, 
onset to recovery in the community: 11.7 days, onset to notification to authorities for 
the reported cases: 4.8 days, hospitalization to death: 5.2, hospitalization to recovery 
and discharge: 11.6. Time to hospitalization was modeled as a linear function using 
data reported by the WHO situation reports [1], resulting in a range of 4.6-1.3 days 
from the beginning of the outbreak to the end of the outbreak. Reported opening 
dates and bed numbers from the Humanitarian Data Exchange were cleaned and 
checked for inconsistency by comparing it to various sources such as NGOs, Situation 
Reports by UNMEER and Sierra Leone's Ministry of Health. In the case of fatality 
rates we used observed values of 60.3 percent for hospitalized cases, 91.9 percent non-
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hospitalized cases [32]. The model accounts for underreporting using an estimate of 
83% of the cases being reported, an empirical estimate of underreporting [49]. An 
estimate smaller than for example the estimates in the study by Kucharski et al and 
the estimate of the CDC [13,25]. The transmission parameter was modeled as a time-
dependent logistic function in order to handle the temporal heterogeneity of districts 
transmission.  Resulting parameter values by district are available in table 2.

Table 2. District specific parameters

District
Bo 0,3899 137,0676 -0,0037 0,2387 241,5276

Bombali 0,5067 242,2816 -0,0019 0,0015 279,8948

Kailahun 0,5000 50,0000 -0,0390 0,0127 739,2832

Kambia 0,5091 35,2471 -0,0024 1,8922 436,6217

Kenema 0,5468 60,5284 -0,0274 0,3494 741,8758

Koinadugu 0,7352 20,6048 0,0909 0,0978 173,9795

Kono 0,6307 299,6713 0,0061 1,9659 247,7990

Moyamba 0,7034 445,4053 0,0032 0,0005 741,9642

Port loko 0,4008 1,0003 0,0037 0,0018 218,6708

Pujehun 0,2204 160,1710 -0,1313 0,6885 326,8079

Tonkilili 0,5686 56,6040 -0,0005 0,0061 154,0043

Western area rural 0,5056 500,0000 -0,0005 0,0181 251,7345

Western area urban 0,4876 492,1892 -0,0004 0,0261 239,8340

Remaining HALE 
We used disability weights from the GBD for suffering from EVD of 0.133 (0.088-0.19) 
and for a period of post EVD weights of 0.219 (0.148-0.308). The length of the period 
on which the post EVD weight was applied was done in a similar manner as in the 
Global Burden of Disease study to 0.75 years (0.417–1.135). As was the acute phase of 
EVD of 15.1 (14.6 – 15.6) days for recoveries and 8.2 (7.9 – 8.4) days for the deceased. 
From the GBD we also used remaining HALE in age groups of five years as shown in 
article table 2. We assumed a normal distribution from which we sampled individual 
HALE estimates. The lifetime production losses were estimated by multiplying the 
individual HALE and the annual production losses. For the production losses, we used 
the annual GDP per capita from the World Bank. The distribution between the age 
groups among the recovered and fatalities was determined by applying the observed 
distribution of the WHO response group [22]. Among the distribution of recovered by 
age groups of <15, 15-44, and ≥45 was 12.6%, 73.1%, 14.3% respectively. For deaths by 
age groups 14.2%, 56.5%, 29.3% respectively.
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Abstract
Including the costs of non-medical consumption in life years gained in economic 
evaluations of medical interventions has been controversial. This paper focuses on the 
estimation of these costs using a long series of cross-sectional household surveys and 
relates the estimates to the theoretical discussion. We decomposed consumption into 
age, period and cohort effects and modelled the non-linear age and cohort patterns 
of consumption using P-splines. As consumption patterns depend on household 
composition, we also estimated household size using the same regression modelling 
strategy. Estimates of non-medical consumption and household size were combined 
with life tables to estimate the impact of including non-medical survivor costs on 
an incremental cost-effectiveness ratio (ICER). Results revealed that including non-
medical survivor costs substantially increases the ICER, but the effect varies strongly 
with age. The impact of cohort effects is limited but ignoring household economies of 
scale results in a significant overestimation of non-medical costs. 
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Introduction
Medical interventions can increase life expectancy of patients and, as a consequence, 
may cause consumption of both medical and non-medical goods and services during 
the additional life time. This consumption in gained life time can be related to 
treatment of additional diseases (medical costs) or simply related to food, housing or 
clothing (non-medical costs). By definition, these costs would not have occurred if life 
had not been prolonged. While this may be a seemingly straightforward observation 
about the economic consequences of prolonging life, including these additional costs 
in economic evaluations conducted from a health care (medical costs) or a societal 
perspective (medical and non-medical costs) has been the topic of considerable 
debate (de Vries et al., 2018). As a result, the inclusion of both future medical and 
future non-medical costs, is still uncommon (de Vries et al., 2018). Disagreement is 
strongest concerning the inclusion of non-medical costs, sometimes also referred to 
as survivor consumption  (Feenstra et al., 2008; Gandjour, 2006a; Garber and Phelps, 
2008, 1997b; Lee, 2008; Lundin and Ramsberg, 2008; Meltzer, 2008, 1997a; Nyman, 
2011, 2004a; Richardson and Olsen, 2006a). While the debate on whether to include 
these costs in life years gained is ongoing, only a few studies have concentrated on the 
empirical estimation of future non-medical costs and their influence on outcomes of 
economic evaluations (Kruse et al., 2012; Manns et al., 2003a; Meltzer, 1997a; Meltzer 
et al., 2000b). These studies consistently found that including non-medical costs in 
economic evaluations increased the incremental cost-effectiveness ratios (ICERs) 
substantially, but that the impact varied with age of patients. 

Estimates of non-medical consumption used in economic evaluation so far have used 
estimates of per capita costs of consumption by age coming from a single cross section 
(Kruse et al., 2012; Manns et al., 2003a; Meltzer, 1997a; Meltzer et al., 2000b) and have 
ignored two issues. First, economies of scale within households were ignored as per 
capita consumption in these studies was calculated by dividing household consumption 
by household size. Economies of scale allow members of larger households to achieve 
the same level of utility with less consumption (Nelson, 1988). Second, as data from a 
single cross section were used, correcting the age profile of consumption for period and 
cohort effects was not possible. Empirical studies on consumption conducted outside 
the context of economic evaluation have shown that life-time household consumption 
patterns are hump-shaped, peaking at middle ages and decreasing afterwards (Alessie 
and Ree, 2009; Fernández-Villaverde and Krueger, 2007). The hump can partly be 
explained by differences in household composition by age after taking take into account 
economies of scale of consumption within households. This implies that prolonging 
the life of a patient living in a multi-person household may have a different impact on 
consumption than doing the same for a patient living in a single-person household. 
Therefore, household size and economies of scale within households are relevant when 
estimating the costs of non-medical consumption resulting of life extension; not doing 
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so leads to an overestimation of the impact of future costs on ICERs for multi-person 
households. However, even after controlling for household size, consumption exhibits 
a (hump-shaped) age pattern. This means that we also have to take the age-pattern 
into account when including non-medical consumption in cost-effectiveness analysis. 
An estimate based on the age distribution of consumption in one particular year might 
not suffice, as consumption can depend on (economic) events in that particular year. 
Similarly, different birth cohorts have different consumption patterns, ceteris paribus 
(Dahlberg and Nahum, 2003). This is relevant, as many health care interventions 
are targeted at specific birth cohorts, which thus might have different age profiles of 
consumption. Consequently, correctly identifying the age pattern means controlling for 
period and cohort effects. This requires datasets with all relevant variables, observed 
over several years. If such data sources are available, identifying an age-period-cohort 
model is not trivial, because age, periods, and cohorts, are linearly dependent. Several 
solutions to this problem have been applied, which always involve relaxing the linear 
dependency between the three variables, by restricting one or more of the effects, 
requiring strong assumptions (Deaton, 1997). Fernández-Villaverde and Krueger 
(Fernández-Villaverde and Krueger, 2007), for instance estimated consumption age 
profiles using a kernel function, while Alessie and Ree (Alessie and Ree, 2009), used 
linear splines for the age and cohort effects and, both studies modelled  period effects 
using dummies for different calendar years or quarters. 

This paper will present estimates of future non-medical costs and relates the estimates 
to the theoretical discussion. We add to the existing literature on future non-medical 
consumption by (i) using state-of-the-art methods to estimate non-medical spending 
patterns while accounting for age, period and cohort effects, (ii) including economies 
of scale within households in these estimates, and (iii) highlighting the consequences 
of including these costs in economic evaluations. As a starting point for our analyses, 
and as a comparator in estimating the impact of including future non-medical costs 
on the ICER, we take an economic evaluation conducted from a societal perspective in 
which future medical costs and productivity gains are already included while excluding 
future non-medical costs. This seems the most relevant and common comparator given 
current practice in cost effectiveness analysis.    

Theoretical model 
To better understand the role of future non-medical costs in economic evaluation and 
the controversies surrounding its inclusion, we will first describe a formal model of 
the decision rules of cost effectiveness adopting a societal perspective. As a starting 
point we will take an intervention (x) that influences quality of life (Q), production (P), 
medical consumption (M) and non-medical consumption (C) in two periods (denoted 
with subscripts 1 and 2). Note that both the direct healthcare investments in x as well as 
the impact of x on other medical spending are included in M. We are interested in the 
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amount i we should spend on x. The impact of the intervention on health, production 
and consumption in period 2 is partly determined by its impact on the probability to 
survive from period 1 to period 2 denoted by S: its impact on the probability to survive from period 1 to period 2 denoted by S:  
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.  

Using a similar welfare economic framework as in equation (3), Meltzer concluded that 
decisions based on cost-effectiveness information are only consistent with welfare 
maximization when all future costs, including non-medical consumption, are included 
(Meltzer, 1997a). However, this also requires that the denominator of Equation (3) 
captures the full benefits of the intervention including the utility derived from leisure 
and non-medical consumption. Whether this is the case is unclear (Meltzer, 1997a). 
For this reason, Nyman has argued that future non-medical costs could be excluded 
from economic evaluations since the related utility gains are not captured either, as 
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quality of life instruments used in economic evaluation are designed to only capture 
health-related utility (Nyman, 2011, 2004a). In response to Nyman, it has been 
suggested that even if quality of life instruments have not been developed to explicitly 
capture the utility related to non-medical consumption it might still be the case that 
some benefits of non-medical consumption are implicitly included (Gandjour, 2006a; 
Lundin and Ramsberg, 2008). Equation (3) can provide us more insight in these 
arguments. First of all, at least some level of consumption is required to stay alive after 
a life prolonging intervention. In other words:  marginal changes in survival through 
the intervention 
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 in Equation (3)). If that level of quality 
of life indeed requires a certain level of non-medical consumption, this should be 
included as costs. Finally, even if the QALY does not fully capture utility derived from 
non-medical consumption, the cost-effectiveness threshold, based on the consumption 
value of health V, might. This value is often derived from  willingness to pay (WTP) 
exercises, and it’s likely that individual based their valuation on the full welfare gains 
with possibly higher V’s  for higher consumption levels, in line with the commonly 
observed positive association between income and WTP for QALY gains (see e.g. 
Bobinac et al., 2010). 

It should be noted that in practice, economic evaluations conducted from a societal 
perspective tend to include changes in productivity (P) associated with the intervention. 
For these costs (or benefits) it is also unknown to what extent the associated utility 
changes are fully captured in QALY gains (Nyman, 2011). When the additional 
production generated by the intervention is taken into account, it seems consistent 
to also include the part of this production that is consumed by the individual itself 
on the cost side. In this paper, we take the position that leaving out real costs and 
benefits (even in a ‘balanced’ way) from an economic evaluation risks welfare lowering 
decisions. Even if the benefits of non-medical consumption are not perfectly reflected 
in the QALY measure, the appropriate response should not be to exclude the real 
societal costs of non-medical consumption to balance the incomplete QALY, as this 
leaves policy makers uninformed about real societal impacts (in terms of costs and 
benefits) of their decisions. Rather the response should be to capture these benefits in 
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another way, as the overall challenge is to provide decision makers with a full account 
of societal impacts, including all costs and all benefits.

In Equation (3), the intervention can also affect the level of consumption through the 
terms In Equation (3), the intervention can also affect the level of consumption through the terms (*!

(&
 and (*"
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∆+4567

  

 QALYs gained over the lifetime and ∆𝑛𝑛𝑛𝑛𝑛𝑛  

disadvantages (Eilers and Marx, 1996).   Our model is: 

𝑙𝑙𝑙𝑙(ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎) + 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ	𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) + 𝛾𝛾 ∙ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜀𝜀	, (4) 

 

of covariates as equation 4; resulting in the following specification: 

𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1) = exp	(𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎)+𝑓𝑓)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ	𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦*+𝛾𝛾∙𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦+𝜀𝜀)	
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 for the total discounted 
incremental costs of non-medical consumption due to increases in survival.

Methods
Data 
Data from the Dutch budget survey (Budgetonderzoek) from 1978 to 2004 were used to 
estimate non-medical consumption per capita by age. The budget survey was a yearly 
cross-sectional survey collected among the non-institutionalized population of the 
Netherlands which ran from 1978 until 2004 (while the survey was not conducted in 
2001 and 2002) and was coordinated by Statistics Netherlands.2 The budget survey data 
are publicly available from http://www.dans.knaw.nl. The survey included expenditures 
on a detailed and comprehensive set of consumption categories (e.g. consumption 
related to eating, transport, housing, vacation but also consumption related to hobbies) 

2   In the years 2003 and 2004 the survey methodology differed slightly in the way that the age 
of respondents above 80 years old was categorized as one category. We assumed an average age of 
82.5 for these years based on the average age of those over 80 in the previous five surveys. 
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as well as information on income, family composition and background information on 
all members of the household. Households took part in the survey for an entire year and 
expenditures were monitored using diaries which were collected by interviewers on a 
regular basis during the year. Consumption on both durable as well as non-durable goods 
was tracked with the use of these diaries. The consumption data includes value added 
taxes on consumer goods. Such taxes are transferred back through the state to society, 
and could therefore be seen as redistributions of wealth rather than costs (although 
redistribution is not costless). Therefore, the true costs of non-medical consumption 
may be somewhat overestimated in our study. The sample consists of households who 
answered all the necessary questions, with a household breadwinner age of 18 or higher, 
which resulted in a sample size of 56,566 households with an average household size of 
2.78 persons and annual household costs of non-medical consumption of 11,288 euro 
(2017 prices). For our purposes, we excluded all consumption related to medical care. 
In the Netherlands, health care insurance is compulsory and out-of-pocket spending on 
medical care is low (Schäfer et al., 2010). Using consumer price indices from Statistics 
Netherlands we adjusted the data to 2017 prices.

Figure 1 displays average non-medical household consumption by age, household 
size by age, log of non-medical consumption by survey year, and log of non-medical 
consumption by birth year. The average non-medical household consumption by age 
(top left) illustrates that consumption increases with age until the age of roughly 40-50, 
after which it decreases. This pattern is in line with previously published research on 
the relationship between age and non-medical consumption (Alessie and Ree, 2009; 
Fernández-Villaverde and Krueger, 2007). Household size by age (top right) shows a 
plateau in the ages 35-35 and then decreases afterwards. The bottom part of the graph 
illustrates increasing trends of non-medical consumption both by year of survey and 
by birth year. For household size we see strong cohort patterns, with household sizes 
peaking for those born in the 1940’s.
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Figure 1: Average annual household consumption in 2020 prices (upper left graph) and average 
household size (upper right graph) by age (average age of the adults in the household; age 
categorized in years as calculated from the Budget survey from the Netherlands for the years 
1974 to 2004. Average annual household consumption by year of survey (lower left graph), and 
average household consumption by birth year (lower right graph).

Model specification
Our approach consisted of two steps that deal with the two main empirical challenges: 
the accurate estimation of an age profile of consumption, correcting for calendar 
year and cohort effects, and the correction for household economies of scale. In the 
first step, we estimated per capita consumption stratified by age as this allows us to 
identify the additional consumption cost as a result of living longer for one household 
equivalent. Our data set spans a large number of years, which allowed us to separate 
cohort effects from age and period effects using an age-period-cohort (APC) model. We 
used cubic P-splines for age and birth year. P-splines are a combination of B-splines 
and penalized regression and offer a flexible alternative to both dummy variables and 
polynomial functions while not suffering their disadvantages (Eilers and Marx, 1996).   
Our model is:
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where denotes annual non-medical consumption per household equivalent. To 
translate household consumption into per capita consumption we used the OECD-
modified equivalence scale (Hagenaars et al., 1994b). The scale assigns a weighing of 1 
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to the first adult household member, 0.5 to each additional adult and 0.3 to each person 
under 14 years of age. is the smooth function of age with modeled using P-splines; 
f(birth year) the smooth function of birth year modeled using P-splines; γ a vector 
of coefficients that capture the differences between survey years; ε and  is a normally 
distributed error term. 

We used cubic P-splines for two reasons. First, we expected consumption to be a 
smooth function of age and of birth year. The disadvantage of dummy variables in 
such a case is that the age gradient would be irregular. On the other hand, a polynomial 
function might be too restrictive, and values for high ages can strongly influence the fit 
for lower ages (and vice versa). Because we did not necessarily expect macroeconomic 
shocks on consumption to be smooth functions of time, we included year dummies for 
the period effects. Second, a common problem with APC models estimated on repeated 
cross sectional data is that age, birth year, and period are not separately identified (as 
age is a linear function of period and cohort). Splines are nonlinear transformations of 
age and birth year, so that the variables are no longer perfectly collinear and the model 
can be identified. Age-period-cohort models, based on splines, have been estimated 
mostly in the context of mortality rates (Alkema and New, 2014; Clements et al., 2005; 
Jiang and Carriere, 2014). 

Cubic P-splines are estimated by first defining a large number of equally-spaced cubic 
B-spline functions over the age interval. B-splines are polynomial functions that have 
a non-zero value only within a specified range. Any linear combination of the basis 
cubic spline functions will result in a smooth function with a second-order derivative 
that is continuous at the joining points. The drawback of B-splines and other forms of 
local regression is that it is difficult to determine the number of knots and spacing of 
the basis cubic spline functions. As a solution to this problem, P-splines use a relatively 
large number of evenly spaced B-splines and put a penalty on the difference between the 
coefficients of adjacent B-spline functions. In our analyses, we used 10 evenly spaced 
cubic B-splines for each smooth. A smoothing parameter determines the influence of the 
penalty in the estimation: the stronger the penalty, the smoother the curve. The optimal 
smoothing parameters in our analysis were found by minimizing the Aikaike Information 
Criterion (AIC). The model was fitted using iteratively reweighted least squares.

The second step in order to estimate the non-medical consumption per capita caused 
by preventing the death of an adult for an average household in the general population, 
is modeling adult household composition. Since we used the OECD-modified 
equivalence scale we predicted the proportion of households with more than one adult, 
as additional consumption due to prolonging life differs whether life is prolonged in a 
multi-person household or in a single-person household. To estimate this proportion, 
we used the probability of a household having more than 1 adult as a dependent variable 
and estimated a binomial logistic regression model. The model specification followed 
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a similar choice of covariates as equation 4; resulting in the following specification:
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1+exp	(𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎)+𝑓𝑓)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ	𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦*+𝛾𝛾∙𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦+𝜀𝜀)		  (5) 

 

 

annual non-medical consumption by age caused by preventing a death an average household by 

combining equations 1 and 2, can be calculated as: 

𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎) = 𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎) ∙ ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎) ∙ 0.5 + (1 − 𝑝𝑝[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎]) ∙

ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎)	                                                              (6) 

ICER calculations 

We estimated ∆"#$
∆%&'()

  

 costs using the following equation:  

∆123
∆+4567

= ∑ L(4MNO4)×123(4MNO4)		.+
∑ L(4MNO4)×+(4MNO4)+

         (7) 

Where 𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎)	 

is the number of years lived at age 𝑎𝑎 and 𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎)  is the average 
quality of life at age a. Estimates of non-medical consumption by age were taken from 
predictions from the regression models as denoted in equation (6). Predictions for 
non-medical consumption were retransformed taking into account the fact that an 
OLS on the log scale underestimates the mean on the normal scale (Manning and 
Mullahy, 2001). Estimates of L(age) and Q(age) were taken from a recent study that 
estimated the quality of life and mortality in the Netherlands (Gheorghe et al., 2014). In 
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accordance with Dutch guidelines, QALYs were discounted with 1.5% annually and costs 
with 4% annually (voor Zorgverzekeringen, 2006). Costs were expressed in 2017 prices.

In our main prediction, we fixed the period effect to that estimated for the most 
recent year in the data (2004), and the birth year equal to the actual birth year of the 
individuals with age a in 2004 when predicting costs by age. Thus, if we predicted 
remaining lifetime non-medical consumption for 30-year olds in 2004, we set the birth 
year equal to 1974 in our predictions of the age profile. This may be viewed as relevant 
for an intervention that is targeted to a specific birth cohort in the current calendar 
year, for example screening programs at a certain age. 

In sensitivity analyses, we relaxed various assumptions. First of all, using the estimated 
regression models from equations (4) and (5) we ignored cohort effects by not fixing 
the birth-year but letting the birth-year increase as age increases when predicting the 
age profile. This way, we use the regression estimates to create a 2004 cross-section 
consisting of different birth cohorts. Second, we estimated equations (4) and (5) 
also without cohort effects and without period effects (results of regression models 
are displayed in the Appendix, Figures 1 and 2) and recalculated the ICERs. Third, 
to explore the influence of household equivalence scales we also calculated ICERs by 
using results from a regression model in which per capita consumption was simply 
calculated by dividing household consumption by household size (thus not using 
equivalence scales and without predictions of household size). We also performed 
various sensitivity analyses with respect to discount rates used in other countries. 
Finally, in order to mimic previous studies, we made predictions from a regression 
model fitted using data from just one cross-section (2004 data only) where per capita 
consumption was calculated by dividing household consumption by household size. 

Results
Figure 2, displays the included smooth functions describing the age and cohort effects 
and the estimated coefficients for the period dummies. The left column displays the 
parameter's contribution to the non-medical consumption estimates and the right 
column displays the smooths and parametric variables used in the logistic model 
estimating the probability of a household having more than one adult. The age 
pattern for consumption shows a peak round about 55 and decreases thereafter, while 
for household size we see a decrease after the age of 40. Our estimates show cohort 
and period effects for both consumption and household size. Household size and 
consumption increase for cohorts births up until roughly 1945 and thereafter decrease. 
Period effects show an upward trend for consumption but generally a downward trend 
for household size. 
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Figure 2: Partial effects of fitted smooths and parameter estimates from the consumption 
model (left column) and the partial effect of the probability of having more than one adult in 
the household (right column) with 95% confidence intervals and a random sample of size 100 of 
partial residuals. Top row displays the of age on consumption, middle row displays the effect of 
birth year and the bottom row displays the effect of year of survey. 

In Figure 3 we present the first steps of our main findings (equations 1 and 2). We 
predict the age profile of annual non-medical consumption per household equivalent 
and the probability of a household having more than one adult in a hypothetical cohort 
with a birth year of 1974 and period effect fixed at 2004 (straight lines). To assess the 
effect of adjusting for cohort effects we also display age profiles fixing the period effect 
to 2004 but letting the birth year vary from 1974 (2004 minus 30) to 1919 (2004-85) 
parallel with age (the dotted lines). 
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Figure 3: Predictions of equivalence scaled consumption (left graph) with adjustment for cohort 
effects and without adjustment for cohort effects, and predicted probability of a household 
having more than one adult (right graph) with 95% prediction intervals. Lines indicates 
predictions with our main model specification accounting for cohort effects, dotted lines indicate 
predictions without accounting for cohort effects.

For consumption, the impact of adjusting for cohort effects is most noticeable around 
age 60 where consumption is lower when adjusting for cohort effects. For household 
size, the impact of cohort effects is most prominent at middle age where the probability 
that a household is comprised of more than one person is much lower when we take 
into account cohort effect. 

In figure 4 we show the impact of including costs of non-medical consumption on 
the ICER.  We show predictions for our main specification for an average household 
adjusting for cohort effects (the birth-year is fixed when we predict an age profile). The 
impact on the ICER is compared to predictions in which we do not control for cohort 
effects or ignore economies of scale within households (here we use predictions from a 
regression in which we define one household equivalent of consumption as household 
consumption divided by household size). In the main prediction, the impact of including 
non-medical consumption on the ICER increases by age even though household 
equivalent consumption decreases with age. This is due to the fact that at older age 
people are more often single and their quality of life is lower. When not accounting 
for economies of scale within the household the impact on the ICER is much larger. 
While adjusting for cohort effects results in lower consumption household equivalent 
age profiles it also results in more single-person households which increases the non-
medical costs of life extension. On balance these effects more or less cancel each other 
out and thus adjusting for cohort effects only has a small impact on the ICER.
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Figure 4: The impact of non-medical consumption costs on the ICER of saving a life by age 
under different prediction specifications.

In Table 1 we show results of the impact of including non-medical consumption on the 
ICER, by age and under different assumptions. The different sensitivity analyses do 
not alter the main conclusions and are in line with the results presented in Figures 3 
and 4. Even though household equivalent consumption decreases with age, the impact 
on the ICER increases by age which is due to the fact that both average household size 
and quality of life decrease at higher ages. Not adjusting for cohort effects only has a 
limited impact on the ICER. Not including period effects in our model specification 
also has a limited impact on the ICER for the same reason. However, not accounting 
for economies of scale within households, resulted in a (strong) overestimation of 
consumption. This is also the main reason that our main predictions are much lower 
than those based on predictions using 2004 data only without adjusting for household 
economies of scale; as is currently done in economic evaluations. Finally, the effects of 
different discounting assumptions are shown, and compared to our main model, the 
effects are larger in the younger ages and converges with the main prediction model 
when the expected remaining life years decreases. 
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Model specification
Prediction settings

Age

30 45 65 75 85

Main model specification 

Average household
Birth year fixed when predicting age profiles 
Discount rates: 4% cost and 1.5% QALYs

7,000 8,300 9,600 10,400 10,900

Average household
Ignoring cohort effects when predicting age 
profiles
Discount rates: 4% cost and 1.5% QALYs

7,000 8,200 9,700 10,500 10,900

Single household
Birth year fixed when predicting age profiles 
Discount rates: 4% cost and 1.5% QALYs

10,400 12,300 14,000 14,200 14,100

Average household
Birth year fixed when predicting age profiles 
Discount rates: 3% cost and 3% QALYs

11,400 12,100 12,000 12,100 11,800

Average household
Birth year fixed when predicting age profiles 
Discount rates: 0% cost and 0% QALYs

11,700 12,100 11,900 12,000 11,700

W/o equivalence scale*

Birth year fixed when predicting age profiles 
Discount rates: 4% cost and 1.5% QALYs

7,600 9,400 11,700 11,900 11,800

Alternative model w/o cohort variables**

Average household
Discount rates: 4% cost and 1.5% QALYs

6,900 8,200 9,800 10,500 10,800

Alternative model w/o period variables***

Average household
Birth year fixed when predicting age profiles 
Discount rates: 4% cost and 1.5% QALYs

39,400 28,500 18,600 15,300 11,100

Predictions only using data from 2004****

Average household
Discount rates: 4% cost and 1.5% QALYs

6,800 8,000 9,800 10,600 11,300

*Same regression model specification as in equation (4) but the dependent variable is calculated 
as household consumption divided by household size. As household economies of scale are 
ignored there is no need to use predictions of household size.
**Same regression model specification as in equations (4) and (5) but without parameters to 
model the cohort effects
***Same regression model specification as in equations (4) and (5) but without parameters to 
model the period effects
**** The dependent variable is calculated as household consumption divided by household size. 
As household economies of scale are ignored there is no need to use predictions of household size. 
As data from only 1 cross-section is used, period and cohort effects are not modelled.
Estimated smooth function and estimated parametric parameters for all alternate model 
specifications are available in the appendix 
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Conclusion and discussion
There is an ongoing theoretical debate on whether to include future non-medical costs 
in economic evaluations in health care. In this paper, we provided empirical evidence 
regarding the impact of including such costs on the ICER. In doing so, we explicitly 
addressed two issues that thus far were ignored in the scarce empirical literature on 
future non-medical costs. First, we have used a very long series of repeated cross sections 
data, which allowed us to identify the age profile by correcting for period- and cohort 
effects. Second, we have accounted for the fact that saving a life can have a different 
impact on consumption depending on household size, because of economies of scale.

Our findings provide three important insights. First, we have confirmed the findings 
from previous studies that including the costs of future non-medical consumption can 
have a substantial impact on the ICER of life-prolonging interventions and the impact 
increases with age (Kruse et al., 2012; Manns et al., 2003a; Meltzer, 1997a; Meltzer 
et al., 2000b). This means that, regardless of whether the benefits of non-medical 
consumption are perfectly reflected in the QALY measure, non-medical consumption 
costs are non-trivial and are important societal costs of medical interventions which 
should be part of a full welfare economic analysis, and about which policy makers should 
be informed. Second, accounting for economies of scale within households is important 
and lowers the impact of including future non-medical costs on the ICER because if life 
is prolonged in a multi-person household this results in lower additional consumption 
than in a single-person household. However, to be able to account for household 
economies of scale one also needs predictions of average household size by age. Third, 
the influence of correcting for possible cohort and period effects on consumption cost 
estimates was limited in our study. The reason for this is that cohort and period effects 
in consumption and household size had opposing effects on the ICER.  

Some limitations of this study need noting. A first limitation is that, like most 
consumption studies (e.g. (Alessie and Ree, 2009; Domeij and Johannesson, 2006; 
Fernández-Villaverde and Krueger, 2007)), we had to rely on repeated cross section 
data of consumption. This means that, although we have used a very flexible approach 
based on splines, we still have had to make some implicit assumption to separately 
identify age, period and cohort effect. An important restriction might be that, in our 
empirical model, these effects are additive and separable. It could be that for instance 
macroeconomic events have a different impact on different age groups. An example is 
the financial crisis that seems to have had a different impact on the wealth holding of 
younger and older cohorts, which in turn affects consumption across the whole lifecycle. 
It should be noted, however, that our estimates of the age profile of consumption are in 
line with previous empirical research (Alessie and Ree, 2009; Domeij and Johannesson, 
2006; Fernández-Villaverde and Krueger, 2007). However, compared to the study 
by Allesie and Ree (Alessie and Ree, 2009), who used data from the same surveys we 
estimated that younger birth cohorts consume less. Second, in this study, we have 
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focused only on consumption, not on production or income. We assumed that existing 
ICERs already include the effects on productivity, and showed how also including 
non-medical consumption would affect the ratio. Third, when assessing the impact 
of including non-medical costs we used population averages for consumption as well 
population averages for mortality and quality of life. As such, our estimates should be 
interpreted with caution whenever a target population of an actual intervention deviates 
from the average population. The impact of such deviations will probably be most 
influenced by differences (compared to population average) in mortality and quality 
of life because of the intervention. Hence, we believe our estimates of non-medical 
consumption are still informative for actual economic evaluations (and likely better than 
current zero estimates). Fourth, in our empirical application we assumed that health 
care interventions have no effect on lifetime consumption other than through increased 
survival. However, there are at least three additional channels through which the 
intervention might have an impact on consumption. First, the intervention might affect 
out-of-pocket spending on medical care. In our application, we have focused solely on 
the additional impact of including non-medical consumption to an evaluation, assuming 
the effects on medical consumption and productivity are already included. If the effect 
of the intervention on medical consumption is indeed included in the ICER, the effect 
of the out-of-pocket medical spending on non-medical consumption should be taken 
into account as well to prevent double counting (although in the Netherlands this is a 
minor issue, due to low out-of-pocket payments). Second, the intervention might have a 
positive effect on human capital (productivity) and thus increase the lifetime resources 
that can be used for consumption (although some of this might be mitigated by social 
insurance or other income transfers). Again, if the productivity gains are included, the 
income effects on consumption should be as well. The third channel through which the 
intervention might have an impact on consumption is through the relation between the 
utility of consumption and health. Health state dependence of the utility of consumption 
is often suggested as an explanation for the declining consumption pattern at older 
ages, such as the one we, like many other empirical studies, have found  (Finkelstein 
et al., 2009). If the marginal utility of consumption is lower in poor health, that means 
that individuals tend to shift their lifetime consumption towards the younger years, 
where they can expect to be in better health. Likewise, if an intervention affects health 
in different life years, individuals might reallocate consumption across their remaining 
life or might increase overall consumption at the costs of lower bequests. Although 
theoretically appealing, actually identifying health state dependence is difficult and the 
direction of the effect has been found to be ambiguous and may likely depend on the 
type of health state change (Finkelstein et al., 2009; Gyrd-Hansen, 2016). Given this 
ambiguity, we have focused on the age pattern of consumption without adjusting for 
health status as we were interested in consumption patterns that conditional on age are 
not altered by the intervention under investigation. Future research could focus on the 
impact of healthcare interventions on non-medical consumption patterns conditional 
on being alive. Cost effectiveness studies might actually be able to provide valuable 
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insights into the question of health-state dependence, as often intervention are randomly 
assigned to individuals with similar individual with the same health condition as control 
group. Extending the data collection in those studies to include consumption data could 
thus be valuable. Another, less data intensive, way to quantify the impact of health on 
non-medical consumption for the purpose of treatment evaluation could be to follow the 
approach already used for medical consumption and exploit the relation with time to 
death. As health losses and health care consumption are usually clustered at the end of 
life (Gheorghe et al., 2016a; Payne et al., 2007), it might well be the case that non-medical 
consumption strongly decreases at the end of life to be shifted into medical consumption.

Although it is common practice not to include costs of non-medical consumption in 
cost effectiveness analysis, a theoretical foundation for this practice is lacking, and the 
practice is not in line with common proposals (Meltzer, 1997a; Sanders et al., 2016). 
A possible explanation for this might be that guidelines for cost effectiveness analysis 
typically do not pay (much) attention to costs of non-medical consumption (possibly 
due to the lack of theoretical consensus on its inclusion),  while they do often pay more 
attention to measuring and valuing production gains (Krol et al., 2013). Economic 
evaluations that do include future non-medical consumption often use data from a 
single cross-sectional survey and do not adjust for household economies of scale 
(Kruse et al., 2012; Manns et al., 2003a; Meltzer, 2012). Such estimates are clearly 
different from our main estimates and likely constitute overestimations of real non-
medical consumption due to life prolonging interventions. Important in the theoretical 
debate regarding the in- or exclusion of future non-medical costs is the extent to which 
the benefits of non-medical consumption are captured in the QALY gains of life-
prolonging interventions. This can be captured in terms of functioning (i.e. being in a 
particular health state) or in the valuation of such states (see e.g. (Tilling et al., 2010)). 
If the benefits from non-medical consumption are not captured in QALYs, it could be 
considered inconsistent to include the related cost. While this inconsistency argument 
is valid and worth to be studied empirically, we note two things. First, current practice 
in economic evaluations taking a societal perspective is to include productivity gains, 
for which it is also unknown to what extent the costs and benefits (e.g. in terms of 
sacrificed leisure time) are fully captured in QALY gains (Nyman, 2011). Hence, 
excluding future non-medical costs on the same grounds could be seen as inconsistent 
in itself. Second, using our theoretical model we indicated that at least part of the utility 
of non-medical consumption is included in economic evaluations. More specifically, 
with regard to the theoretical debate it is important to empirically investigate whether 
benefits of non-medical consumption are considered when people value QALY gains 
using WTP exercises. More generally, if the current economic evaluation framework for 
health interventions does not fully capture the benefits of non-medical consumption, 
other ways of capturing them could be sought. This seems a more sensible response 
than leaving out real costs to account for a too narrow measurement of benefits.  If 
these costs are to be included, then the estimates needs to be reliable. 
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The debate about the inclusion of non-medical consumption costs is still ongoing, but 
there are good reasons to argue that the inclusion of these costs is important. This 
also means that we need sound estimates of these costs, which are largely lacking. We 
have contributed by presenting estimates for The Netherlands, based on a longitudinal 
dataset and an analysis that takes age-period-cohort effects and the influence of 
household economies of scale into account. Our findings not only show that it is 
important to take the non-medical consumption costs of medical interventions into 
account, but also that without properly taking economies of scale into account these 
societal costs are misrepresented.
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Abstract
A consensus has been reached in the Netherlands that future medical costs should 
be included in economic evaluations. Furthermore, internationally, there is the 
recognition that in countries that adopt a societal perspective estimates of future non-
medical consumption are relevant for decision makers as much as production gains 
are. The aims of this paper are twofold: To update the tool ‘Practical Application to 
Include future Disease costs (PAID 1.1)’, based on 2013 data, for the estimation of 
future unrelated medical costs and introduce future non-medical consumption costs; 
further standardizing and facilitating the inclusion of future costs, and to demonstrate 
how to use the tool in practice; showing the impact of including future unrelated 
medical costs and future non-medical consumption in a case-study where a life is 
hypothetically saved at different ages and two additional cases where published studies 
are updated by  including future costs. Using the latest published Cost of Illness (COI) 
data from the year 2017, we model future unrelated medical costs as a function of 
age, gender, and time to death - which varies per disease. The Household Survey from 
Centraal Bureau Statistiek is used to estimate future non-medical consumption by age. 
The updated Incremental Cost-Effectiveness Ratios (ICERs) from the case-studies 
show that including future costs, can have a substantial effect on the ICER, possibly 
affecting choices made by decision makers. This paper improves upon previous work 
and provides the first tool for the inclusion of future non-medical consumption in the 
Netherlands.
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Introduction
While cost-utility analysis (CUA) is increasingly used to assess whether new 
interventions in healthcare yield sufficient value for money (Garber and Sculpher, 2011), 
there are still several methodological issues that require attention. One such issue is the 
extent to which future costs should be included in CUA (de Vries et al., 2018; Rappange 
et al., 2008), where future costs are costs that arise from extending individuals’ lives 
and include all costs in the life-years gained (LYG) from an intervention. They are 
typically divided into medical (relevant for both societal and healthcare perspectives) 
and non-medical costs (only relevant for the societal perspective). Non-medical costs 
here refer to consumption (e.g. costs for housing and food) minus production (benefits 
from additional work in LYG). For medical costs, a distinction is made between related 
(e.g. costs for check-ups by a cardiologist after a heart-attack) and unrelated costs (e.g. 
costs for treating pneumonia after said heart-attack). Future related medical costs are 
typically included in CUA. However, including future unrelated medical costs has been 
frequently debated. Early in the debate, the extent to which future costs should be 
included was discussed using theoretical models aiming  to optimize societal welfare. 
This led to multiple views on the topic (Garber and Phelps, 1997a; Meltzer, 1997b), the 
most compelling being that all future costs and benefits should be considered (Meltzer, 
1997b). Later, the discussion was extended with the more practical view that since 
future unrelated medical consumption benefits are generally included, the costs thereof 
should be included to be consistent (Nyman, 2004b). This argument was also used to 
state that future non-medical costs should not be included, arguing that the benefits 
thereof are not systematically included in the QALY (Nyman, 2011). However, there 
are different views on the extent to which the benefits from non-medical consumption 
and production are actually included (Gandjour, 2006b; Meltzer, 2012; Richardson 
and Olsen, 2006b), and there is so far no compelling (empirical) evidence regarding 
this (de Vries et al., 2018). The inclusion of future unrelated medical costs in CUA is 
now required in the Netherlands (Zorginstituut Nederland, 2016a) and recommended 
in the United States (Sanders et al., 2016). While production in LYG is often considered 
part of productivity costs in CUA using a societal perspective, the inclusion of future 
non-medical consumption costs is only recommended in the United States (Sanders 
et al., 2016). 

To facilitate the inclusion of future unrelated medical costs in the Netherlands, the 
Practical Application to Include future Disease costs (PAID 1.0) was introduced in 
2011(van Baal et al., 2011b) and updated in 2016 (PAID 1.1). This tool provides age and 
gender specific average medical spending estimates, which can be specified to exclude 
the costs of specific providers and diseases. Estimates are based on a conceptual model 
that combines various streams of literature. Costs by age are corrected for ‘time-to-
death’ by estimating costs separately for survivors and decedents. ‘Time to death’ 
refers to the finding that health care costs are often higher in the last period of life 
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(Zweifel et al., 1999a). Since older people are more likely to die, not correcting for this 
leads to an overestimation of the impact of age on medical expenditures (Zweifel et al., 
1999a) and ignores the fact that saving a life at a given age leads to the postponement 
of this high-cost last period of life (Gandjour and Lauterbach, 2005). Future related 
medical costs of specific diseases already included in the analysis can be excluded to 
prevent double counting. 

This paper provides an extensive update of PAID, to PAID 3.0.  First, it uses most 
recent available COI data (2017). Second, and the largest difference from PAID 1.1, 
future costs of non-medical consumption are included. We provide guidance on how 
to use PAID 3 supported by three case-studies. PAID 3.0 can be used free of charge 
via https://imta.shinyapps.io/PAID3/ and consists of a webapp made in Shiny in R.. 

Methods
As stated by Meltzer (Meltzer, 1997b), if the aim of economic evaluations is to maximize 
social welfare given available resources, all costs following from an intervention should 
be considered. This implies that both medical costs, related and unrelated, and non-
medical costs should be included.  The Incremental Cost-Effectiveness Ratio (ICER) 
including all costs can be written as follows: Incremental Cost-Effectiveness Ratio (ICER) including all costs can be written as follows:  

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 		

∆	[𝐿𝐿𝐿𝐿	 × (𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃)]
∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+	
∆𝐿𝐿𝐿𝐿	 × 𝑈𝑈𝑈𝑈𝑈𝑈
∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+	
∆𝐿𝐿𝐿𝐿	 × 	𝑁𝑁𝑁𝑁𝑁𝑁
∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

 
 (eq. 1) 

 

  

unrelated medical and non-medical consumption 
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for an individual aged a dying at age n, can be written as shown in equation 2: 
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Where:

•	 LY =	 life years
•	 RMC = 	 related medical costs
•	 PC =	 productivity costs
•	 UMC = 	 unrelated medical costs
•	 NMC =	 costs of non-medical consumption

Splitting the ICER equation into three ratios distinguishes the elements that are 
currently included in economic evaluation, related medical costs and productivity costs, 
from the additional costs that are not usually considered, future unrelated medical 
costs and future costs of non-medical consumption. Equation (1) also illustrates that 
differences in unrelated medical costs and future costs of non-medical consumption 
are purely the result of differences in survival. In our estimation of the ICER, in which 
future costs are included, we use per capita medical and non-medical consumption 
cost patterns by age as a starting point.
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Lifetime costs of unrelated medical and non-medical consumption 
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Where: 

•	 a = 	 age in years
•	 n = 	 age at death
•	 dc =	 decedent costs (healthcare costs in last year of life) 
•	 sc = 	 survivor costs (healthcare costs in other years)
•	 nmc = 	 average costs of non medical consumption   
•	 i = 		 index of unrelated diseases

Unrelated medical costs
Rather than taking a bottom-up approach and predicting the risk of all unrelated 
diseases and connecting these to costs, we take a top-down approach and use total per 
capita healthcare costs by age and gender as a starting point for estimating unrelated 
medical costs. Using methods identical to those of van Baal and colleagues (van Baal 
et al., 2011b), we first break down total healthcare costs by disease, enabling the 
exclusion of costs for diseases already included in the analysis. Although we explain 
these methods in the ensuing text, for a more detailed description we refer to the 
original paper by van Baal and colleagues (van Baal et al., 2011b). Disease-specific 
per capita healthcare costs were estimated using data from the Dutch COI from 2017 
(Rijksinstituut voor Volksgezondheid en Milieu (RIVM), n.d.). Rather than using 
the System of Health Accounts (SHA) (World Health Organisation and European 
Commission; Organisation for Economic Co-operation and Development, 2011) 
perspective (used in PAID 1.1) we use the classification from the National Institute 
for Public Health and the Environment (RIVM). Although the SHA is internationally 
recognized, the RIVM definition includes imore healthcare costs, such as international 
care. While average per capita spending hardly changed between 2013 and 2017, age 
and disease patterns have changed. For example, between 2013 and 2017, costs of 
psychological disorders increased , 14% when using 2017 prices far more than costs in 
other disease categories such as diseases of the central nervous system (2% when using 
2017 prices). 

COI data are specified by gender and 21 age-classes, which we interpolated using cubic 
splines to obtain age-year-specific per capita expenditures, and are calculated from 
population spending totals. The data are further attributed to 100 disease categories 



92

CHAPTER 5

and 11 healthcare provider categories (overview in Appendix A). These disease 
categories include ‘Not disease related’ and ‘Not allocated’, meaning that well-care 
is also included in our definition of unrelated medical costs. As healthcare costs are 
strongly determined by both age and time to death (Wong et al., 2011b), individual 
lifetime healthcare costs can be estimated as shown in the first two parts of equation 2. 
To obtain estimates for survivors and decedents, average per capita expenditures are 
decomposed into one part attributable to those dying and one part to those surviving at 
that particular age, assuming average costs are a weighted average of costs for survivors 
and decedents (age and gender indices are left out here for notational purposes): 
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Where:

•	 aci = 	 average per capita healthcare expenditure for disease i
•	 m = 	 mortality rate

Disease-specific costs for survivors and decedents can be estimated using equation 
4, using mortality rates and the gender- and age-dependent ratio between costs for 
decedents and survivors (ri):  	
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Mortality rates from 2017 were obtained from Statistics Netherlands (Central Bureau 
for Statistics (CBS), n.d.). We used the same disease-specific ratios for costs between 
decedents and survivors for the hospital sector e as used in previous versions of PAID 
For ambulatory healthcare, drugs and appliances, and nursing and residential care, 
ratios from 1999 based on total expenditures were used (Polder et al., 2006). To obtain 
disease-specific ratios for these providers, we exponentiated disease-specific hospital 
ratios by a scaling constant describing the relation between costs for decedents and 
survivors between hospital care and other providers (see Appendix C). For providers 
for which no ratios were available we assumed that costs for decedents were equal to 
costs for survivors, as it is predominantly in hospitals that differences in survivor and 
decedent costs are observed (de Meijer et al., 2011; Wong et al., 2011b).
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Non-medical consumption
To estimate costs of non-medical consumption by age we used data from the cross-
sectional Dutch Household Consumption survey from 2004 adjusted to 2017 price-
levels using consumer price indices from Statistics Netherlands. In previous literature, 
economies of scale within households have been found to be important when estimating 
non-medical consumption (Alessie and Ree, 2009; Kellerborg et al., n.d.), implying lower 
per person consumption costs when household size is larger. For instance, spending on 
housing can be divided amongst more people when household size is larger, however 
the utility obtained from housing is likely to be the same whether someone lives on their 
own or not.  This has important implications for estimating future costs of non-medical 
consumption, as preventing a death in a single-person household will result in more 
future non-medical consumption than preventing a death in a multi-person household 
(Nelson, 1988). To estimate costs of non-medical consumption for an average household 
by age, we fit two generalized additive models using penalized B-splines on age. The 
first model estimates annual consumption per household equivalent. Consumption 
per household equivalent is calculated from household consumption using the OECD 
modified equivalence scale (Hagenaars et al., 1994a). The OECD modified equivalence-
scale assigns a weighting factor of .5 to each additional adult household member and 0.3 
to each child in a multi-person household. The second model estimates the probability 
of a household having more than one adult; we are interested in making predictions 
for an average household. Using this equivalence scale implies that preventing a death 
in a single person household results in twice as much non-medical consumption as 
compared to a multi-person household with two adults. Details on these models and 
testing of assumptions can be found elsewhere (Kellerborg et al., n.d.). The models are 
used to estimate average annual non-medical consumption by age of preventing a death 
in an average household as in Equation 5: 
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gender- and age-dependent ratio between costs for decedents and survivors (ri):    
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(eq. 4) 

average annual non-medical consumption by age of preventing a death in an average household as in 

Equation 5:   

 

 𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎) = [ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎) × ℎ(𝑎𝑎) × 𝑤𝑤] + [ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎) × H1 − ℎ(𝑎𝑎)I] 

 

(eq. 5) 

Where:

•	 h = probabilitity of household having >1 adult	
•	 ℎℎ 𝑒𝑞𝑢𝑖𝑣 = annual non-medical consumption per household equivalent
•	 w = weight of deceased household member, .5 for and adult and .3 for a child

Case-studies
We demonstrate the impact of including future costs on the ICER via three case-
studies. Benefits are discounted at 1.5% per year and costs at 4% per year, in adherence 
with Dutch guidelines (Zorginstituut Nederland, 2016a). For the first case-study a life 
is hypothetically saved at ages 0-100, while in the second and third case studies we 
replicate survival curves from previous studies. In the first case-study life-tables for 
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estimating life-expectancy at all ages are used and combined with quality of life (QoL) 
data from Gheorghe and colleagues (Gheorghe et al., 2014). 

For the second case-study, we replicated survival curves from a previously published 
cost-effectiveness study on oxaliplatin plus fluoropyrimidines versus fluoropyrimidines-
only as adjuvant treatment of stage III colon cancer (Van Gils et al., 2013), wherein 
oxaliplatin showed an incremental QALY gain of 1.02 and 0.68 LYG, incremental costs 
of €9,961, and a corresponding ICER of €9,766. The sample consisted of patients 
previously diagnosed with stage 3 colon cancer whom where randomized to either 
treatment or control groups. The median age of patients was 60  years. This study 
is then updated by including estimates of future medical costs, after excluding costs 
related to colon cancer, and including future non-medical consumption. 

For the third case-study, we used the results from a clinical trial assessing survival of 
pembrolizumab monotherapy compared to platinum-based chemotherapy in a group 
of previously untreated patients with locally advanced or metastatic non-small-cell 
lungcancer (Mok et al., 2019).  The paper from which the survival curves are extracted, 
does not perform a CEA, and therefore there is no ‘baseline’ ICER or QALY gains. In 
this clinical trial the median age at baseline was 64 years of age and and 71 percent 
of patients were male. This case-study demonstrates how to use PAID when survival 
is short. We recommend using estimates of living one year longer when studies have 
a relatively short time-horizon (< 5 years as rule of thumb), especially when survival 
between the new treatment and comparator are highly different in the first study-
year. In that case, using decedent costs would create large differences in costs at 
baseline between the new treatment and the comparator for unrelated diseases. This is 
implausible as it implies a different past trajectory of costs for the same person before 
getting the treatment and conflicts with the definition of unrelated medical costs. Costs 
for living one year longer, c(a,g), can be calculated as follows:Costs for living one year longer,	𝑐𝑐(𝑎𝑎, 𝑔𝑔), can be calculated as follows: 

 𝑐𝑐(𝑎𝑎, 𝑔𝑔) = 	𝑠𝑠𝑠𝑠(𝑎𝑎, 𝑔𝑔) + 𝑑𝑑𝑑𝑑(𝑎𝑎 + 1, 𝑔𝑔) − 𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑔𝑔) 

 

(eq. 6) 

capita costs are shown as the product of disease prevalence and per patient costs: 

 𝑠𝑠𝑠𝑠(𝑎𝑎)! = 𝑝𝑝(𝑖𝑖|𝑖𝑖) × 𝑠𝑠𝑠𝑠(𝑎𝑎|𝑖𝑖)! 
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(eq. 7) 

 

unrelated medical costs,  as shown in the equations below. 
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(eq. 8) 

scaling to prevent that negative ratios would become positive (or vice versa). 

𝑟𝑟!,(*$ = 	 𝑟𝑟!,(+$
,!*$ 

 

Using equation C.1 for a baseline disease (i=1), this can be rewritten as equation C.2: 

𝑟𝑟!+$,(*$ = 	 𝑟𝑟!+$,(+$
,!"# → log(𝑟𝑟!+$,(*$) = 	𝑥𝑥(*$ logH𝑟𝑟!+$,(+$I	 → 	𝑥𝑥(*$ = 	

log(𝑟𝑟!+$,(*$)
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We assume that the scaling factor 𝑥𝑥(*$ is equal for all diseases, which leads to equation C.3:  
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(eq. 

C.3) 

Where:

•	 c =		 costs of living one year longer 
•	 g =		 gender 
•	 a = 	 age in years

Furthermore, while the approach discussed above assumes independence between the 
healthcare intervention and cost of non-medical and unrelated medical consumption, 
we provide a framework allowing for a correlation between the intervention and 
unrelated medical costs - applied in the third case study. We show the impact of 
adjusting PAID estimates of unrelated medical costs for this correlation, which is 
relevant when the studied population is expected to have a different health care use for 
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unrelated diseases than the average population. Estimates can be adjusted using the 
framework as displayed in equation 7, where per capita costs are shown as the product 
of disease prevalence and per patient costs:
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Where:

•	 p(i|a) = probability of disease i  conditional on age a;
•	 m(a|i)= mortality rate at age a conditional on having disease i. 
•	 sc(a|i) = survivor costs at age a conditional on having disease i.
•	 dc(a|i) = decedent costs at age a conditional on having disease i.	  

Given the relationships displayed in equation 7 we adjusted unrelated costs to reflect 
higher prevalence and mortality for stroke among lung cancer patients (Chen et al., 
2011). We adjusted the unrelated costs for stroke by extracting the costs for stroke 
separately, multiplying stroke costs with the relative risk of stroke - 1.47 - as estimated 
by Chen and colleagues (Chen et al., 2011) and adding these back to the sum of 
unrelated medical costs,  as shown in the equations below.
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(eq. 

C.3) 

Where 

•	 j = unrelated disease with higher costs  (e.g. stroke). 
•	 λ = multiplier 

To demonstrate how to use PAID with survival data on an individual level we fitted two 
parametric survival models assuming a Weibull distribution to overall survival results 
presented in the Kaplan-Meier plot (Mok et al., 2019) from which we randomly drew 
individual survival times.
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Results
Unrelated medical costs and non-medical costs
Panels A and B in Figure 1 show how average healthcare expenditures rise sharply after 
age 75 while per capita non-medical consumption by show a less strong age pattern but 
decrease at old age and peak at middle age (identical numbers for males and females 
since estimates are not gender-specific). These graphs show that up until around age 75, 
people have higher non-medical than healthcare consumption, whereafter healthcare 
exceeds non-medical consumption. 

Age-specific per capita medical costs for survivors and decedents are presented in 
graphs C and D, showing comparable patterns in spending by gender; although 
women’s expenditures are higher, especially at older ages. These graphs show that 
differences between survivor and decedent costs are highest in the first year of life and 
between 50 and 75 years, and become smaller at the highest ages. This can largely be 
attributed to causes of death and related periods of illness before dying at different 
ages. In the first year of life, death often follows a period with high use of medical care. 
The same holds for middle age. At the highest ages, survivors as well as decedents 
typically incur higher healthcare expenditures, narrowing the difference in costs.
 

Figure 1: A & B - Average per capita medical costs and non-medical consumption by age. C&D 
-  Medical costs, split into survivor and decedent costs by age. 
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Case-studies
For the first case-study we estimated the impact of including future costs on the ICER 
when death is prevented at a certain age (see Figure 2). It shows that the older people 
get  the more expensive it is to be saved. 

Figure 2: Case-study 1. The hypothetical impact of including future unrelated medical costs 
(UMC) and future non-medical consumption (NMC) on the ICER when death is prevented (for 
free) at a certain age. 

The results of the second and third case-study are summarized in Table 1. Figures 
4 and 5 shows differences in costs and survival over time for the two case studies. 
Including future unrelated medical costs in case study 2 leads to an increase of  €3,761 
in the ICER; including non-medical consumption adds another €5,440 to the ICER.  
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Table 1 The impact of including future costs on the ICER for case-studies 2 and 3.

Case-study 2 - € per QALY* Case-study 3 -  € per life-year
Unadjusted Adjusted for stroke

Original ICER 9,580 N/A N/A

Impact including 
unrelated medical costs 
on ICER

3,761 (13,341) 5,546 5,619

Impact including non-
medical costs on ICER

5,440 (15,020) 9,126 9,126

Total impact on ICER 9,201 (18,781) 14,672 14,745

*Total ICER shown in brackets

Figure 3: Case study 2. The added costs for including unrelated consumption and non-medical 
consumption (top), and the difference in survival between intervention and comparator group 
(bottom).

For the third case-study we estimated a mean survival of 25.1 months for the intervention 
group (Pembrolizumab) and 15.3 months for the comparator group (chemotherapy); 
Figure 5 (bottom) shows difference in survival. As stated above, in this study no baseline 
ICERs and QALYs were available. Therefore, only the impact of inclusion on the ICER 
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can be estimated and impact is shown as cost per LYG. We estimated a discounted LYG 
of 0.77 for the intervention group compared to the comparator. Inclusion of future 
unrelated medical costs increased the ICER by €5,546, or €5,619 after adjustments 
for stroke incidence. Including future non-medical consumption further increased the 
ICER with €9,126. Note here that the impact on the ICER will be different when QALYs 
instead of life-years are used. If the LYG will be in less than perfect health, this will 
increase the impact on the ICER. 

Figure 4: Case study 3. The additional costs by time for the lung cancer intervention (top left), 
and the additional costs by time when adjusted for increase stroke risk (top right). Difference in 
survival between intervention and comparator group (bottom).

Discussion & Conclusion
In 2011 a practical tool to include future unrelated medical costs in a standardized 
manner was introduced (van Baal et al., 2011b). In this paper we updated the tool with 
the most recent data on medical costs and included estimates for future non-medical 
consumption. Recent COI data was combined with mortality data and decedent-
survivor cost ratios, to provide disease-specific estimates of medical expenditures per 
capita in survivors and decedents. Related costs of an intervention are then excluded 
from total medical expenditure. Non-medical consumption was estimated taking into 
account household economies of scale.  This paper further demonstrated how to use 
the tool  in practice using case studies.  
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The first case-study refers to the situation of saving a life at a given age, with no 
intervention costs. It shows that the impact of including future costs becomes larger 
at higher ages, mainly due to rising healthcare expenditures with age, while in 
comparison to future medical costs, the impact of including non-medical consumption 
remains relatively stable over time. The consumption curve (Figure 1) follows a 
U-shape as seen in previous literature (Alessie and Ree, 2009; Fernández-Villaverde 
and Krueger, 2007), however when dividing these costs by QALY changes the curve 
flattens considerably.  Another factor affecting the relative impact of including future 
costs at younger ages versus older ages, is that the more expensive (older) years, 
are discounted more highly when lives are saved at younger ages. Furthermore, the 
impact of including future non-medical consumption is larger than including future 
unrelated medical costs until approximately the age of 60. This may seem surprising 
when looking at Figure 1, which shows that per capita non-medical consumption is 
larger than medical consumption until approximately the age of 75. However, when 
estimating the impact of including future unrelated medical costs on saving a life at 
different ages, we consider time-to-dea. As a result, high medical spending in the last 
year is postponed and additional medical spending is less than suggested by Figure 1. 

In the second case-study a published evaluation comparing interventions for colon 
cancer is replicated. Including future unrelated medical costs increases the ICER 
by almost 40 percent and when all future costs are included the ICER more than 
doubles. In the Netherlands a cost-effectiveness threshold ranging from €20,000 up 
to €80,000 per QALY gained is applied, where the height depends on the principle 
of proportional shortfall (Brouwer et al., 2019; Reckers-Droog et al., 2018) Using the 
iMTA Disease Burden Calculator (Versteegh et al., 2019), we calculated a proportional 
shortfall for this case-study of 0.37, which implies that the relevant threshold in this 
case-study is €20,000 (Reckers-Droog et al., 2018). Including future costs in this study 
could thus make this intervention not cost-effective as it pushes the ICER near the 
threshold  It is important to note that an intervention being not cost-effective is not an 
undesirable outcome, but simply the result of correctly estimating the change in costs 
for an intervention. 

In the third case-study, we demonstrate how to adjust for short time-horizons and that 
PAID estimates can easily be applied to several forms of models. Furthermore, we show 
how to adjust estimates when costs for unrelated diseasesin  the studied population is 
suspected to differ from the general population. This is adjusted for here by using the 
increased risk of stroke among patients with lung cancer. In this case the difference 
between future unrelated medical costs adjusted or unadjusted is relatively small. 
However, if the costs of a disease for which the risk is increased were large and the 
additional risk substantial, the impact of such adjustment would be larger, as shown 
by Manns et al. in their paper on end-stage renal disease care (Manns et al., 2003a). 
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An important  limitation is that there are no more recently estimated decedent-
survivor cost ratios than those used here. Although more recent estimates of mean 
overall spending in the last year of life compared to other years show comparable 
numbers (Bakx et al., 2016), more detailed estimates may show different patterns. 
An update of these ratios would be useful for future research.  A further limitation 
with regards to decedent-survivor cost ratios is that we did not have estimates for all 
providers, and disease-specific estimates for three providers were derived by combining 
hospital estimates with provider-specific sector estimates. In a similar vein to this, the 
classification of costs amongst providers was different for 2017 COI data, and therefore 
fewer costs could be adjusted using these ratios. It is also worth noting that data from 
the household survey are relatively old; although data are adjusted to 2017 prices, 
changes in spending-patterns by age may not be captured. Furthermore, we estimated 
non-medical consumption by age, and assumed no correlation between non-medical 
consumption and disease. While there is relatively little literature covering this topic, 
there are some findings that suggest such a correlation. For example, it may be that 
medical consumption crowds out non-medical consumption for the severely ill (Zaidi 
and Burchardt, 2005). However, the findings that non-medical consumption decreases 
from a certain age (Alessie and Ree, 2009; Fernández-Villaverde and Krueger, 2007; 
Gourinchas and Parker, 2002) may imply that as health decreases (as it does at older 
ages) so does non-medical consumption. Further research in this area is needed. 

Finally, we do not address uncertainty in this paper. Uncertainty could stem from the 
two key elements of our estimates: survival and costs. While the original costs in this 
case are averages provided by CBS Netherlands and therefore with little surrounding 
uncertainty, there are still sources of uncertainty, such as decedent-survivor cost 
ratios; the larger the TTD effect (larger ratios), the smaller the impact of future costs 
on the ICER (Meltzer, 1997b).

In general, including future costs may have a systematic effect on reimbursement 
decisions as the ‘upward’ effect on the ICER changes differently by population and 
intervention. As the cost of extending life increases with age, this implies that the 
age at which an intervention is given will be of increased importance for the cost-
effectiveness of an intervention. Another parameter that affects the magnitude of the 
impact of including future costs, and thus decisions is the ratio of life-years gained to 
QALYs gained for a particular intervention. It has been shown that the larger this ratio, 
the larger the impact of including future costs (Meltzer, 1997b).

In this paper no specific attention is paid to future related medical costs and future 
productivity as these are typically already included in economic evaluations and 
extensive guidance on how to estimate and include these costs is already available in 
the Netherlands (Hakkaart-van Roijen et al., 2015). However, when looking at the total 
impact of including future costs, production gained at working ages would presumably 
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lead to those years being the least costly. This would, however, also depend on how 
productivity is measured. In the Netherlands, these costs are typically quantified using 
the friction costs method and thus limited to the friction period. Using the human capital 
approach or including informal and household production, would affect the impact 
of inclusion at different ages. The latter methods would imply higher negative costs 
(more productivity gains from living longer) and thereby lower ICERs. Another issue 
worth mentioning is that, although there is agreement that including future unrelated 
medical costs would improve the internal consistency of the ICER, implying that costs 
are included when related benefits are included, how much QALYs capture the benefits 
from non-medical consumption (and also production) is currently unclear (Nyman, 
2004b). Furthermore, it is also unclear to what extent thresholds to which ICERs are 
compared include these benefits (de Vries et al., 2018). The impact of including future 
non-medical consumption and the comparison with existing thresholds should thus be 
interpreted with caution. 

To conclude, this paper provided an update and extension of PAID and demonstrated 
through case-studies the application and impact of including future costs in economic 
evaluations.  Updated ICERS show that including future costs, even just unrelated 
medical costs, can have a substantial effect on the ICER which could affect decision 
makers’ choices. For future research it would be interesting to see the estimates used 
in a variety of economic evaluations.	
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Supplemental Material

Appendix A: Healthcare providers

Table A.1 Summary of healthcare provider categories in PAID 3.0 (based on the categories 
distinguished in the Dutch Costs of Illness study)
Cost of Illness VTV (Volksgezondheid 
Toekomstverkenning) healthcare 
provider categories

% of total 
costs in 2017

Data used to attribute 
average costs per disease 
to last year of life and other 
years

Hospitals (HC) 30.3 Hospital records linkage

Nursing and residential care facilities 
(LTC)

20.5 Hospital records scaled to insurance
claims

Providers of ambulatory healthcare (GP) 10.8 Hospital records scaled to insurance
claims

Retail sale and other providers of medical 
goods (Med)

9.0 Hospital records scaled to insurance
claims

Provision and administration of public 
health programmes*

1.9 Not applicable**

General health administration and 
insurance*

4.4 Not applicable**

Other healthcare* 3.3 Not applicable**

Welfare* 0.5 Not applicable**

Ambulance and transport* 0.6 Not applicable**

Disabled care* 11.3 Not applicable**

Mental healthcare* 7.4 Not applicable**

* These healthcare providers are grouped together and referred to as ‘other healthcare providers’
** Costs for ‘other healthcare providers’ depend only on age and gender for PAID 3.0
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Appendix B: Disease categories 
Table B1: Summary of disease categories in PAID 3.0 (based on the categories distinguished in the Dutch Costs of Illness study)  
Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

Infectious and parasitic 
disease

1.72

1 Intestinal infectious 
diseases 

A00-A09 001-009 r001 (001-008)
r002 (009)

12.50

2 Tuberculosis A10-A19, B90 010-018, 137  r003 (010-018, 137) 1.14

3 Meningitis A39, A87, G00-G03 036, 047, 320-322 r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361) 2.27

4 Septicemia A40-A41 038 r004 (038) 5.68

5 HIV/AIDS B20 042-044 r005 (042-044 or 2795, 2796) 15.91

6 Sexually transmitted 
diseases

A60, A50-A58 A63, B00, B07, B08 054, 078, 090-099 r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361) 4.55

7 Hepatitis B15-B19, K77 070, 573.1 r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361)
r072 (570, 571.4-573)

13.64

8 Other infectious 
diseases

A20-A46, A35, A42, A48, A68-A69,  
A70-A71, A75, A77-A85, A87-A88, 
A90, A92, A93,   A95, A98, B01-B06, 
B08, B09, B26-B27, B30, B33, 
B50-B57, B60, B91,  B95-B99, Z11, 
Z20, Z23, Z41, Z51, Z79

019-035, 037, 039-041, 045-046, 
048-053, 055-069, 071-077, 079-
089, 100-136, 138-139, v01-v07, 
v73-v75

r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361)
r130 (remainder of V01-V82)

43.18

Neoplasms 6.69

9 Esophagus cancer C15 150 r015 (remainder of 140-208) 1.46

10 Stomach cancer C16 151 r015 (remainder of 140-208) 0.58

11 Colorectal cancer C18-C21 153-154 r007 (153, 154) 10.20

12 Pancreas cancer C25 157 r015 (remainder of 140-208) 1.75

13 Lung cancer C33-C34 162 r008 (162) 7.87

14 Breast cancer C50 174 r010 (174,175)** 14.87

15 Cervical cancer C53-C55 180 r011 (179,180,182)** 2.33

16 Ovary cancer C56-C57 183 r012 (183)** 1.46

17 Prostate cancer C61 185 r013 (185)* 6.71

18 Bladder and kidney 
cancer

C64-C68 188-189 r014 (188)
r015 (remainder of 140-208)

4.66

19 Non-Hodgkin's disease C82- C83 200, 202 r015 (remainder of 140-208) 3.79

20 Other lymphoid cancer 
and leukemia

C81, C90-C95 201, 203-208 r015 (remainder of 140-208) 12.14

21 Other cancers C00-C14, C17, C22-24, C26-C32, 
C38-C43, C50, C69-C80, C7A, Z12

140-149, 152, 155-156, 158-161, 163-
172, 175-178, 190-199, 209, v76

r015 (remainder of 140-208)
r010 (174,175)**
r130 (remainder of V01-V82)

21.57

22 Other benign 
neoplasms

C44, D03,  D10-D23, D30-D36 173, 210-216, 223-239 r009 (172,173)
r016 (230-234)
r017 (2113,2114)
r019 (remainder of 210-239)

10.79
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Appendix B: Disease categories 
Table B1: Summary of disease categories in PAID 3.0 (based on the categories distinguished in the Dutch Costs of Illness study)  
Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

Infectious and parasitic 
disease

1.72

1 Intestinal infectious 
diseases 

A00-A09 001-009 r001 (001-008)
r002 (009)

12.50

2 Tuberculosis A10-A19, B90 010-018, 137  r003 (010-018, 137) 1.14

3 Meningitis A39, A87, G00-G03 036, 047, 320-322 r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361) 2.27

4 Septicemia A40-A41 038 r004 (038) 5.68

5 HIV/AIDS B20 042-044 r005 (042-044 or 2795, 2796) 15.91

6 Sexually transmitted 
diseases

A60, A50-A58 A63, B00, B07, B08 054, 078, 090-099 r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361) 4.55

7 Hepatitis B15-B19, K77 070, 573.1 r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361)
r072 (570, 571.4-573)

13.64

8 Other infectious 
diseases

A20-A46, A35, A42, A48, A68-A69,  
A70-A71, A75, A77-A85, A87-A88, 
A90, A92, A93,   A95, A98, B01-B06, 
B08, B09, B26-B27, B30, B33, 
B50-B57, B60, B91,  B95-B99, Z11, 
Z20, Z23, Z41, Z51, Z79

019-035, 037, 039-041, 045-046, 
048-053, 055-069, 071-077, 079-
089, 100-136, 138-139, v01-v07, 
v73-v75

r006 (remainder of 001-139, except 0340, 0993, 0994, 135, 1361)
r130 (remainder of V01-V82)

43.18

Neoplasms 6.69

9 Esophagus cancer C15 150 r015 (remainder of 140-208) 1.46

10 Stomach cancer C16 151 r015 (remainder of 140-208) 0.58

11 Colorectal cancer C18-C21 153-154 r007 (153, 154) 10.20

12 Pancreas cancer C25 157 r015 (remainder of 140-208) 1.75

13 Lung cancer C33-C34 162 r008 (162) 7.87

14 Breast cancer C50 174 r010 (174,175)** 14.87

15 Cervical cancer C53-C55 180 r011 (179,180,182)** 2.33

16 Ovary cancer C56-C57 183 r012 (183)** 1.46

17 Prostate cancer C61 185 r013 (185)* 6.71

18 Bladder and kidney 
cancer

C64-C68 188-189 r014 (188)
r015 (remainder of 140-208)

4.66

19 Non-Hodgkin's disease C82- C83 200, 202 r015 (remainder of 140-208) 3.79

20 Other lymphoid cancer 
and leukemia

C81, C90-C95 201, 203-208 r015 (remainder of 140-208) 12.14

21 Other cancers C00-C14, C17, C22-24, C26-C32, 
C38-C43, C50, C69-C80, C7A, Z12

140-149, 152, 155-156, 158-161, 163-
172, 175-178, 190-199, 209, v76

r015 (remainder of 140-208)
r010 (174,175)**
r130 (remainder of V01-V82)

21.57

22 Other benign 
neoplasms

C44, D03,  D10-D23, D30-D36 173, 210-216, 223-239 r009 (172,173)
r016 (230-234)
r017 (2113,2114)
r019 (remainder of 210-239)

10.79
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

Endocrine, nutritional 
and metabolic diseases

2.85

23 Diabetes mellitus 
including diabetic 
complications

E10-E11, E0842, E0942, E1042, 
E1142, E1342, E113, N048, N08, 
N038, N058

250, 357.2, 362.0, 581.8, 582.8, 
583.8

r022 (250)
r034 (remainder of 320-359)
r036 (remainder of 360-379)
r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r099 (remainder of 580-629 except 5997)

63.70

24 Other endocrine, 
nutritional and 
metabolic diseases

E009, E01, E04-E09, E15, E21-E22, 
E24, E27-E29, E30-E32, E34, E40, 
E41, E43-E46, E50-E51, E53-E56, 
E65-E67, E70, E74, D80, Z13

240-249, 251-279, V77 r023 (remainder of 240-278)
r130 (remainder of V01-V82)

36.30

Diseases of the blood 
and the blood-forming 
organs

0.51

25 Diseases of the blood 
and blood-forming 
organs

D50, D51, D56-D59, D61, D63-D75,  
Z13

280-289, V78 r020 (280-285)
r021 (135, 2790-2793, 2798, 286-288, 2890, 2894-2899)
r130 (remainder of V01-V82)

100.00

Mental and behavioral 
disorders

28.60

26 Dementia F01-F05, F329 290, 311 r024 (2900-2902, 2904-2909, 2941)
r028 (296, 2980, 3004, 3011, 311)

35.99

27 Schizophrenia F20 295 r027 (295, 2970-2973,       2978-2979, 2983-2989) 1.64

28 Depression F30, F341 296, 300.4 r028 (296, 2980, 3004, 3011, 311) 4.50

29 Anxiety F40-F42, F449, F488, F43, F438 300.0, 300.10-300.15, 300.2-300.3, 
300.5, 308, 309.8

r029 (remainder of 290-319) 3.07

30 Personality disorders F431, F6811, F688, F60 300.16-300.19, 301 r028 (296, 2980, 3004, 3011, 311)
r029 (remainder of 290-319)

2.73

31 Dependency on alcohol 
and drugs

F10-F16, F18-F19, 291-292, 303-305 r025 (291, 303, 3050)
r026 (292, 2940, 304, 3051-3059)

3.27

32 Other mental disorders F02-F06, F07, F4320,  F4321, F45, 
F481-F489, F54, F64-F66, F81, F84, 
F90, F93, F95, Z134

293-294, 299, 300.6-300.9, 302, 
306-307, 309.0-309.7, 309.9, 310, 
312-316, v79

r024 (2900-2902, 2904-2909, 2941)
r026 (292, 2940, 304, 3051-3059)
r029 (remainder of 290-319)
r130 (remainder of V01-V82)

16.02

33 Mental retardation, 
including Down's 
syndrome

F70-F73, F79, Q909 317-319, 758.0 r029 (remainder of 290-319)
r110 (740-759)

32.86

Diseases of the nervous 
system

6.71

34 Parkinson's disease G20-G21 332 r034 (remainder of 320-359) 3.49

35 Multiple sclerosis G35 340 r031 (340) 3.49

36 Epilepsy G40 345 r032 (345) 5.23

37 Cataract H26 366 r035 (366) 5.23

38 Disorders of 
accommodation and 
refraction

H52 367 r036 (remainder of 360-379) 15.41
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

Endocrine, nutritional 
and metabolic diseases

2.85

23 Diabetes mellitus 
including diabetic 
complications

E10-E11, E0842, E0942, E1042, 
E1142, E1342, E113, N048, N08, 
N038, N058

250, 357.2, 362.0, 581.8, 582.8, 
583.8

r022 (250)
r034 (remainder of 320-359)
r036 (remainder of 360-379)
r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r099 (remainder of 580-629 except 5997)

63.70

24 Other endocrine, 
nutritional and 
metabolic diseases

E009, E01, E04-E09, E15, E21-E22, 
E24, E27-E29, E30-E32, E34, E40, 
E41, E43-E46, E50-E51, E53-E56, 
E65-E67, E70, E74, D80, Z13

240-249, 251-279, V77 r023 (remainder of 240-278)
r130 (remainder of V01-V82)

36.30

Diseases of the blood 
and the blood-forming 
organs

0.51

25 Diseases of the blood 
and blood-forming 
organs

D50, D51, D56-D59, D61, D63-D75,  
Z13

280-289, V78 r020 (280-285)
r021 (135, 2790-2793, 2798, 286-288, 2890, 2894-2899)
r130 (remainder of V01-V82)

100.00

Mental and behavioral 
disorders

28.60

26 Dementia F01-F05, F329 290, 311 r024 (2900-2902, 2904-2909, 2941)
r028 (296, 2980, 3004, 3011, 311)

35.99

27 Schizophrenia F20 295 r027 (295, 2970-2973,       2978-2979, 2983-2989) 1.64

28 Depression F30, F341 296, 300.4 r028 (296, 2980, 3004, 3011, 311) 4.50

29 Anxiety F40-F42, F449, F488, F43, F438 300.0, 300.10-300.15, 300.2-300.3, 
300.5, 308, 309.8

r029 (remainder of 290-319) 3.07

30 Personality disorders F431, F6811, F688, F60 300.16-300.19, 301 r028 (296, 2980, 3004, 3011, 311)
r029 (remainder of 290-319)

2.73

31 Dependency on alcohol 
and drugs

F10-F16, F18-F19, 291-292, 303-305 r025 (291, 303, 3050)
r026 (292, 2940, 304, 3051-3059)

3.27

32 Other mental disorders F02-F06, F07, F4320,  F4321, F45, 
F481-F489, F54, F64-F66, F81, F84, 
F90, F93, F95, Z134

293-294, 299, 300.6-300.9, 302, 
306-307, 309.0-309.7, 309.9, 310, 
312-316, v79

r024 (2900-2902, 2904-2909, 2941)
r026 (292, 2940, 304, 3051-3059)
r029 (remainder of 290-319)
r130 (remainder of V01-V82)

16.02

33 Mental retardation, 
including Down's 
syndrome

F70-F73, F79, Q909 317-319, 758.0 r029 (remainder of 290-319)
r110 (740-759)

32.86

Diseases of the nervous 
system

6.71

34 Parkinson's disease G20-G21 332 r034 (remainder of 320-359) 3.49

35 Multiple sclerosis G35 340 r031 (340) 3.49

36 Epilepsy G40 345 r032 (345) 5.23

37 Cataract H26 366 r035 (366) 5.23

38 Disorders of 
accommodation and 
refraction

H52 367 r036 (remainder of 360-379) 15.41
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

39 Blindness and low 
vision

H54 369 r036 (remainder of 360-379) 7.56

40 Conjunctivitis H00-H02 373-374 r036 (remainder of 360-379) 1.74

41 Other diseases of the 
eye and adnexa

H04-H05,  H10, H15-H17, H20, 
H30, H40, H44, H47, H50, H53,

360-361, 362.1-362.9, 363-365, 368, 
370-372, 375-379

r036 (remainder of 360-379) 6.98

42 Ear disorders H60-H95 380-389 r037 (380-389) 22.97

43 Other diseases of the 
nervous system and 
sense organs

G04-G19, G22-G34, G36-G39,  
G40-G99, Z135

323-331, 333-339, 341-344, 346-356, 
357.0-357.1, 357.3-357.9, 358-359, 
v80

r030 (3310)
r034 (remainder of 320-359)
r130 (remainder of V01-V82)

27.91

Diseases of the 
circulatory system

11.66

44 Hypertension I10-I15 401-405 r038 (401-405) 6.35

45 Coronary heart disease I21-125 410-414 r039 (413; ICD-9-CM: 4111, 413)
r040 (410)
r041 (411-412, 414; ICD-9-CM: 4110, 4118, 412, 414)

22.24

46 Heart failure I50-I51 428-429 r044 (428)
r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590)

8.03

47 Other heart disease, 
including pulmonary 
circulation

I30-I49 390-398, 415-427 r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590)
r042 (415-417)
r043 (426, 427)

19.40

48 Stroke I60-I69 430-438 r033 (435)
r045 (430-434, 436-438)

14.38

49 Diseases of arteries I70-I79 440-448 r046 (440)
r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590)

9.36

50 Other circulatory 
diseases

I80-199 451-459 r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590) 20.23

Diseases of the 
respiratory system

3.39

51 Acute upper 
respiratory infections

J00-J06 460-466 r049 (0340, 460-465, 487; ICD-9-CM: 340, 460-465, 487, 488)
r051 (466 (acute lower respiratory infections other than acute bronchitis, 
acute bronchiolitis and pneumonia were not separated in ICD-9, no J22 
equivalent))

11.49

52 Pneumonia and 
influenza

J09-J18 480-487 r050 (480-486)
r049 (0340, 460-465, 487; ICD-9-CM: 340, 460-465, 487, 488)

16.67

53 Asthma and chronic 
obstructive pulmonary 
disease (COPD)

J40-J47 490-496 r054 (490-492, 494, 496)
r055 (493)
r056 (remainder of 460-519)

14.37

54 Other respiratory 
diseases

J30-J39, J60-J99 467-479, 488-489, 497-519 r049 (0340, 460-465, 487; ICD-9-CM: 340, 460-465, 487, 488)
r053 (470-473, 475-478)
r056 (remainder of 460-519)

57.47

Diseases of the 
digestive system

6.84

55 Other diseases of teeth, 
jaw and salivary glands

K00, K030-K039, K04, M26, K080, 
K082-K089, K09-K14

520, 521.1-521.9, 522, 524, 525.0, 
525.2-525.9, 526-529

r057 (520-525)
r058 (526-529)

62.11

56 Gastroduodenal ulcers K25-K28 531-534 r060 (531-534) 0.57
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

39 Blindness and low 
vision

H54 369 r036 (remainder of 360-379) 7.56

40 Conjunctivitis H00-H02 373-374 r036 (remainder of 360-379) 1.74

41 Other diseases of the 
eye and adnexa

H04-H05,  H10, H15-H17, H20, 
H30, H40, H44, H47, H50, H53,

360-361, 362.1-362.9, 363-365, 368, 
370-372, 375-379

r036 (remainder of 360-379) 6.98

42 Ear disorders H60-H95 380-389 r037 (380-389) 22.97

43 Other diseases of the 
nervous system and 
sense organs

G04-G19, G22-G34, G36-G39,  
G40-G99, Z135

323-331, 333-339, 341-344, 346-356, 
357.0-357.1, 357.3-357.9, 358-359, 
v80

r030 (3310)
r034 (remainder of 320-359)
r130 (remainder of V01-V82)

27.91

Diseases of the 
circulatory system

11.66

44 Hypertension I10-I15 401-405 r038 (401-405) 6.35

45 Coronary heart disease I21-125 410-414 r039 (413; ICD-9-CM: 4111, 413)
r040 (410)
r041 (411-412, 414; ICD-9-CM: 4110, 4118, 412, 414)

22.24

46 Heart failure I50-I51 428-429 r044 (428)
r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590)

8.03

47 Other heart disease, 
including pulmonary 
circulation

I30-I49 390-398, 415-427 r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590)
r042 (415-417)
r043 (426, 427)

19.40

48 Stroke I60-I69 430-438 r033 (435)
r045 (430-434, 436-438)

14.38

49 Diseases of arteries I70-I79 440-448 r046 (440)
r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590)

9.36

50 Other circulatory 
diseases

I80-199 451-459 r048 (2891-2893, remainder of 390-459 except 435, 446 and 4590) 20.23

Diseases of the 
respiratory system

3.39

51 Acute upper 
respiratory infections

J00-J06 460-466 r049 (0340, 460-465, 487; ICD-9-CM: 340, 460-465, 487, 488)
r051 (466 (acute lower respiratory infections other than acute bronchitis, 
acute bronchiolitis and pneumonia were not separated in ICD-9, no J22 
equivalent))

11.49

52 Pneumonia and 
influenza

J09-J18 480-487 r050 (480-486)
r049 (0340, 460-465, 487; ICD-9-CM: 340, 460-465, 487, 488)

16.67

53 Asthma and chronic 
obstructive pulmonary 
disease (COPD)

J40-J47 490-496 r054 (490-492, 494, 496)
r055 (493)
r056 (remainder of 460-519)

14.37

54 Other respiratory 
diseases

J30-J39, J60-J99 467-479, 488-489, 497-519 r049 (0340, 460-465, 487; ICD-9-CM: 340, 460-465, 487, 488)
r053 (470-473, 475-478)
r056 (remainder of 460-519)

57.47

Diseases of the 
digestive system

6.84

55 Other diseases of teeth, 
jaw and salivary glands

K00, K030-K039, K04, M26, K080, 
K082-K089, K09-K14

520, 521.1-521.9, 522, 524, 525.0, 
525.2-525.9, 526-529

r057 (520-525)
r058 (526-529)

62.11

56 Gastroduodenal ulcers K25-K28 531-534 r060 (531-534) 0.57
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

57 Appendicitis K35-K38 540-543 r062 (540-543) 1.42

58 Abdominal hernia K40-K46 550-553 r063 (550)
r064 (551-553)

2.85

59 Inflammatory 
intestinal disease

K50-K52 555-556 r065(555, 556) 6.84

60 Other intestinal 
diseases

K55-K64 557-569 r066 (558)
r067 (560)
r068 (562)
r069 (565, 566, 5690-5694)
r070 (557, 564, 5695, 5698, 5699)

1.71

61 Chronic liver disease 
and cirrhosis

K70 571 r071 (5710-5713)
r072 (570, 5714-573)

1.42

62 Other liver diseases K72, K75, K763-K769, K77 570, 572, 573.0, 573.2-573.9 r072 (570, 5714-573)
r076 (remainder of 520-579)

0.00

63 Gallbladder diseases K80-K83 574-576 r073 (574)
r074 (575, 576)

3.70

64 Other diseases of the 
digestive system

K20, K29-K31, K86-K90 530, 535-537, 577-579 r059 (530)
r061 (535-537)
r075 (577)
r076 (remainder of 520-579)

19.37

65 Diseases of the 
genitourinary system

3.16

66 Nephritis and 
nephropathy

N00-N01, N032-N039, N043-N044, 
N049, N059, N17-N19

580, 581.0-581.7, 581.9, 582.0-582.7, 
582.9, 583.0-583.7, 583.9, 584-589

r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r091 (5836, 5837, 584-586)
r093 (0994, 587-589, 5903, 5930-5932, 5936, 5938, 5939, 595- 597, 5980, 
5981, 5988, 5989, 5990-5995, 5998, 5999, 6256)

27.78

67 Acute renal and 
urinary infections

N11, N30, N34, N390 590, 595, 597, 599.0 r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r093 (0994, 587-589, 5903, 5930-5932, 5936, 5938, 5939, 595- 597, 5980, 
5981, 5988, 5989,5990-5995, 5998, 5999, 6256)

8.64

68 Other renal and 
urinary diseases

N13-521, N32, N35, N360-N369 591-594, 596, 598, 599.1-599.9 r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r092 (592, 594, 7880)
r093 (0994, 587-589, 5903, 5930-5932, 5936, 5938, 5939, 595- 597, 5980, 
5981, 5988, 5989, 5990-5995, 5998, 5999, 6256)

28.40

69 Hyperplasia of prostate N40 600 r094 (600)* 4.94

70 Other disorders of 
male genital organs

N41-N51 601-608 No estimates 4.94

71 Disorders of female 
genital organs

N60-N92, N94 610-627, 629 No estimates
 

18.52

72 Female infertility N97, Z31 628, v26 No estimates 6.79

Pregnancy, childbirth 
and the puerperium

2.07

73 Pregnancy O00-O48, Z34 630-648, V22-V23 No estimates   34.91
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

57 Appendicitis K35-K38 540-543 r062 (540-543) 1.42

58 Abdominal hernia K40-K46 550-553 r063 (550)
r064 (551-553)

2.85

59 Inflammatory 
intestinal disease

K50-K52 555-556 r065(555, 556) 6.84

60 Other intestinal 
diseases

K55-K64 557-569 r066 (558)
r067 (560)
r068 (562)
r069 (565, 566, 5690-5694)
r070 (557, 564, 5695, 5698, 5699)

1.71

61 Chronic liver disease 
and cirrhosis

K70 571 r071 (5710-5713)
r072 (570, 5714-573)

1.42

62 Other liver diseases K72, K75, K763-K769, K77 570, 572, 573.0, 573.2-573.9 r072 (570, 5714-573)
r076 (remainder of 520-579)

0.00

63 Gallbladder diseases K80-K83 574-576 r073 (574)
r074 (575, 576)

3.70

64 Other diseases of the 
digestive system

K20, K29-K31, K86-K90 530, 535-537, 577-579 r059 (530)
r061 (535-537)
r075 (577)
r076 (remainder of 520-579)

19.37

65 Diseases of the 
genitourinary system

3.16

66 Nephritis and 
nephropathy

N00-N01, N032-N039, N043-N044, 
N049, N059, N17-N19

580, 581.0-581.7, 581.9, 582.0-582.7, 
582.9, 583.0-583.7, 583.9, 584-589

r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r091 (5836, 5837, 584-586)
r093 (0994, 587-589, 5903, 5930-5932, 5936, 5938, 5939, 595- 597, 5980, 
5981, 5988, 5989, 5990-5995, 5998, 5999, 6256)

27.78

67 Acute renal and 
urinary infections

N11, N30, N34, N390 590, 595, 597, 599.0 r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r093 (0994, 587-589, 5903, 5930-5932, 5936, 5938, 5939, 595- 597, 5980, 
5981, 5988, 5989,5990-5995, 5998, 5999, 6256)

8.64

68 Other renal and 
urinary diseases

N13-521, N32, N35, N360-N369 591-594, 596, 598, 599.1-599.9 r090 (580-5834, 5838, 5839, 5900-5902, 5908, 5909, 591, 5933-5935, 5937, 
5996)
r092 (592, 594, 7880)
r093 (0994, 587-589, 5903, 5930-5932, 5936, 5938, 5939, 595- 597, 5980, 
5981, 5988, 5989, 5990-5995, 5998, 5999, 6256)

28.40

69 Hyperplasia of prostate N40 600 r094 (600)* 4.94

70 Other disorders of 
male genital organs

N41-N51 601-608 No estimates 4.94

71 Disorders of female 
genital organs

N60-N92, N94 610-627, 629 No estimates
 

18.52

72 Female infertility N97, Z31 628, v26 No estimates 6.79

Pregnancy, childbirth 
and the puerperium

2.07

73 Pregnancy O00-O48, Z34 630-648, V22-V23 No estimates   34.91
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

74 Childbirth O60-O84, Z76, Z37, Z38 650-669, V20, V27, V30-V39 No estimates
 

37.74

75 Puerperium O85-O92, Z39 670-676, V24 No estimates 20.75

76 Contraception Z30 V25 No estimates  7.55

Diseases of the skin 
and subcutaneous 
tissue

1.64

77 Eczema L22-L25 691-692 r078 (690-693, 6943, 696-6983, 6988, 6989) 13.10

78 Decubitus L89 707 r079 (remainder of 680-709) 13.10

79 Other diseases of the 
skin and subcutaneous 
tissue

L02-L21, L27, L29, L40, L43, L44, 
L50-L51, L53, L60, L65-L66, L70, 
L74, L81-L98

680-690, 693-706, 708-709 r077 (680-686)
r078 (690-693, 6943, 696-6983, 6988, 6989)
r079 (remainder of 680-709)

75.00

Diseases of the 
musculoskeletal system 
and connective tissue

7.47

80 Rheumatoid arthritis M05-M08 714 r083 (0993, 711-716, 718, 719, 7271, 7284) 9.92

81 Osteoarthrosis M15 715 r080 (Not a concept in ICD-9 at four-digit level. Can only be defined by using 
the optional fifth digit 5 to 715, i.e. 715.15, 715.25, 715.35 and 715.95)
r081 (Not a concept in ICD-9 at four-digit level. Can only be defined by using 
the optional fifth digit 6 to 715, i.e. 715.16, 715.26, 715.36 and 715.96)
r083 (0993, 711-716, 718, 719, 7271, 7284)

82 Dorsopathy M40-M54 720-724 r085 (720, 721, 7230, 7235, 7240, 737)
r086 (7220-7227, 7229)
r087 (7231, 7234, 7236, 7241-7243, 7245)

14.36

83 Osteoporosis M810, M844 733.0-733.1 r089 (remainder of 710-739) 1.83

84 Internal derangement 
of the knee

M23 717 r082 (717) 5.74

85 Unspecified 
musculoskeletal 
diseases or conditions

M35, M75, M60, M61, M65,  M79 725-729 r083 (0993, 711-716, 718, 719, 7271, 7284)
r084 (1361, 2794, 446, 710, 725, 7285)
r086 (7220-7227, 7229)
r088 (726, 7270, 7272-7279)
r089 (7280-7283, 7286-7289, 729)

37.08

86 Other diseases of the 
musculoskeletal system

M00, M12-M14, M20-M21, 
M24-M25, M32-M35, M40-M42, 
M85- M86, M88-M89, M91-M92, 
M95, M99

710-713, 716, 718-719, 730-732, 
733.2-733.9, 734-739

r083 (0993, 711-716, 718, 719, 7271, 7284)
r084 (1361, 2794, 446, 710, 725, 7285)
r089 (remainder of 710-739)

31.33

Congenital 
malformations

0.58

87 Congenital anomalies 
of nervous system

Q00-Q05 740-742 No estimate  3.33

88 Congenital anomalies 
of circulatory system

Q20-Q25 745-747 No estimate  26.67

89 Other congenital 
anomalies, excluding 
Down's syndrome

Q11, Q16, Q30, Q35, Q38, Q41-Q43, 
Q50, Q60, Q67-Q97, Z36

743-744, 748-757, 758.1-758.9, 759, 
v28

No estimate  70.00
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

74 Childbirth O60-O84, Z76, Z37, Z38 650-669, V20, V27, V30-V39 No estimates
 

37.74

75 Puerperium O85-O92, Z39 670-676, V24 No estimates 20.75

76 Contraception Z30 V25 No estimates  7.55

Diseases of the skin 
and subcutaneous 
tissue

1.64

77 Eczema L22-L25 691-692 r078 (690-693, 6943, 696-6983, 6988, 6989) 13.10

78 Decubitus L89 707 r079 (remainder of 680-709) 13.10

79 Other diseases of the 
skin and subcutaneous 
tissue

L02-L21, L27, L29, L40, L43, L44, 
L50-L51, L53, L60, L65-L66, L70, 
L74, L81-L98

680-690, 693-706, 708-709 r077 (680-686)
r078 (690-693, 6943, 696-6983, 6988, 6989)
r079 (remainder of 680-709)

75.00

Diseases of the 
musculoskeletal system 
and connective tissue

7.47

80 Rheumatoid arthritis M05-M08 714 r083 (0993, 711-716, 718, 719, 7271, 7284) 9.92

81 Osteoarthrosis M15 715 r080 (Not a concept in ICD-9 at four-digit level. Can only be defined by using 
the optional fifth digit 5 to 715, i.e. 715.15, 715.25, 715.35 and 715.95)
r081 (Not a concept in ICD-9 at four-digit level. Can only be defined by using 
the optional fifth digit 6 to 715, i.e. 715.16, 715.26, 715.36 and 715.96)
r083 (0993, 711-716, 718, 719, 7271, 7284)

82 Dorsopathy M40-M54 720-724 r085 (720, 721, 7230, 7235, 7240, 737)
r086 (7220-7227, 7229)
r087 (7231, 7234, 7236, 7241-7243, 7245)

14.36

83 Osteoporosis M810, M844 733.0-733.1 r089 (remainder of 710-739) 1.83

84 Internal derangement 
of the knee

M23 717 r082 (717) 5.74

85 Unspecified 
musculoskeletal 
diseases or conditions

M35, M75, M60, M61, M65,  M79 725-729 r083 (0993, 711-716, 718, 719, 7271, 7284)
r084 (1361, 2794, 446, 710, 725, 7285)
r086 (7220-7227, 7229)
r088 (726, 7270, 7272-7279)
r089 (7280-7283, 7286-7289, 729)

37.08

86 Other diseases of the 
musculoskeletal system

M00, M12-M14, M20-M21, 
M24-M25, M32-M35, M40-M42, 
M85- M86, M88-M89, M91-M92, 
M95, M99

710-713, 716, 718-719, 730-732, 
733.2-733.9, 734-739

r083 (0993, 711-716, 718, 719, 7271, 7284)
r084 (1361, 2794, 446, 710, 725, 7285)
r089 (remainder of 710-739)

31.33

Congenital 
malformations

0.58

87 Congenital anomalies 
of nervous system

Q00-Q05 740-742 No estimate  3.33

88 Congenital anomalies 
of circulatory system

Q20-Q25 745-747 No estimate  26.67

89 Other congenital 
anomalies, excluding 
Down's syndrome

Q11, Q16, Q30, Q35, Q38, Q41-Q43, 
Q50, Q60, Q67-Q97, Z36

743-744, 748-757, 758.1-758.9, 759, 
v28

No estimate  70.00
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Disease 
category 
number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

Certain conditions 
originating in the 
perinatal period

0.23

90 Disorders relating to 
premature birth

P07 765 No estimate  75.00

91 Other conditions 
originating in the 
perinatal period

P00-P04, P08-P15, P22-P28, 
P50-P90

760-763, 766-767, 769-770, 772-779 No estimate  16.67

Symptoms, signs and 
abnormal clinical and 
laboratory findings, not 
elsewhere classified

1.91

92 Symptoms, signs and 
ill-defined conditions

R40-R99 780-799 No estimate   100

Injury, poison 
and certain other 
consequences of 
external causes

3.28

93 Skull-brain injury S02, S04- S06 800-801, 803-804, 850-854, 950-
951

No estimates 12.50

94 Fractures of upper 
extremities

S42-S52 810-819 No estimate  7.14

95 Hip fracture S72 820-821 No estimate  16.07

96 Other lower extremity 
fracture

S82, S92 822-829 No estimate  14.29

97 Superficial injury S00, S05, S09-S10, S20, S30, S40, 
S60, S70, S80, S90, T07

910-924 No estimates 2.38

98 Other injury S01, S03, S07-S08, S11-S19, S21-S29, 
S31-S39, S41, S53-S59, S61-69, S71, 
S73-S79, S81, S83-S89, S91, S91-S99

802, 805-809, 830-849, 855-909, 
925-949, 952-999

No estimates 48.21

Not allocated/ Not 
disease related

10.68

99 Not allocated Z01, Z03, Z09, Z13, Z43, Z45, 
Z48- Z51,  Z65, Z76-Z79, Z80-Z84, 
Z85-Z88, Z91

V10-V19, V21, V40-V57, 
V58.0-V58.4, V58.6-V58.9, 
V63-V64, V66-V68, V71-V72, 
V81-V82

No estimates 91.97

100 Not disease-related Z00, Z02, Z52, Z56, Z59, Z60, Z69, 
Z71,  Z74, Z75, Z76 

V59-V62, V65, V70 No estimates 8.03

*disease-specific ratio only estimated for men
**disease-specific ratio only estimated for women
No estimate: no disease-specific ratio found for both men and women
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number

Cost of Illness 
System of Health 
Account 
Disease categories

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 10 codes

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) - 9 codes

Matched disease-specific ratios estimated using International 
Shortlist for Hospital Morbidity Tabulation (ISHMT) 
classification (ICD-9 codes between brackets)

% of total costs in 2017
(disease subcategories show 
share of costs within header 
category)

Certain conditions 
originating in the 
perinatal period

0.23

90 Disorders relating to 
premature birth

P07 765 No estimate  75.00

91 Other conditions 
originating in the 
perinatal period

P00-P04, P08-P15, P22-P28, 
P50-P90

760-763, 766-767, 769-770, 772-779 No estimate  16.67

Symptoms, signs and 
abnormal clinical and 
laboratory findings, not 
elsewhere classified

1.91

92 Symptoms, signs and 
ill-defined conditions

R40-R99 780-799 No estimate   100

Injury, poison 
and certain other 
consequences of 
external causes

3.28

93 Skull-brain injury S02, S04- S06 800-801, 803-804, 850-854, 950-
951

No estimates 12.50

94 Fractures of upper 
extremities

S42-S52 810-819 No estimate  7.14

95 Hip fracture S72 820-821 No estimate  16.07

96 Other lower extremity 
fracture

S82, S92 822-829 No estimate  14.29

97 Superficial injury S00, S05, S09-S10, S20, S30, S40, 
S60, S70, S80, S90, T07

910-924 No estimates 2.38

98 Other injury S01, S03, S07-S08, S11-S19, S21-S29, 
S31-S39, S41, S53-S59, S61-69, S71, 
S73-S79, S81, S83-S89, S91, S91-S99

802, 805-809, 830-849, 855-909, 
925-949, 952-999

No estimates 48.21

Not allocated/ Not 
disease related

10.68

99 Not allocated Z01, Z03, Z09, Z13, Z43, Z45, 
Z48- Z51,  Z65, Z76-Z79, Z80-Z84, 
Z85-Z88, Z91

V10-V19, V21, V40-V57, 
V58.0-V58.4, V58.6-V58.9, 
V63-V64, V66-V68, V71-V72, 
V81-V82

No estimates 91.97

100 Not disease-related Z00, Z02, Z52, Z56, Z59, Z60, Z69, 
Z71,  Z74, Z75, Z76 

V59-V62, V65, V70 No estimates 8.03

*disease-specific ratio only estimated for men
**disease-specific ratio only estimated for women
No estimate: no disease-specific ratio found for both men and women
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Appendix C: Derivation scaling factor ratios 
To obtain disease-specific ratios for these providers, we exponentiated the disease-
specific hospital ratios by a scaling constant describing the relation between costs for 
decedents and survivors between hospital care and the other providers (equation C.1). 
The log scale, instead of multiplying by a constant, is chosen for scaling to prevent that 
negative ratios would become positive (or vice versa).

Costs for living one year longer,	𝑐𝑐(𝑎𝑎, 𝑔𝑔), can be calculated as follows: 

 𝑐𝑐(𝑎𝑎, 𝑔𝑔) = 	𝑠𝑠𝑠𝑠(𝑎𝑎, 𝑔𝑔) + 𝑑𝑑𝑑𝑑(𝑎𝑎 + 1, 𝑔𝑔) − 𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑔𝑔) 

 

(eq. 6) 

capita costs are shown as the product of disease prevalence and per patient costs: 

 𝑠𝑠𝑠𝑠(𝑎𝑎)! = 𝑝𝑝(𝑖𝑖|𝑖𝑖) × 𝑠𝑠𝑠𝑠(𝑎𝑎|𝑖𝑖)! 

𝑑𝑑𝑑𝑑(𝑎𝑎)! = 𝑚𝑚(𝑎𝑎|𝑖𝑖) × 𝑑𝑑𝑑𝑑(𝑎𝑎|𝑖𝑖)! 

(eq. 7) 

 

unrelated medical costs,  as shown in the equations below. 

 𝑠𝑠𝑠𝑠(𝑎𝑎) =6𝑠𝑠𝑠𝑠!(𝑎𝑎)
!	'(

+	𝑠𝑠𝑠𝑠((𝑎𝑎) × 𝜆𝜆 

𝑑𝑑𝑑𝑑(𝑎𝑎) =6𝑑𝑑𝑑𝑑!(𝑎𝑎)
!	'(

+	𝑑𝑑𝑑𝑑((𝑎𝑎) × 𝜆𝜆 

(eq. 8) 

scaling to prevent that negative ratios would become positive (or vice versa). 

𝑟𝑟!,(*$ = 	 𝑟𝑟!,(+$
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The scaling factor was found by minimizing the distance between total survivor costs 
using the estimated ratios for total expenditures and total survivor costs as the sum of 
disease-specific survivor costs (equation C.4):
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CHAPTER 6

Abstract
Medical interventions that increase life expectancy of patients result in additional 
consumption of non-medical goods and services in ‘added life years’. This paper 
focuses on the distributional consequences across socio-economic groups of including 
these costs in cost effectiveness analysis. In that context, it also highlights the role of 
remaining quality of life and household economies of scale. Data from a Dutch household 
spending survey was used to estimate non-medical consumption and household size 
by age and educational attainment. Estimates of non-medical consumption and 
household size were combined with life tables to estimate what the impact of including 
non-medical survivor costs would be on the incremental cost effectiveness ratio (ICER) 
of preventing a death at a certain age. Results show that including non-medical survivor 
costs increases estimated ICERs most strongly when interventions are targeted at the 
higher educated. Adjusting for household size (lower educated people less often live 
additional life years in multi-person households) and quality of life (lower educated 
people on average spend added life years in poorer health) mitigates this difference. 
Ignoring costs of non-medical consumption in economic evaluations implicitly favors 
interventions targeted at the higher educated and thus potentially amplifies socio-
economic inequalities in health. 
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Introduction
When medical interventions postpone death, costs arise in added life-years due to 
consumption of medical and non-medical goods (Meltzer, 1997a). Whether or not 
to include these costs in economic evaluations conducted from a societal perspective 
remains an issue of controversy (de Vries et al., 2018). Many national guidelines for 
economic evaluation currently do not recommend the inclusion of survivor costs 
(Eldessouki and Dix Smith, 2012). However, the recently updated, influential US 
guidelines do specifically recommend their inclusion (Sanders et al., 2016). The few 
studies that investigated the impact of inclusion of future non-medical costs on the 
ICERs of lifesaving interventions show it can be substantial  (Kruse et al., 2012; Manns 
et al., 2003b; Meltzer, 1997a; Meltzer et al., 2000b). 

Many countries adopting a societal perspective include production gains in economic 
evaluations but exclude costs of non-medical consumption (Eldessouki and Dix Smith, 
2012). This difference can be considered inconsistent, since many of the theoretical 
arguments (not) to include non-medical consumption also pertain to production 
(Meltzer, 1997a; Nyman, 2004a). Moreover, this practice of including production gains 
but excluding non-medical consumption has potential distributional consequences: 
it benefits the higher socio-economic groups, who are the most productive (Meltzer, 
1997a) but also have the highest non-medical consumption across the lifecycle 
(Attanasio and Pistaferri, 2016; Fernández-Villaverde and Krueger, 2007). 

This paper estimates the distributional consequences of including non-medical 
consumption costs in economic evaluations across groups with different socio-
economic status (SES). Doing so, we add an important element to the literature on cost-
effectiveness and inequality. There is a growing interest in distributional consequences 
in cost-effectiveness evaluations, and many health policies are explicitly targeted at 
reducing inequalities in health (Asaria et al., 2015; Cookson et al., 2017).  As health 
problems vary strongly with socio-economic status (Cutler and Lleras-Muney, 2010; 
Meara et al., 2008; Smith, 1999), the relevant future non-medical costs incurred are 
likely to differ per intervention or even target group. Using a rich dataset from The 
Netherlands, we estimate age profiles of consumption by education. 

In addition, we adjust for differences in household size across educational groups 
at different ages. The (marginal) costs of non-medical consumption are lower for 
individuals in multi-person households than for singles, as the first group benefits 
from economies of scale (Kellerborg et al., n.d.). Due to lower life expectancy of lower 
educated, they are at greater risk of living alone at older age relative to their higher 
educated counterparts (Hotz et al., 1997). We also account for the fact that the quality 
of life of persons from low SES groups in general is lower than that of people from 
high SES groups (Gheorghe et al., 2016b). This is important, as the impact of including 
future costs is stronger when life years are gained in poor health.  
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Methods
Data
We used data from the Dutch budget survey (Budgetonderzoek) from the years 
2003 and 2004 which is a yearly cross-sectional survey collected among the non-
institutionalized population of the Netherlands. The households taking part in the 
survey report on a comprehensive set of consumption categories (e.g. consumption 
related to eating, transportation, housing, vacation) using diaries which were collected 
by interviewers on a regular basis. We removed all medical consumption of the 
household and adjusted the data to 2017 prices. Age was defined as the age of the 
household head. Educational attainment was determined by the highest educational 
attainment of the household head and categorized in three categories: low, middle and 
high (for more details on the data and methods see the online supplementary file). 
Figure 1 gives an overview of the data. 

Figure 1: Non-medical consumption per household (top panel) and household size (bottom 
panel) by education and age. Non-medical consumption is shown in 2017 EURO prices.
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Model specification
Our approach to estimating the impact of education on the ICER consists of several 
steps. First, we translate household consumption into per household equivalent 
consumption using the OECD-modified equivalence scale (Hagenaars et al., 1994b). 
This scale assigns a weighting factor per additional individual in a household of 0.5 
for each adult and 0.3 per child. We then estimated log scaled household equivalent 
consumption as a function of age, stratified by education with the following model:a function of age, stratified by education with the following model: 

 ln(ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. ) = 𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀 

 

(1) 

Therefore, we also estimated the probability of a household having more than one adult as a smooth 

function of age and education using a binomial logistic P-splines model: 
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exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	
1 + exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	

 

 

(2) 

(nmc(age,edu)) are then calculated as in Equation 3: 

 𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) = 

𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 0.5 
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Equation (4) shows the elements included in the ICER when both production gains and costs of non-

medical consumption costs are taken into account: 
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Where  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	 

educational group and 𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒	)  

educational group. Estimates of  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒), 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

Where Hh equiv. denotes annual non-medical consumption per household equivalent. 
We used cubic P-Splines to model the non-linear age pattern with an interaction term 
for education and ε is a normally distributed error term (Eilers and Marx, 1996). 

Given that we want to estimate the average costs of non-medical consumption in case 
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+
∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

. 
(4) 

 

over the QALY gained ( ∆"#$
∆%&'(

)  

 ICER of a life prolonging intervention. ∆"#$
∆%&'(

  

was calculated in the following manner:  

 ∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

	= 	
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	× 	𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}

 
(5) 

   

Where  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	 

educational group and 𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒	)  

educational group. Estimates of  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒), 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

As in the first model, we apply P-Splines on age with education as an interaction term. 
The average costs of non-medical consumption caused by living one year longer by age 
and education (nmc(age,edu)) are then calculated as in Equation 3:

a function of age, stratified by education with the following model: 

 ln(ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. ) = 𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀 

 

(1) 

Therefore, we also estimated the probability of a household having more than one adult as a smooth 

function of age and education using a binomial logistic P-splines model: 

 
𝑝𝑝(𝑌𝑌	 = 	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	 > 	1) =

exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	
1 + exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	

 

 

(2) 

(nmc(age,edu)) are then calculated as in Equation 3: 

 𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) = 

𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 0.5 

+	(1 − 𝑝𝑝[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒]) × ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

(3) 

 

Equation (4) shows the elements included in the ICER when both production gains and costs of non-

medical consumption costs are taken into account: 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+
∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

. 
(4) 

 

over the QALY gained ( ∆"#$
∆%&'(

)  

 ICER of a life prolonging intervention. ∆"#$
∆%&'(

  

was calculated in the following manner:  

 ∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

	= 	
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	× 	𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}

 
(5) 

   

Where  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	 

educational group and 𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒	)  

educational group. Estimates of  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒), 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

The first part denotes the consumption for individuals in households with more than 
one adult times the probability of a death being prevented in a multi-person household. 
The second part represents the consumption for individuals in single households times 
the probability of a death being prevented in a single-person household. 
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CHAPTER 6

ICER calculations
Equation (4) shows the elements included in the ICER when both production gains 
and costs of non-medical consumption costs are taken into account:

a function of age, stratified by education with the following model: 

 ln(ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. ) = 𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀 

 

(1) 

Therefore, we also estimated the probability of a household having more than one adult as a smooth 

function of age and education using a binomial logistic P-splines model: 

 
𝑝𝑝(𝑌𝑌	 = 	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	 > 	1) =

exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	
1 + exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	

 

 

(2) 

(nmc(age,edu)) are then calculated as in Equation 3: 

 𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) = 

𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 0.5 

+	(1 − 𝑝𝑝[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒]) × ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

(3) 

 

Equation (4) shows the elements included in the ICER when both production gains and costs of non-

medical consumption costs are taken into account: 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+
∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

. 
(4) 

 

over the QALY gained ( ∆"#$
∆%&'(

)  

 ICER of a life prolonging intervention. ∆"#$
∆%&'(

  

was calculated in the following manner:  

 ∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

	= 	
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	× 	𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}

 
(5) 

   

Where  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	 

educational group and 𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒	)  

educational group. Estimates of  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒), 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

To calculate the impact on the ICER we focus solely on the second part of this equation: 
the additional costs from non-medical consumption over the QALY gained 

a function of age, stratified by education with the following model: 

 ln(ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. ) = 𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀 

 

(1) 

Therefore, we also estimated the probability of a household having more than one adult as a smooth 

function of age and education using a binomial logistic P-splines model: 

 
𝑝𝑝(𝑌𝑌	 = 	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	 > 	1) =

exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	
1 + exp	(𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀)	

 

 

(2) 

(nmc(age,edu)) are then calculated as in Equation 3: 

 𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) = 

𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 0.5 

+	(1 − 𝑝𝑝[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑖𝑖𝑖𝑖	ℎℎ𝑠𝑠 > 1|𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒]) × ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

(3) 

 

Equation (4) shows the elements included in the ICER when both production gains and costs of non-

medical consumption costs are taken into account: 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+
∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

. 
(4) 

 

over the QALY gained ( ∆"#$
∆%&'(

)  

 ICER of a life prolonging intervention. ∆"#$
∆%&'(

  

was calculated in the following manner:  

 ∆𝑛𝑛𝑛𝑛𝑛𝑛
∆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

	= 	
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	× 	𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}
Σ){𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒) × 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)}

 
(5) 

   

Where  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)	 

educational group and 𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒	)  

educational group. Estimates of  𝐿𝐿(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒), 𝑄𝑄𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒)  

from 
saving a life at different ages. These estimations may then be added to the ICER of a life 
prolonging intervention. 

a function of age, stratified by education with the following model: 

 ln(ℎℎ	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. ) = 𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜀𝜀 

 

(1) 

Therefore, we also estimated the probability of a household having more than one adult as a smooth 

function of age and education using a binomial logistic P-splines model: 
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Where L(age=a,edu) is the number of years lived at age  for a particular educational 
group and Q(age=a,edu)is the average quality of life at age a for a particular 
educational group. Estimates of L(age,edu), QoL(age,edu) were taken from a 
study that estimated the quality of life and mortality in the Netherlands stratified by 
education (Gheorghe et al., 2016b). We estimated the additional costs separately for the 
ages 25 to 82.5 over a lifetime horizon. We present estimates for deaths prevented 
in an average household but also for deaths prevented in a single-person household. 
When calculating the costs for a death prevented in a single person household, we 
use one full household equivalent by age and education times added survival.  Costs 
were discounted at 4 percent and effects at 1.5 percent in accordance with the Dutch 
guidelines (Zorginstituut Nederland, 2016b). The ICERs as calculated using equation 
(5) can be interpreted as the cost effectiveness of hypothetical interventions in which 
a death at a certain age is prevented at zero intervention costs. Previous research 
(e.g.  (Kellerborg et al., 2020; Meltzer, 1997b)) has shown that such ICERs give a 
good indication of what the impact is of including future costs on the ICER of non-
hypothetical interventions.

Using Equations (3), (4) and (5), the influence of the three mechanisms that affect 
the ICER for different SES groups can be illustrated. First, equation (4) shows that 
including non-medical consumption increases the numerator of the ICER, resulting 
in an increase of the ICER. As non-medical consumption is lower for low SES groups 
than for high SES groups, including these survivor costs is relatively favorable for the 
interventions targeted at the low SES groups (although it increases the ICER for all 
interventions). Second, the higher educated enjoy both lower mortality rates as well 
as a higher quality of life resulting in a higher quality-adjusted life expectancy at all 
ages (Gheorghe et al., 2016b). Equation (5) highlights that lower quality of life values 
for the lower educated imply that non-medical consumption is divided by a smaller 
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number and hence a relative increase of the ICER. Third, accounting for differences in 
household size across SES groups involves accounting for the fact that low SES groups 
are less often part of multi-person households. Thus, they benefit less often from 
economies of scale than high SES groups (equation 3). This leads to relatively higher 
ICERs for interventions aimed at low SES groups.  

Results
Figure 2 shows the predictions of the regression models to illustrate the impact of 
education and age on consumption and household size. 

Figure 2: Prediction of non-medical consumption by household equivalent (left) by education 
and age. Prediction of probability of households having more than one adult by age and 
education (right).

Figure 3 displays the impact of including non-medical survivor costs on the ICER by 
educational attainment. To better understand the effect of the different mechanisms, 
the ICER is calculated for preventing a death in a single-person household as well as 
preventing a death in a household of average size (by age and education as estimated 
in equation 3), and using Life Years (LY) or QALYs in the denominator. The impact 
of survivor costs on the ICER differs substantially between the educational groups 
when we do not account for differences in household size. Using QALYs instead of 
life-years as outcome increases the impact on the ICER, but it does not substantially 
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affect the (absolute) differences across education groups. Controlling for household 
size decreases the impact on the ICERs, as well as the differences between the 
education groups. This can be seen by comparing the left panels in Figure 3 for single-
person households with the right panels in which we made predictions for an average 
household size using equation 3. Especially at high ages, the high educated on average 
live in larger households (as shown in Figure 2) which results in a stronger decrease of 
the impact on the ICER than for the low educated. 

Figure 3: Impact on the ICER when saving a life at various ages by education. Left panels 
show predictions for preventing a death in a single-person household and the right panels 
show predictions for preventing a death in an average household, top panels show estimations 
calculated with LYs and bottom panels with QALYs. Costs were discounted at a 4% annual rate 
and health effects at a 1.5% annual rate.

To further illustrate the differences across model specifications we summarized the 
impact on the ICER for selected ages and assumptions in Table 1. 
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Table 1: Impact of including future non-medical costs on the ICER. Incremental costs 
and health effects are the result of a hypothetical intervention in which a death at a certain age is 
prevented at zero intervention costs. Incremental costs and health effects are the average of men 
and women at a particular age. Costs are expressed in EURO adjusted for 2017 prices. Costs were 
discounted at a 4% annual rate and health effects at a 1.5% annual rate.

Household Age Educational 
attainment

ΔCosts ΔLY ΔQALY ΔCost/
ΔLY

ΔCost/
ΔQALY

Average household 30 Low 169,000 33.45 25.59 5,100 6,600

Middle 193,300 35.28 28.25 5,500 6,800

High 237,200 36.51 29.81 6,500 8,000

65 Low 104,400 14.76 11.08 7,100 9,400

Middle 117,500 16.23 12.64 7,200 9,300

High 147,500 17.34 13.69 8,500 10,800

85 Low 39,700 4.84 3.52 8,200 11,300

Middle 45,600 5.44 4.09 8,400 11,100

High 50,900 5.87 4.47 8,700 11,400

Single household 30 Low 257,800 33.45 25.59 7,700 10,100

Middle 306,800 35.28 28.25 8,700 10,900

High 376,500 36.51 29.81 10,300 12,600

65 Low 138,600 14.76 11.08 9,400 12,500

Middle 175,900 16.23 12.64 10,800 13,900

High 228,200 17.34 13.69 13,200 16,700

85 Low 47,800 4.84 3.52 9,900 13,600

Middle 62,300 5.44 4.09 11,500 15,200

High 75,800 5.87 4.47 12,900 16,900

Conclusion and discussion 
Although the impact of including costs of non-medical consumption on the overall 
level of the ICER is substantial, the differences in impact across educational groups 
are smaller. This is importantly related to two issues: (i) lower educated persons 
enjoy their added life-years in a lower quality of life than higher educated, and (ii) 
lower educated persons more often form a single-person household at an old age, 
which implies relatively high additional consumption costs compared to people in a 
multi-person household. Especially this latter effect turned out to mitigate the socio-
economic differences induced by including the costs of non-medical consumption. 
Finally, it needs to be noted that these influences also need to be viewed in relation to 
the inclusion of other costs (such as productivity costs) which may, on average, have 
opposite distributional effects.    
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Our findings are in line with previous studies that investigated the costs of non-medical 
consumption (Kruse et al., 2012; Manns et al., 2003a; Meltzer, 1997b; Meltzer et al., 
2000c). The observation that consumption declines at older ages may be related to 
changing preferences and opportunities, but also to liquidity constraints: consumption 
seems to strongly follow the age pattern of disposable income (Alessie and Ree, 2009). 
This might also explain the differences in the age profiles of consumption between 
education groups. Moreover, Gyrd-Hansen suggested that the hump-shaped pattern 
of consumption may also be explained by lower marginal utility from consumption for 
people in lower health (Gyrd-Hansen, 2016). 

An important and novel finding from this study is that the large differences in 
consumption between educational classes are mitigated due to concurrent differences 
in quality of life and household size. Differences in the probability to live in a multi-
person household were observed throughout the life-course in different groups. 
Specifically, lower educated people live in a multi-person household earlier than the 
other two education groups, but the peak in household size also occurs at an earlier 
age for the low educated. As we do not have data regarding the type of relationships 
within these households, several explanations for the observed differences are possible 
and these may also vary by age. Socioeconomic status for instance has been found to 
have an indirect effect on divorce rates through earlier marriages and worse economic 
status (Clarke and Berrington, 1998). Furthermore, differences in life expectancy 
between lower and higher educated might also explain why at old ages lower educated 
people are single more often (Gheorghe et al., 2016b). 

Although decisions about the availability of technologies are usually made at a fairly 
aggregate population level without distinguishing groups based on SES, it has been 
well documented that some health problems are relatively common in lower SES 
groups (Cutler and Lleras-Muney, 2010; Smith, 1999). This makes distributional 
consequences of inclusion of particular costs increasingly relevant. 

Summarizing, this paper provided empirical estimates of non-medical survivor costs 
and an indication of the distributional consequences of including them in economic 
evaluations of life prolonging interventions. The current practice of including production 
gains but excluding future non-medical costs not only has no economic rationale, but 
potentially also introduces socio-economic inequalities in health following resource 
allocation decisions based on economic evaluations. Including future non-medical 
costs may somewhat reduce the resulting socio-economic inequalities. Estimates and 
methods described in this paper, facilitate their inclusion in economic evaluations and 
provide insight in the consequences of doing so. Given that influential guidelines like 
the US guidelines advocate their inclusion, this seems particularly useful and more 
research on theory, methods, estimates, and consequences of including these costs 
seems warranted. 
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Supplemental Material

Figure S1: Consumption model predictions (left) by education and age, and household model 
predictions by education and age (right) including 95% prediction intervals.  





77CHAPTER 7 
Don’t Forget About the 
Future: The Impact of 

Including Future Costs 
on the Cost-Eff ectiveness 

of Adult Pneumococcal 
Conjugate Vaccination with 

PCV13 in the Netherlands



132

CHAPTER 7

Abstract
When vaccines increase longevity, vaccinated people may experience costs and 
benefits during added life-years. These future benefits and costs may include increased 
productivity as well as medical and non-medical costs. Such impacts should be 
considered in cost-effectiveness analyses (CEA) of vaccines but are often omitted. Here, 
we illustrate the impact of including future costs on the cost-effectiveness of vaccination 
against pneumococcus disease. We emphasize the relevance of differentiating cost 
estimates between risk groups. We updated an existing Dutch CEA of vaccination 
against pneumococcus disease with the 13-valent pneumococcal conjugate vaccine 
(PCV13) to include all future medical and non-medical costs. We linked costs by age 
and risk with survival information and estimates of cases prevented per vaccination 
strategy based on the original study to calculate the impact of inclusion. Future 
medical costs were adjusted for relevant risk groups. For the base-case strategy, the 
original incremental cost-effectiveness ratio (ICER) of PVC13 was €9,157 per quality 
adjusted life-year (QALY). Including all future medical costs increased the ICER to 
€28,540 per QALY. Also including future non-medical costs resulted in an ICER of 
€45,691 per QALY. The impact of future medical costs varied considerably per risk 
group and generally increased with age. This study showed a substantial effect of the 
inclusion of future costs on the ICER of vaccinating with PCV13. Especially when lives 
of people with underlying health conditions are extended, the impact of future medical 
costs is large. This inclusion may make vaccination a less attractive option, especially 
in relation to low thresholds as often applied for prevention. Although this raises 
important questions, ignoring these real future costs may lead to an inefficient use of 
healthcare resources. Our results may imply that prices for some vaccines need to be 
lowered to be cost-effective.
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Background
Vaccination has greatly reduced the burden of infectious diseases around the world 
(Andre et al., 2008). The effectiveness and cost-effectiveness of vaccination strategies in 
preventing both fatal and non-fatal cases typically vary with age and by risk. Given that 
there are limited resources available for healthcare, it is vital to identify the most efficient 
strategies and to evaluate whether these interventions provide value for money. For 
this, cost-effectiveness analyses (CEA) are generally performed, in which the costs and 
benefits of an intervention are assessed in relation to a relevant alternative (like standard 
care or another intervention or strategy) (Drummond et al., 2015). The health benefits are 
typically quantified in quality adjusted life-years (QALYs) and the results summarized in 
an incremental cost-effectiveness ratio (ICER), the ratio of additional costs to additional 
benefits (Drummond et al., 2015). The cost-effectiveness of an intervention can then be 
evaluated by comparing the ICER to a predefined cost-effectiveness threshold (Brouwer 
et al., 2019). Sound CEA should consider all relevant costs and benefits of interventions, 
while aligning with the perspective prescribed by the decision maker. For instance, when 
a healthcare perspective is applied, all costs and benefits within the healthcare system 
should be considered, whereas for a broader societal perspective all costs and benefits 
for society are relevant (Drummond et al., 2015). 

Some aspects of vaccinations, like externalities (i.e., effects on third parties) including 
improved herd immunity, are not often observed with other types of interventions yet 
particularly relevant in the context of CEA (Mauskopf et al., 2018). Since vaccination 
is often aimed at preventing potentially fatal diseases, future costs, costs that arise in 
the life-years gained from an intervention, are also specifically relevant for vaccination. 
When vaccination successfully prevents a fatal case, the survivor will most likely 
consume healthcare and other goods and services in added life-years, which constitute 
costs that should be included in a CEA framework (Meltzer, 1997a). The survivor might 
also work during these added years, a benefit that lowers the net costs of consumption. 
Part of the healthcare costs in life-years gained flows directly from the intervention 
(so-called related medical costs). An example are the costs for booster vaccination 
in life-years gained from vaccination. The other part only indirectly flows from the 
intervention through the extension of life (so-called unrelated medical costs (UMC)). 
As an example, a survivor could need treatment for diabetes or dementia developed 
during life-years gained. An example of future non-medical consumption (NMC) are 
the costs for housing in added years to live. 

Whether and to what extent future costs should be considered in CEA has been frequently 
debated (Rappange et al., 2008; de Vries et al., 2018). It was shown, using theoretical 
models, that including all future medical costs would be required for optimal decisions 
from a healthcare perspective (van Baal et al., 2016). From a broad societal perspective, 
the analysis should include future medical as well as non-medical consumption and 
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productivity costs (Meltzer, 1997b). Nevertheless, practical and theoretical concerns 
have been used as justifications for not including all future costs in practice (e.g., these 
costs would be difficult to estimate and it is unclear which costs should be included given 
that not all non-medical benefits are captured in the QALY) (de Vries et al., 2018). Future 
related medical costs are generally included in CEA. This, in contrast to future UMC, 
the inclusion of which is only required in the Netherlands (from 2016) (Zorginstituut 
Nederland, 2016) and was recently recommended in the US (Sanders et al., 2016). The 
inclusion of all future non-medical costs, defined as NMC minus productivity costs, is 
currently only recommended in the US (Sanders et al., 2016). 

The impact of including future costs on the ICER, both in absolute numbers and in terms 
of the relative cost-effectiveness of interventions, depends on several factors. Healthcare 
expenditures and the impact thereof generally rise with age, partly due to higher costs 
in the last phase of life (‘costs of dying’) (Wong et al., 2011b), and NMC and productivity 
are typically higher in middle ages (Alessie and Ree, 2009), (Hammer et al., 2015). 
Healthcare costs are also generally higher for people with underlying health conditions 
for which medical treatment is needed (van Baal et al., 2013a), who are typically also at 
higher risk of infection and more likely to die from infectious diseases. Simultaneously, 
differentiation between risk groups generates differences in the impact of future costs 
through differences in factors such as quality and length of life, which are typically 
lower for people at higher risk. In general, the impact of inclusion is larger when quality 
of life in added life-years is lower (lowering the denominator of the ICER) and when 
interventions are mainly life-extending compared to quality improving.

Although the empirical literature on the impact of including additional future costs 
in CEA is growing (e.g.,  (Ratushnyak et al., 2019), (Perry-Duxbury et al., 2020), 
(Kellerborg et al., 2020)), there is little evidence of the impact of inclusion for different 
types of interventions and for different sub-groups in a population. To illustrate the 
relevance and impact of including future costs when evaluating the cost-effectiveness 
of vaccination, we update a previous Dutch CEA of vaccination of different risk-
groups against pneumococcus disease with the 13-valent pneumococcal conjugate 
vaccine (PCV13) compared to no vaccination (Mangen et al., 2015) by including 
all future costs. Streptococcus pneumoniae, or pneumococcus, is a preeminent 
cause of morbidity and mortality with highest rates of infection in individuals with 
immunocompromised conditions, infants and the elderly (van Hoek et al., 2012). With 
different vaccination strategies considering several age cohorts and health-based risk 
groups and a large share of QALYs gained from prevented fatal cases, this study is 
a suitable illustration of how to adjust UMC based on risk groups and the impact of 
inclusion for vaccination in general. We also consider the relevant cost-effectiveness 
thresholds for the different strategies, which are important to evaluate the eventual 
impact of inclusion on decision making.
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Methods
To evaluate the impact of including more future costs in CEA on the cost-effectiveness 
of the different strategies for PCV13, we compare results from the CEA with and without 
these costs. More specific, we compare the ICERs including only related medical costs 
and productivity costs from the original study with the ‘total ICERs’ including all 
future costs. The original CEA estimated costs and benefits of PVC13 compared to no 
vaccination. The calculation of costs and benefits, including future costs, is shown in 
equation 1 (notations for age and risk-group are left out):

1 (notations for age and risk-group are left out): 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	
∆	[𝐿𝐿𝐿𝐿	 × (𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃)]

∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
+	

∆𝐿𝐿𝐿𝐿	 × 𝑈𝑈𝑈𝑈𝑈𝑈
∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+	
∆𝐿𝐿𝐿𝐿	 × 	𝑁𝑁𝑁𝑁𝑁𝑁
∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

 
 (eq. 1) 

Original ICER  Impact. UMC  Impact NMC 

disease at age a and as average costs for disease i at age a, multiplied by the entire population at age a. 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡	ℎ𝑐𝑐𝑐𝑐!(𝑎𝑎) = 	𝑎𝑎𝑐𝑐!(𝑎𝑎|𝑖𝑖) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝!(𝑎𝑎) = 𝑎𝑎𝑐𝑐!(𝑎𝑎) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎) (eq.A.1) 

revalence of disease i at age a. 

𝑎𝑎𝑐𝑐!(𝑎𝑎|𝑖𝑖) =
𝑎𝑎𝑐𝑐!(𝑎𝑎)
𝑝𝑝!(𝑎𝑎)

 
(eq.A.2) 

survivor costs is shown in equation A.3. for per capita costs 

and in equation A.4 for per patient costs.  

𝑎𝑎𝑎𝑎!(𝑎𝑎𝑎 = [1 − 𝑚𝑚𝑚𝑚𝑚𝑚] ×	𝑠𝑠𝑠𝑠!(𝑎𝑎𝑎 + 𝑚𝑚𝑚𝑚𝑚𝑚 ×	𝑑𝑑𝑑𝑑!	(𝑎𝑎𝑎 

𝑎𝑎𝑎𝑎!(𝑎𝑎|𝑖𝑖) = [1 − 𝑚𝑚(𝑎𝑎|𝑖𝑖)] ×	𝑠𝑠𝑐𝑐!(𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑚𝑚(𝑎𝑎|𝑖𝑖) ×	𝑑𝑑𝑐𝑐!	(𝑎𝑎|𝑖𝑖) 

(eq.A.3) 

(eq.A.4) 

The first part of the equation shows the ICER including only related medical costs 
(RMC) and productivity costs (PC), which entails the incremental RMC and PC for 
PCV13 versus no vaccination in all life-years (LY), divided by QALYs gained from 
PCV13 versus no vaccination. We obtained these from the original study and adjusted 
these to 2017 prices using consumer price indices from Statistics Netherlands (Central 
Bureau for Statistics, n.d.) to align with cost estimates. The second and third parts of the 
equation represent the impact of including UMC and NMC on the ICER respectively, 
which entail life-years gained (LYG) multiplied with UMC and NMC in those years 
divided by QALYs gained. 

To estimate the impact of inclusion for the different vaccination strategies, we first 
estimated the impact of including UMC and NMC for preventing a fatal case at different 
ages for the different risk-groups. For this, we multiplied remaining life-years based on 
the survival curves for the different risk-groups with costs and QALYs in these added 
life-years. All costs were discounted at 4% per year and all benefits at 1.5% per year, 
in adherence with Dutch guidelines (Dutch National Healthcare Institute, 2016). We 
combined these estimates and the QALYs gained from preventing non-fatal cases 
with cases prevented over time by age- and risk-group. Detailed information on cases 
prevented could not be obtained directly from the original study. For that purpose, we 
constructed a simplified replication of the original model in which we followed the risk 
groups (low- medium- and high-risk) within five age cohorts (18–49, 50–64, 65–74, 
75–84 and ⩾85 years) during the first 15 years after vaccination (vaccine efficacy was 
limited to those years). For detailed information on the input parameters we refer to 
the original study (Mangen et al., 2015). 
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We deviated from the original model in a few ways. First, we only followed the population 
for the first 15 years after vaccination as opposed to following the cohorts until death or 
the age of 100 directly as for the original study. Instead, to obtain estimates of costs and 
QALYs for prevented fatal cases, we combined the numbers of prevented fatal cases with 
estimates of costs and QALYs gained for preventing fatal cases. We further assumed 
no transition to higher risk-groups, which was considered in the original model, 
since we could not obtain information on the approach and assumptions underlying 
this transition besides that this could only occur in one direction. Consequently, our 
estimates of cases and QALY losses prevented differed somewhat from the original 
study. However, for the estimation of the impact of including UMC and NMC on the 
ICER differences in absolute numbers are less relevant since our main interest is in the 
ratio of additional costs per QALY gained.

Estimating costs
The costs that were used as input for the estimation of the impact described above were 
based on the estimates from the Practical Application to Include future Disease costs 
(PAID) 3.0 (Kellerborg et al., 2020). PAID provides age and gender specific estimates 
of average medical spending, which can be specified to exclude the costs of specific 
providers and diseases, and estimates of NMC by age. The estimates of UMC are based 
on per capita healthcare expenditures by disease and separated into costs for decedents 
and survivors using mortality information and ratios of spending in the last year to 
other years to account for the finding that healthcare expenditures are often higher 
in the last phase of life. NMC are estimated based on information from household 
expenditure surveys. Economies of scale within households were considered in these 
estimates as these have been found important when estimating NMC (Nelson, 1988). 
To do so, consumption for the average household was estimated using equivalence 
scales for the additional consumption of an additional individual in a household to 
obtain average per person consumption. 

The estimates for NMC were used directly from PAID without further adjustments. 
Estimates of UMC were obtained from PAID after exclusion of costs related to the 
treatment (upper respiratory tract infections) to prevent double counting (as related 
medical costs are already included in the original study). PAID estimates of UMC, 
based on per capita estimates of yearly spending on healthcare, can safely be used 
when the study population is comparable to the general population regarding their 
healthcare expenditures. In the current study, however, several risk-groups were 
identified based on their current health: (1) those at high-risk, including individuals 
with an immunocompromising condition; (2) those at medium-risk, including 
immunocompetent patients with chronic medical conditions; and (3) those at low-
risk, including the remainder of the population. The different risk-groups include 
people that have already other diseases or worse health conditions than the general 
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population. It is therefore expected that their (unrelated) medical costs are higher than 
those of the general population, as the costs for the diseases in these risk groups will by 
definition be incurred by the people in these risk groups. We adjusted PAID estimates 
for this by transforming the per capita costs per disease to per patient costs for those 
diseases that only occur in higher risk-groups. We do this by dividing per capita costs 
for survivors and decedents for the diseases in the risk group by the incidence of that 
risk group, while taking into account how mortality for the risk group is different from 
that of the general population. In section 6.1 in the appendix we explain in more detail 
how we derive per patient estimates. 

We used averages of costs for males and females for the adjustment since no specific 
information was available on how men and women were distributed among the 
diseases. In some cases, the disease categories distinguished in PAID (which are the 
same disease categories as those in the Costs of Illness study) did not exactly match 
those of the categories distinguished in the construction of risk-groups. For those 
we matched the ICD-10 codes of the disease categories to the closest matching PAID 
category. The results from the matching procedure can be found in Table A.1 in section 
6.2 in the appendix.

Cost-effectiveness thresholds
In the Netherlands, vaccinations in the National Immunisation Programme are typically 
evaluated by the Dutch Health Council. Indicated prevention, aimed at people already 
ill or at higher risk of becoming ill, is generally evaluated by the Dutch National Health 
Care Institute for provision through the standard healthcare benefit package (Zwaap 
et al., 2015). Separate advices or collaboration between these institutes is sometimes 
preferred when both national and indicated prevention are considered, as earlier 
for PCV13 (PCV13 could then not qualify as indicated prevention due to insufficient 
evidence on its effectiveness in high-risk groups) (Dutch Health Council and Dutch 
National Healthcare Institute, 2018). These organizations have different approaches 
regarding cost-effectiveness thresholds, which we both consider since ICERs for both 
general strategies and strategies only including higher risk groups are updated. 

The Dutch Health Council typically applies a fixed threshold of €20,000 per QALY. 
Cost-effectiveness thresholds used in reimbursement decisions by the Dutch 
National Health Care Institute vary by severity of disease as based on the principle 
of proportional shortfall (Zwaap et al., 2015). Proportional shortfall generally reflects 
the (average) health lost in a population treated. The proportional shortfall is a ratio 
between the difference in remaining QALYs between an affected individual without 
the new treatment and population averages for individuals of the same age and gender 
(i.e. QALYs lost due to being affected), divided by the remaining QALYs of population 
averages for remaining QALYs of individuals of the same age and gender. For a 
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proportional shortfall within 0.1 and 0.4 (where one thus lost 10-40% of otherwise 
lived health), a threshold of €20,000 applies; within 0.41 and 0.7, a threshold of 
€50,000 applies, and within 0.71 and 1.0, a threshold of €80,000 per QALY applies. 
A proportional shortfall below 0.1 would be too low for the treatment to be eligible for 
reimbursement (Zwaap et al., 2015; Reckers-Droog et al., 2018). 

The calculation of severity of illness is relatively complicated in prevention since 
effects are typically further in the future, more uncertain, and affect only a part of the 
treated population, leading to questions on what point of time should be measured (at 
vaccination or when the benefit occurs) and whether proportional shortfall should be 
measured in the population that gets the disease or in the entire vaccinated population 
(Stolk et al., 2004), (Dutch National Healthcare Institute, 2018). The current guide is to 
estimate proportional shortfall at the time of the intervention and for the share of those 
vaccinated who would get the disease (Dutch National Healthcare Institute, 2018). 
For estimating average proportional shortfall, we thus estimated the undiscounted 
quality-adjusted life-expectancy (QALE) at different ages for the full population and 
for those expected to fall ill without vaccination at time of vaccination, for all using the 
survival and utility information as used in the original study. We calculated average 
proportional shortfall rather than proportional shortfall for the average ages, since 
different vaccination strategies considered different risk-groups with different related 
QALE within these groups.

Results
Cost estimates
Table 1 shows the estimates of UMC and NMC for the different risk-groups for each 
first age in a cohort. Estimates are provided for UMC in the last year, other years, and 
on average (average of decedent and survivor costs, considering mortality). The cost 
adjustments for risk show large differences between costs for the different risk groups. 
At age 18, the average UMC for the high-risk group are almost 4 times the costs for 
the medium-risk group and 15 times the costs for the low-risk group. UMC for the 
medium-risk group are then almost 4 times the costs for the low-risk group (high-
risk €32,010; medium-risk €8.592; low-risk €2,181). The differences in costs between 
risk groups gradually decline with age. The costs for the high-risk group eventually 
become smaller than those for the medium-risk group. At age 85, the ratio of costs of 
medium to high is 1.1. The ratio of high to low is then 1.4 and of medium to low is then 
1.6 (high-risk €25,276; medium-risk €28,250; low-risk €17,581). Overall, these results 
show increasing healthcare expenditures by age, except for the high-risk group, where 
average and survivor costs in lower and highest ages are highest. Decedents costs in 
the high-risk group show a hump-shaped pattern, for which an important factor is the 
large share of costs for treating lymph and blood cancers for this risk-group, for which 
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per capita costs for decedents increase until approximately age 60 and then decrease. 
The estimates of the different costs by age and risk-group show a hump-shaped pattern 
in NMC, indicating highest NMC in middle ages. 

Table 1: Unrelated medical costs (UMC) for decedents, survivors, and on average; and non-
medical consumption (NMC) (all in €), by risk group and for first age in cohorts.

Age

Cost category Risk group 18 50 65 75 85

UMC decedents Low 8,736 23,399 29,422 32,906 42,170

Medium 28,938 31,917 41,020 44,048 59,547

High 85,770 128,203 174,370 106,932 72,876

UMC survivors Low 2,180 2,941 4,054 6,475 15,050

Medium 8,576 6,071 7,438 10,810 23,779

High 31,711 18,232 13,264 12,877 20,536

UMC average Low 2.181 2,997 4,343 7,233 17,581

Medium 8.592 6,262 8,126 12,423 28,250

High 32,010 20,543 17,424 16,629 25,276

NMC All 19,337 22,279 22,019 20,274 18,801

Impact future costs on ICERs for preventing fatal cases
Figure 1 shows the impact of the inclusion of future UMC and NMC on the ICER for 
preventing fatal cases at different ages and for different risk groups. The impact of 
including UMC is relatively stable up until the age of 60 for all risk groups, where after 
it grows rapidly. Up until the age of 60, the impact of inclusion of UMC for the high-
risk group is relatively large in comparison to both the low- and medium-risk group. 
Thereafter, the impact for the medium-risk group grows more rapidly than the impact 
for the high-risk group, and the impact for the medium-risk-group is larger than for 
the high-risk group from around age 80. The impact of including NMC is relatively 
stable and changes little in the relative impact of including future costs on the ICERs 
for the different risk groups. Including NMC mainly results in an upward shift of the 
curves. In Figure A.1 in section 6.3 in the appendix an additional graph is shown only 
including UMC.
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Figure 1: Impact future unrelated medical costs and non-medical consumption on ICER for 
saving a life by age and risk group

Impact future costs on cost-effectiveness vaccination strategies
The first columns in Table 2 display the impact of the inclusion of future UMC and NMC 
on the ICER for the different vaccination strategies. For the base-case strategy (the full 
65-74 cohort), the impact of UMC and NMC was €19,383 and €17,151, respectively. 
The middle columns in Table 2 show the original ICER and the ICERs after including 
the different types of future costs. For the base-case strategy, the ICER before inclusion 
(adjusted to 2017 prices) was €9,157. After including UMC, the ICER was €28,540 
and after including both UMC and NMC, the ICER was €45,691. These columns also 
show the relative ranking of vaccination strategies before and after including future 
costs in terms of cost-effectiveness. Most notable difference in the ranking before and 
after inclusion is for the strategy including those at medium risk in the 65-74 cohort. 
This strategy is the 5th most cost-effective before and the most cost-effective after the 
inclusion of future UMC. Also including future NMC to the ICERs had little additional 
impact on the ranking. 

The last column in Table 2 shows the cost-effectiveness thresholds based on the average 
proportional shortfall in the vaccination strategies. According to this, the €20,000 
threshold would apply for all but the strategy including those at low risk in the 65-74 
cohort. For that strategy, the proportional shortfall would be too low for the strategy to 
be eligible for reimbursement. For the strategies considered in this study there would 
thus be no difference between the threshold to apply for national prevention (fixed at 
€20,000) and for indicated prevention which would only include higher risk groups. 
The relatively small differences between the proportional shortfall in the strategies 
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with high- and/or medium-risk groups can be explained from the similar utility values 
that are used in the different risk groups. Would lower utility values have been used for 
higher risk groups, the proportional shortfall might have been higher which could have 
resulted in higher relevant thresholds. 

Table 2: Impact future costs on the ICER, ICER before and after inclusion, and cost-effectiveness 
threshold based on proportional shortfall for different vaccination strategies (all in €)

UMC Impact ICERs
(rankinga)

Thresholds
(proportional 

shortfall)cNMC Originalb Original 
+ UMC

Original 
+ UMC + 

NMC
Vaccination 
strategy

65-74-all 
(base-case)

 19,383  17,151 9,157   
(8)

28,540  (7) 45,691  
(7)

20,000
(0.15)

65-74-low  7,519  13,347 53,142   
(12)

60,660  
(12)

74,008  
(12)

0
(0.02)

65-74-medium  17,324  16,939 3,041   
(5)

20,365  (1) 37,304  
(1)

20,000
(0.20)

65-74-high  22,716  17,814 -1,612   
(1)

21,104  (2) 38,917  
(3)

20,000
(0.19)

65-74-at risk  20,155  17,398 1,175   
(2)

21,331  (3) 38,729  
(2)

20,000
(0.20)

65plus-at risk  24,035  17,445 4,835   
(6)

28,870  
(8)

46,314  
(8)

20,000
(0.17)

65plus-all  23,159  17,222 13,684   
(10)

36,842  
(11)

54,064  
(11)

20,000
(0.14)

50plus-at risk  20,665  17,111 2,778   
(4)

23,442  (5) 40,554  
(5)

20,000
(0.18)

50plus-all  19,422  16,828 13,732   
(11)

33,154  
(10)

49,982  
(10)

20,000
(0.13)

18plus-at risk  19,921  16,658 2,429   
(3)

22,350  (4) 39,008  
(4)

20,000
(0.18)

65plus-all & 
18-64-at risk

 19,594  16,564 7,968   
(7)

27,562  (6) 44,126  
(6)

20,000
(0.14)

50plus-all & 
18-49-at risk

 18,922  16,455 12,406   
(9)

31,328  (9) 47,783  
(9)

20,000
(0.14)

a Ranking of ICERs based on cost-effectiveness
b ICER from the original study adjusted to 2017 prices
c Proportional shortfall and corresponding threshold (0 for 0-0.09; 20,000 for 0.1-0.4; 50,000 for 0.41-
0.7; 80,000 for >0.7) 

In Table A.2 in section 6.3 in the appendix we also provide the impact of including 
UMC and NMC and the thresholds based on proportional shortfall for the different 
risk groups and age cohorts (compared to Table 2 with the information per vaccination 
strategy). Comparing this to Table 2, it clearly shows that the impact of the higher risk 
groups is limited by the smaller relative share of these groups within the strategies.
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Discussion and conclusion
Saving lives by preventing illnesses may lead to costs and benefits in added life-years 
from medical and non-medical consumption and increased productivity. This study 
showed that the additional medical and non-medical costs in the context of vaccination 
can be substantial, especially for people at higher risk of infection due to underlying 
health conditions for which medical treatment is needed. Considering these costs in 
CEA can lead to interventions no longer being cost-effective when judged against a 
relevant threshold. This threshold is typically relatively low in the Netherlands for 
national prevention, but also for indicated prevention when based on average severity 
of illness. While a higher threshold may apply for risk groups with a higher severity of 
illness, this could be offset by the related higher healthcare costs and lower quality of 
life in those groups. Hence, inclusion of future costs may also then indicate that these 
interventions are not cost-effective. 

An important strength of this study is that we adjusted UMC based on the underlying 
health conditions for those at higher risk of infection. As the costs related to those 
conditions will be incurred only by those suffering from these conditions, this approach 
provides more realistic estimates of UMC for the different risk groups. In comparable 
research, typically the average per capita healthcare expenditures are used (e.g., 
(Ratushnyak et al., 2019; Meltzer et al., 2000c; Kruse et al., 2012)). We further discuss 
the impact of inclusion in relation to the relevant cost-effectiveness thresholds. While 
highlighting the impact on the ICER of including future UMC and NMC is already 
important, the potential effects of inclusion on final (reimbursement) decisions is also 
crucial, which in part depends on the thresholds applied in the decision-making process. 

A limitation of our study is that we did not have access to the original models. We 
therefore estimated how QALYs gained would be distributed over time using a 
simplified replication of the original model based on the information provided in the 
original paper. This resulted in somewhat different numbers of total cases and QALYs 
gained for the different vaccination strategies, partly due to missing information on 
the transition to higher risk-groups. Although using the original models may change 
our results somewhat, it is not expected this would substantially affect our conclusions. 
Indeed, the costs for saving a life in the different age and risk groups already highlighted 
the large impact inclusion can have on results. 

Another limitation is related to the prevalence for the risk groups in the original study, 
which was determined by age- and risk. When adjusting UMC from per capita to per 
patient costs, this led to discontinuities in costs by age around the bounds of the age-
groups. A more gradual change in prevalence would have enabled more accurate estimates 
of per patient costs. However, given the information available, these per patient costs are 
presumably more accurate for these risk-groups than per capita estimates, given that the 
diseases for which those costs arise occur per definition within these risk-groups. 
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Further, the utility estimates in the original study were based on age-specific estimates 
in the general Dutch population, resulting in relatively high utility scores for all risk-
groups. Since the people in higher risk-groups suffer from one or several medical 
conditions, it is likely that their quality of life is lower than for those in lower risk-
groups. Lowering the denominator of the ICER, these QALY differences would (further) 
increase the differences in impact of including more future costs on the ICER between 
lower and higher risk groups. Different utility values for different risk groups also 
directly affect the severity of illness (expressed as proportional shortfall) calculations 
and might also affect the relevant thresholds when this approach would be followed. 

Finally, we used point estimates from the original study in our analysis as no detailed 
information on distributions was available. Future research ideally would also consider 
uncertainty around the estimates for a more comprehensive analysis.  Finally

The results of this study have important implications for the CEA of vaccination. First, 
we demonstrated that obtaining risk group specific estimates of future costs is feasible. 
This study could be used as an aid for that purpose next to the practical guidance 
provided with PAID 3.0 (Kellerborg et al., 2020). Furthermore, as it was shown that 
the impact of future costs for vaccination strategies can be substantial, these costs 
cannot be simply ignored (even if inclusion poses important normative questions). 
This study showed that differences in the impact between risk groups can be large and 
considering these differences is important for studies where strategies are designed 
that include different risk groups based on their current health. 

The potential of the inclusion of future costs to affect reimbursement decisions may 
have distributional consequences, not only across interventions, but also within. For 
instance, it could be that vaccination of people in the high-risk groups will not be cost-
effective, while vaccination of people in lower risk groups is. This may result in and 
increase existing health inequalities. These results may reinforce ethical concerns 
related to the inclusion of future costs (and indeed other costs). One could argue that 
when including future costs, some people might no longer be eligible for treatment, 
which may be considered undesirable. Such concerns clearly need to be addressed. 
However, ignoring real costs may be considered an inappropriate strategy in dealing 
with these issues. Not only because this would ultimately harm other groups in society, 
but because ignoring costs would not even allow assessment of the extent to which 
this would be the case. Ignoring these costs would moreover endanger the quality and 
usefulness of CEA. Ethical concerns would preferably be explicitly incorporated in the 
evaluation and decision-making process (de Vries et al., 2018). For instance, if deemed 
appropriate, higher thresholds could be used for prevention or for specific high-risk 
groups when this accurately represents societal preferences and policy purposes. 
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Although including future costs may result in ICERs above the relevant threshold, this 
represents the relevant estimate of costs and effects of the intervention. Not including 
these costs does not mean they will not occur. Moreover, the ICER can be influenced 
by altering the price of the vaccine. As an example, the original study showed that 
lowering the price of the vaccination would make the base-case strategy cost-saving 
and cost-effective judged by the €20,000 threshold, also after including future UMC. 
Further price reductions would be required for the strategy to be cost-effective when 
including both future UMC and NMC. In that context patent status is also important, 
as average drug prices often drop after its expiration (Vondeling et al., 2018) (note that 
the patent of the studied vaccine has not yet expired (European Patent Office, n.d.)).

This study left several questions for further research. First, while we adjusted UMC for the 
different risk groups based on underlying health conditions in our study, we did not adjust 
NMC. However, it is not unlikely that illness also affects NMC to some extent (Finkelstein et 
al., 2013). As existing research reported different findings for the health state dependency 
of NMC, future research should further explore the impact of potential differences. 

In our study, we further did not focus on future productivity costs as these were 
already included in the original analysis. These were estimated using the friction costs 
method (limiting added productivity to the friction period which is the period required 
to replace an absent worker) and could reach a maximum of €13,460 for persons 
between 15-49 and €15,605 for persons between 50-64. Previous studies, using the 
human capital method (not considering the possibility of replacement and counting 
all added productivity during the remaining lifetime) have shown that including future 
productivity costs could result in a lower ICER after including future costs for relatively 
young adults (during working ages) (e.g., (Meltzer et al., 2000c; Kruse et al., 2012)). 
Future research could investigate the differences between existing approaches to 
estimate productivity costs in the context of preventing mortality. 

Finally, although this was not the focus of this paper, we want to note the ongoing 
discussion on what costs should be considered in CEA. The issue currently under debate 
is whether the benefits of future non-medical costs are fully captured in the QALY, and, 
if this is not the case, what this implies for including future non-medical costs (de 
Vries et al., 2018). It has been argued that, when benefits from NMC and losses from 
less leisure due to additional productivity in terms of utility are not fully captured in 
the QALY, the costs thereof should not be considered either (Nyman, 2004b). It is also 
unclear to what extent thresholds to which ICERs are compared include these benefits 
(de Vries et al., 2018). Further research into these issues is therefore recommended. 

To conclude, in this paper we estimated the impact of including future UMC and NMC 
in the CEA of vaccination with PCV13 against pneumococcus disease. It was shown 
that the inclusion of these costs has a substantial effect on the ICER, especially when 
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people at higher risk with underlying health conditions are saved. Given this impact, 
interventions that were first projected to be cost-saving, were shown to be cost-
ineffective after inclusion, when judged against relevant thresholds. Although this 
indicates the need to consider ethical considerations regarding how to deal with such 
situations, especially when they could exacerbate health inequalities, ignoring these 
real medical and societal costs does not solve the underlying issue and is not in line 
with optimizing outcomes with limited resources. 
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Supplemental Material
Per capita costs to per patient costs
To consider different future unrelated medical costs (UMC) for the people in different 
risk groups, we needed to transform the per capita estimates from PAID 3.0 to per 
patient estimates for the costs for diseases indicating increased risk of pneumococcus 
infection. More specific, average costs as the division of healthcare costs for the entire 
population by the number of people in the population (per capita/unconditional) 
needed to be transformed into average costs as the division of total healthcare costs 
for the diseases by the number of patients suffering from the disease (per patient/
conditional). Equation A.1 shows this relation by presenting total healthcare 
expenditures for disease i at age a (hcei (a)) as average costs for disease i at age a, 
conditional on having disease i (, multiplied by the number of patients having the 
disease at age a and as average costs for disease i at age a, multiplied by the entire 
population at age a.

1 (notations for age and risk-group are left out): 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	
∆	[𝐿𝐿𝐿𝐿	 × (𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃)]

∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
+	

∆𝐿𝐿𝐿𝐿	 × 𝑈𝑈𝑈𝑈𝑈𝑈
∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

+	
∆𝐿𝐿𝐿𝐿	 × 	𝑁𝑁𝑁𝑁𝑁𝑁
∆	𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

 
 (eq. 1) 

Original ICER  Impact. UMC  Impact NMC 

disease at age a and as average costs for disease i at age a, multiplied by the entire population at age a. 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡	ℎ𝑐𝑐𝑐𝑐!(𝑎𝑎) = 	𝑎𝑎𝑐𝑐!(𝑎𝑎|𝑖𝑖) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝!(𝑎𝑎) = 𝑎𝑎𝑐𝑐!(𝑎𝑎) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎) (eq.A.1) 

revalence of disease i at age a. 

𝑎𝑎𝑐𝑐!(𝑎𝑎|𝑖𝑖) =
𝑎𝑎𝑐𝑐!(𝑎𝑎)
𝑝𝑝!(𝑎𝑎)
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(eq.A.3) 

(eq.A.4) 

Equation A.5 and A.6 show how we obtained age and disease specific per patient costs 
for decedents and survivors, based on the relations described in equation A.2, A.3, and 
A.4. For this, we used the survival information for the specific risk groups as used in the 
original study and the population mortality from Statistics Netherlands as used in PAID.



147

Don’t Forget About the Future

7

the original study and the population mortality from Statistics Netherlands as used in PAID. 

𝑚𝑚(𝑎𝑎) × 𝑑𝑑𝑑𝑑!	(𝑎𝑎) = 𝑑𝑑𝑑𝑑!	(𝑎𝑎|𝑖𝑖) × 𝑝𝑝! × 𝑚𝑚(𝑎𝑎|𝑖𝑖) 

=> 

(eq. A.5) 

𝑑𝑑𝑑𝑑!	(𝑎𝑎|𝑖𝑖) =
𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 𝑑𝑑𝑑𝑑!

𝑝𝑝!(𝑎𝑎𝑎𝑎𝑎𝑎  (𝑎𝑎|𝑖𝑖)
=

𝑑𝑑𝑑𝑑!(𝑎𝑎𝑎

𝑝𝑝!(𝑎𝑎𝑎𝑎
𝑚𝑚(𝑎𝑎|𝑖𝑖)
𝑚𝑚𝑚𝑚𝑚𝑚

(1 −𝑚𝑚(𝑎𝑎)) × 𝑠𝑠𝑠𝑠!	(𝑎𝑎𝑎𝑎  𝑠𝑠𝑠𝑠!	(𝑎𝑎|𝑖𝑖) × 𝑝𝑝! × (1 −𝑚𝑚(𝑎𝑎|𝑖𝑖)) 

=> 

(eq. A.6) 

𝑠𝑠𝑠𝑠!	(𝑎𝑎|𝑖𝑖) =
(1 −𝑚𝑚(𝑎𝑎)) 	× 𝑠𝑠𝑠𝑠!

𝑝𝑝!(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   (𝑎𝑎|𝑖𝑖))
= 	

𝑠𝑠𝑠𝑠!(𝑎𝑎𝑎

𝑝𝑝!(𝑎𝑎𝑎𝑎
(1 −𝑚𝑚(𝑎𝑎|𝑖𝑖))
(1 − 𝑚𝑚(𝑎𝑎))
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Matching ICD codes
Table A.1: Matched diseases and ICD-10 codes from different sources

Risk 
group

Condition 
original study

UK study ICD-10 PAID

M
ed

iu
m

Alcoholism Not included Drug and Alcohol Dependence

Cerebrospinal fluid 
leaks

Individuals 
with 
cerebrospinal 
fluid leaks

G96.0 Other diseases of the nervous 
system and sense organs

Chronic 
cardiovascular 
disease

Chronic heart 
disease

I05,I06,I07,I08,I09,I11,I12,I13,
I20,I21,I22,I25,I27,I28,I3,I40,I
41,I42,I43,I44,I45,I47,I48,I49,
I50,I51,I52,Q2

Hypertension; coronary heart 
disease; heart failure, other heart 
disease, including pulmonary 
circulation; congenital anomalies 
of nervous system

Chronic pulmonary 
disease

Chronic 
respiratory 
disease

J40,J41,J42,J43,J44,J47,J6,-
J7,J80,J81,J82,J83,J84,Q30,-
J31,Q32,Q33Q34,Q35,Q36,Q37

Asthma and chronic obstructive 
pulmonary disease (COPD); 
other respiratory diseases; other 
congenital anomalies, excluding 
Down's syndrome

DM with insulin DM Diabetes E10,E11,E12,E13,E14,E24,G59
.0,G63.2,G73.0,G99.0,N08.3
,O24, P70.0,P70.1,P70.2

Diabetes mellitus including 
diabetic complications; other 
endocrine, nutritional and 
metabolic diseases; other diseases 
of the nervous system and 
sense organs; pregnancy; other 
conditions originating in the 
perinatal period

DM without insulin Diabetes E10,E11,E12,E13,E14,E24,G59
.0,G63.2,G73.0,G99.0,N08.3
,O24, P70.0,P70.1,P70.2

Diabetes mellitus including 
diabetic complications; other 
endocrine, nutritional and 
metabolic diseases; other diseases 
of the nervous system and 
sense organs; pregnancy; other 
conditions originating in the 
perinatal period
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Risk 
group

Condition 
original study

UK study ICD-10 PAID

H
ig

h

AIDS not included B20,B21,B22,B23,B24 HIV/AIDS

Functional or 
anatomic asplenia

Asplenia or 
dysfunction of 
the spleen

D73,D56.1,D57.8,D57.0,D57.
1,K90.0

Diseases of the blood and blood-
forming organs; other diseases of 
the digestive system

Chronic liver 
disease

Chronic liver 
disease

K70,K71,K72,K73,K74,K75,K76
,K77,P78.8,Q44

Chronic liver disease and 
cirrhosis; other liver diseases; 
other conditions originating in 
the perinatal period

Chronic renal 
failure

Chronic 
kidney disease

N00,N01,N02,N03,N04,N05,N
07,N08,N11,N12,N14,N15,N16,
N18,N19,N25,Q60,Q61

Nephritis and nephropathy; acute 
renal and urinary infections; 
other renal and urinary diseases; 
other congenital anomalies, 
excluding Down's syndrome

Malignancy Malignancies 
affecting 
the immune 
system:

C81,C82,C83,C84,C85,C88,C9
0,C91,C92,C93,C94, C95,C96

Other lymphoid cancer and 
leukemia; non-Hodgkin's disease

Bronchial 
obstruction due to 
primary lung cancer

C34 Lung cancer

Hodgkin C81.90 Other lymphoid cancer and 
leukemia

Human 
immunodeficiency 
virus infection

B20,B21,B22,B23,B24 HIV/AIDS

Leukemia Malignancies 
affecting 
the immune 
system:

C81,C82,C83,C84,C85,C88,C9
0,C91,C92,C93,C94, C95,C96

Other lymphoid cancer and 
leukemia; non-Hodgkin's disease

Lymphoma Malignancies 
affecting 
the immune 
system:

C81,C82,C83,C84,C85,C88,C9
0,C91,C92,C93,C94, C95,C96

Other lymphoid cancer and 
leukemia; non-Hodgkin's disease

Multiple myeloma C90 Other lymphoid cancer and 
leukemia

Receipt of 
immunosuppressive 
therapy

Conditions 
affecting 
the immune 
system:

D56.1,D57.8,D57.0,D57.D61,D
70,D71,D72,D73,D76,D80,D81,
D82D 83,D84, 1,K90.0

Diseases of the blood and blood-
forming organs; other endocrine, 
nutritional and metabolic 
diseases; other diseases of the 
digestive system

Receipt of an organ/
bone marrow 
transplant

Transplanta-
tions:

Z94,Z85, (Bone marrow 
transplants: Z94.8)

Not allocated
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Investments aimed at preventing infectious diseases, or at mitigating their consequences, 
occur both within and outside the healthcare sector. Moreover, (preventing) infectious 
diseases can have consequences within and outside the health care sector as well as in 
both the short and the long run. Therefore, when evaluating the costs and benefits of 
interventions aimed at preventing or treating infectious diseases adopting a societal 
perspective is warranted. The COVID-19 outbreak and the measures taken to counter 
it may exemplify this. This dissertation aimed to apply the societal perspective in 
economic evaluations within the field of infectious diseases. First, the current practice 
of conducting economic evaluations of infectious diseases was explored. Then, some 
methodological challenges encountered when one aims to apply a societal perspective 
in practice were addressed. Finally, the consequences of the wider operationalization 
of the perspective on study results and related distributional issues were studied. 

In this chapter, we present our main findings related to the research questions posed in 
the introduction and discuss the limitations and implications of our findings.

Findings 
Question 1: What is the current practice of inclusion of costs and benefits in 
economic evaluations of interventions aimed at infectious diseases?
In chapter 2, we reviewed the literature to answer how the societal perspective is 
applied in cost-effectiveness analyses of interventions combatting and preventing 
pandemics. Here, we did not find a uniform approach to the operationalization of the 
societal perspective. The studies included in the review differed in the time horizon 
used, as well as the costs and benefits included. Although differences in national 
guidelines on economic evaluations might explain some of these differences, we 
also observed differences between studies conducted in the same country. Besides 
issues of standardization, the perspective was often operationalized in a way that was 
considered to be too narrow to capture all relevant costs and effects of an outbreak. 
This could lead to biased estimates of cost-effectiveness. Furthermore, the time 
horizon chosen was often too short to fully capture the full societal costs and effects of 
an intervention. Studies that used a longer time horizon did capture the future health 
gains of the interventions studied but did not balance these effects with the inclusion 
of future costs that would occur within the applied time horizon. When future costs 
were included, usually only production gains were included, while the costs of non-
medical consumption were ignored. These results indicate that current economic 
evaluations may not capture all relevant societal costs and benefits, and therefore may 
misrepresent the desirability of policies aimed at preventing or mitigating outbreaks. 

Using the common (incomplete) operationalization of the societal perspective and 
including only short-term medical costs and lifetime productivity gains, we conducted 
a cost-effectiveness study to explore the implications of that definition. In Chapter 3, we 
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therefore studied the timing of interventions against the West African Ebola outbreak. 
Here we found that the larger share of cost and effects were found in the long run from 
added life years and productivity gains. As these costs occur in the future they could 
only be captured within a broader definition of the societal perspective and would have 
been missed with a too narrow conceptualization and timeframe. This result was in 
line with the studies identified in the literature review. It also emphasized that using 
this incomplete operationalization of the societal perspective (i.e. only including 
future health and productivity gains), evaluations may misrepresent the actual cost-
effectiveness of interventions and likely underestimate incremental cost-effectiveness 
ratios, especially of life-prolonging interventions.

Question 2: How can the current methods for the estimation and inclusion 
of broader costs in economic evaluations of infectious disease interventions 
be improved?
The results from Chapter 2 suggested that the operationalization of the societal 
perspective in practice is often (too) narrow and does not account for costs and effects 
in the long term. This may be perceived as a shortcoming when trying to evaluate the 
full societal impact of an intervention since only a minority of the total costs occur in 
the short term. This latter point was confirmed in Chapter 3 where, using the example 
of interventions against the West African Ebola outbreak, we showed that the largest 
share of costs and effects are to be found in the longer term, i.e. in the added life-years 
resulting from an intervention. A common denominator of all studies included in the 
literature review was that they did not include future unrelated medical costs or the 
costs of non-medical consumption in life-years gained. However, these costs should 
be included if the aim underlying economic evaluations and subsequent decisions is to 
maximize social welfare (Meltzer, 1997a). Hence, decisions based on partial evidence 
can potentially lead to allocations not supporting the goal of maximizing welfare. We 
decided to add to the literature on the societal perspective by introducing practical 
methods that facilitate the inclusion of future costs in economic evaluations. 

Within the broad category of future costs, the least studied cost category is the cost of 
non-medical consumption (de Vries et al., 2018). In Chapter 4, we borrowed methods 
from the economic literature on life-cycle consumption and estimated age-dependent 
costs of non-medical consumption adjusted for age-period-cohort effects (Alessie and 
Ree, 2009; Fernández-Villaverde and Krueger, 2007), and economies of scale related 
to consumption within households (Nelson, 1988). These effects have not previously 
been considered in estimates of these costs for use in economic evaluations. We found 
that in deriving these estimates, the role of cohort effects was limited while household 
economies of scale were quite influential. Previously published literature has 
disregarded the effect of household economies of scale and by doing so overestimated 
the impact of non-medical consumption on the ICER (Kruse et al., 2012; Manns et al., 
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2003b; Meltzer, 1997a; Meltzer et al., 2000b). When estimating future non-medical 
costs we observed a clear age pattern where costs peaked at middle age and decreased 
at older age, which was also reported in previous studies (Alessie and Ree, 2009; 
Fernández-Villaverde and Krueger, 2007).

To facilitate the inclusion of future costs in practice, we updated existing tools aiming 
to standardize the inclusion of future costs in economic evaluations (van Baal et al., 
2011c). Using recently published data, we produced ready-to-use Dutch estimates 
of future related and unrelated medical costs, adjusted for time to death which is of 
importance (Zweifel et al., 1999b), as well as estimates of non-medical consumption 
costs by age. 

Question 3: What are the implications of broadening the perspective of 
economic evaluations of infectious disease interventions?
We explored the implications of broadening the perspective in economic evaluations 
by assessing the consequences of including costs in life years gained. The exact size and 
direction of the impact on the ICER depend on the intervention studied, the type of costs 
included, as well as the population served with the intervention. Consequently, this can 
result in different reimbursement decisions being made. Although some interventions 
might be less cost-effective if future costs are included, other interventions will be 
relatively more cost-effective. On balance, decisions based on cost-effectiveness 
results including future costs will result in  a higher level of social welfare (Meltzer, 
1997a) which, ultimately, is the aim of applying the societal perspective in economic 
evaluations (Jönsson, 2009).

In Chapter 3 we found that as the interventions combating the Ebola outbreak would 
result in in life years gained at ages in which people are most productive including 
productivity gains would cause the interventions to even become cost saving. Here, it 
should be noted that we used the Human Capital approach which generally generates 
higher estimates of productivity gains than the Friction Cost Method (Krol et al., 
2013; Pritchard and Sculpher, 2000). Including the costs of medical and non-medical 
consumption, in contrast, increased the estimated ICER as demonstrated in Chapters 
4 to 7. In general, our results follow a pattern of increased ICERs by approximately 
€10,000 for the middle-aged and younger and approximately €20,000 for the 
older age groups. An important reason for this age pattern is that if life is extended 
at old age life years will generally be spent in a lower quality of life. We showed in 
Chapters 6 and 7 that this age effect is strengthened by the fact that costs of medical 
consumption increase strongly with age even if one accounts for the fact that most 
medical consumption is centered in the last phase of life. Furthermore, in Chapter 
7 we showed that the impact of future medical costs on the ICER is much larger if 
life is extended in an already ill population. In Chapter 6, we investigated the impact 
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of including non-medical costs on the ICER across different socioeconomic groups. 
Although higher educated generally consume more they also enjoy a higher quality 
of life and are less often single at old age. On balance, these observations cause that 
the impact of including future non-medical costs is rather similar across different 
educational groups.

Limitations
In each chapter of this thesis, we discussed the studies' individual limitations. In this 
section, we discuss the overall limitations of this thesis in relation to its overall aim. 
Many of the contributions included in this thesis have focused on the inclusion of 
future costs in economic evaluations which are of particular relevance when evaluating 
interventions aimed at preventing infectious diseases. However, we do note that these 
costs constitute only a part of the full societal impact of preventing infectious diseases 
and are only a small part of the full impact of a pandemic as has been illustrated by the 
Covid-19 pandemic. In itself this focus on particular aspects of economic evaluations 
can be seen as a limitation of this thesis. However, also specifically related to the topics 
addressed in the different chapters, several additional overarching limitations need to 
be discussed.  

A first limitation concerns the generalizability of the presented results. Care must be 
taken when generalizing the results of Chapters 4, 5, and 6 since we only used Dutch 
data. Absolute values will often be difficult to translate to other settings, but trends may, 
arguably, be more generalizable to other (similar) countries and contexts. For instance, 
the age effect of consumption can be expected to be relatively similar in other high-
income countries as previously has been indicated (Domeij and Johannesson, 2006; 
Fernández-Villaverde and Krueger, 2007). Similarly, the importance of household size 
when estimating non-medical consumption, which also has been observed previously 
and in other geographical settings (Nelson, 1988), is also likely to be relevant in other 
countries. In line with this, the methods we developed and employed could also be 
used to analyze data from other countries to produce comparable estimates. In a 
similar vein, the clustering of healthcare costs in the last phase of life is also well known 
internationally (Zweifel et al., 1999b). Notwithstanding this, other results presented in 
this thesis, such as the limited significance of elements such as educational attainment, 
may prove to be less transferable to other countries. This may, for instance, play a 
bigger role in countries with a system with less redistribution of wealth through taxes 
or subsidization of services and where the income inequality is larger. 

Another limitation that needs to be highlighted relates to limitations of the data used 
in different chapters. In Chapter 3, we modeled the Ebola Virus disease epidemic 
using publicly available data on cases from the WHO weekly situation reports and 
gathered information regarding the available beds from various sources such as news 
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media, notification reports, and UN situation reports. The case data may be a source 
of uncertainty as these were collected during an intense epidemic in a country with 
an already strained healthcare system and limited monitoring capacity. Moreover, we 
had to make several strong assumptions to model the long-term costs and effects of 
preventing the spread of Ebola. In Chapters 4,5 and 6, we used a rich dataset spanning 
multiple years allowing us to adjust for potential biases such as age, cohort, and period 
effects when estimating non-medical consumption. However, our findings suggested 
that consumption has increased with time. In that context it is important to stress 
that the latest available data in our study was from 2005, which may have resulted 
in an underestimation of the current consumption levels even though we adjusted 
for increases in price levels. Moreover, the global economy has experienced two large 
recessions which may not only affect an otherwise monotonous positive trend but also 
have distributional consequences if socioeconomic groups were affected differently by 
the recessions. This is especially relevant for our findings in Chapter 5 with respect to 
the differences in consumption between educational groups.

While we have tried to explore the role of future costs in a broad sense, still we did 
not investigate all relevant aspects. Productivity costs are one of the aspects we did 
not explore in much detail but may, nonetheless, have a substantial impact on the 
ICER when including future costs. The estimation and inclusion of productivity costs 
in economic evaluation do however receive relatively much attention in the literature 
compared the types of future costs more prominently addressed in this thesis, and are 
also more commonly included in economic (de Vries et al., 2018; Krol et al., 2013). In 
Chapter 7 we updated a study that already included productivity costs estimated using 
the Friction Cost Method. The inclusion of future non-medical consumption resulted 
in an increase of the ICER, as the costs of non-medical consumption in life years gained 
were larger than the productivity gains for all age groups. It could be the case that if the 
human capital method was used to estimate production costs, this would not have been 
the case. Indeed, the human capital method usually results in much higher estimates 
of production gains than the friction cost method (as also was illustrated in Chapter 3). 

Implications
Research implications
In this thesis, we have provided methods for estimating and including future costs 
in economic evaluations and explored some of the implications of including these 
costs. While our estimates of future medical costs build on a large empirical literature 
investigating the relation between age, health and health care use, this is not the case 
for our estimates of non-medical costs. The relation between health and non-medical 
consumption has remained relatively underexplored. Here, we see important areas for 
future research. First of all, there is a large literature on the relation between age, time 
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to death and health care use indicating that time to death is relevant when explaining 
health care use (Weaver et al., 2009; Werblow et al., 2007; Wong et al., 2011a; Zweifel 
et al., 1999b). It could be the case that in explaining non-medical consumption time 
to death could be a useful proxy for health as it has been argued that poor health 
might explain the decrease in non-medical consumption at old age (Finkelstein 
et al., 2013).  More generally, the impact of health on non-medical consumption is 
relevant for economic evaluation. Until now, the debate regarding the inclusion of 
non-medical consumption costs has focused solely on these type of costs in added life 
years. What was not explored in this thesis, is the relationship between health state 
and non-medical consumption. This may be relevant for interventions that extend life 
but result in different levels of quality of life (Finkelstein et al., 2009; Gyrd-Hansen, 
2016). Empirical studies on the impact of health on non-medical consumption have 
been inconclusive and the question whether non-medical consumption is positively 
or negatively associated with health remains to be answered (Finkelstein et al., 2009; 
Gyrd-Hansen, 2016).  

The approach in this thesis has been more practical than theoretical. However, there 
are also theoretical issues that need that need to be addressed in relation to the 
inclusion of future costs. One of the arguments against including future non-medical 
costs is that the benefits of this consumption are not included in the QALY, as common 
instruments to measure health-related quality of life do not contain domains that 
(explicitly) deal with the benefits of consumption (Nyman, 2004a). In a response to 
this reasoning, Gandjour (Gandjour, 2006a), among others, argued that there is an 
implicit inclusion when valuing health states. Furthermore, it is hard to disagree with 
the fact that when life is prolonged also food needs to be consumed. Moreover, when 
valuing future health, people will (implicitly) assume a particular standard of living 
in terms of housing and social activities. The associated costs would then need to be 
captured as non-medical consumption. Nonetheless, it is important to acknowledge 
that is remains unclear at this stage whether the utility derived from non-medical 
consumption is adequately accounted for in economic evaluation. Studies aimed at 
investigating whether and to what extent the utility from non-medical consumption 
is included in health state valuations would be beneficial to this debate and could 
contribute to the further optimization of economic evaluation methodology. 

Policy implications
This thesis has contributed to removing practical barriers for including future costs 
in economic evaluations. The work that we have performed, can also further the 
debate about the inclusion of future costs. Even among the countries in which a 
societal perspective is recommended, currently few guidelines explicitly recommend 
the inclusion of future costs (de Vries et al., 2018). The second US Panel on Cost-
Effectiveness in Health and Medicine in 2016 did recommend the inclusion of all future 
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costs, related and unrelated medical costs as well as future production and consumption 
(Sanders et al., 2016). Moreover, the Dutch guidelines changed in 2016 to prescribe the 
inclusion of a broader set of costs and the mandatory inclusion of future unrelated 
medical costs (Zorginstituut Nederland, 2016b). In contrast, the Swedish guidelines 
changed from inclusion of future costs to not prescribing mandatory inclusion of future 
costs (TLV, 2018). In the case of infectious diseases, recommendations regarding 
the type of models suitable to capture the transmission effects of the communicable 
nature of the diseases already exist (Pitman et al., 2012; Ultsch et al., 2016). However, 
when evaluating interventions targeted at infectious diseases  costs and benefits can 
accumulate for a long period after the intervention and transmission phase if lives are 
saved (e.g. childhood vaccination programs). As these costs and benefits not only fall 
within the healthcare sector the need for a broad societal perspective to capture these 
costs and effects has also been acknowledged (Christensen et al., 2020; Ultsch et al., 
2016) (Annemans et al., 2021). Therefore, more specific attention needs to be given 
to the role of future costs when developing guidance for the economic evaluation of 
interventions targeted at infectious diseases. 

If future costs are to be included in economic evaluations, several equity implications 
need to be considered. Inclusion of future costs will have a greater impact on the results 
of economic evaluations of life-saving interventions than on those of interventions 
that only improve quality of life. This may result in relatively less favorable ICERs of 
interventions that extend life and therefore in relative terms promote interventions 
aimed at improving quality of life. The discussion about including future costs in 
economic evaluations also fueled ethical debates on the distributional consequences 
of doing so. Interventions that extend lives of the elderly (and especially those who 
are already ill and have high unrelated medical spending) are most heavily impacted 
by the inclusion of future costs. Some have argued that because of this impact, these 
costs should be excluded from economic evaluations (Grima et al., 2012). However, 
rather than ignoring these real societal costs, it would be better, also in dealing with 
distributional consequences, to deal with them openly and explicitly. If interventions 
cause high future costs in certain patient groups, the question is whether society is 
willing to sacrifice more resources to yield health gains in that particular group, as 
these costs represent resources that only be consumed once and could otherwise lead 
to (more) health in others. Put it another way, estimates of future costs are a required 
input for an informed discussion on efficiency-equity trade-offs and in that context 
especially ignoring future costs might be viewed as unethical.  Additionally, increased 
ICERs as a result of including future costs, might also result in a downward pressure 
on prices of medical interventions.

Our results show that there is no commonly accepted or applied standard of which 
costs to include when adopting a societal perspective. For studies that are intended 
to inform HTA submissions, this may not be surprising as national guidelines on 
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economic evaluations differ in this respect. Initiatives for further standardization and 
harmonization of these guidelines have been taken, but these did not result in a broad 
practical consensus yet (Vella Bonanno et al., 2019) and hence remain important. 
Furthermore, especially for the type of diseases studied in this thesis country borders 
and local approaches to countering them less are less relevant and effective, as has 
become clear during the Covid-19 outbreak. Infectious diseases and outbreaks can 
quickly spread from country to country and continent to continent. This reduces the 
value of separate studies on a national scale as the consequences of larger outbreaks 
will often extend beyond the borders of specific countries. Therefore, attempting to 
reach international consensus on a clear set of core recommendations regarding how 
to evaluate interventions and diseases that have an impact across different countries, 
would be of great value. It could result in improved comparability and more practical 
use of the results of studies as well as improving the quality of separate studies.  

Conclusion
In this thesis I explored the current operationalization of the societal perspective in the 
field of infectious diseases and added to the literature by focusing on the estimation 
and inclusion of future costs. These costs are relevant in the context of life-prolonging 
interventions which will often be the case when evaluating the prevention and 
mitigation of outbreaks of infectious diseases. While much work remains to be done 
and numerous knowledge gaps to fill, I hope this thesis has contributed to the further 
development of economic evaluations in this context by addressing several practical 
issues related to the estimation and inclusion of future costs, and hence facilitating 
their inclusion in practice.
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Communicable diseases have caused a large disease burden throughout history. 
Improvements in disease surveillance, public health campaigns, and medical 
technologies have mitigated the impact of this burden in recent decades. However, 
the COVID-19 pandemic has shown that infectious outbreaks still pose a threat 
to population health and can cause large economic losses. To combat such threats,  
further investments in interventions that prevent and treat infectious diseases are 
needed. Such interventions will need to compete with other spending opportunities for 
finite (healthcare) resources. Cost-effectiveness analysis (CEA), where the incremental 
costs and benefits of healthcare interventions are estimated, can be used to support 
this prioritization and ensure efficient use of the healthcare budget. However, which 
costs are to be included in CEAs of interventions aiming to combat communicable 
disease is still a topic for debate. The focus of this thesis is to explore the methods used 
in the CEA of interventions against infectious diseases and to better understand which 
costs should be included and how these costs should be estimated.

Chapter 2 of the thesis reviewed the published literature of economic evaluations 
of interventions in major outbreaks of infectious diseases. This study described the 
current methods used and which costs and benefits are included. Of the 34 studies 
selected for review, a majority evaluated pharmaceutical interventions in high-income 
countries. The findings in this chapter show that methods used vary substantially 
between studies, as do the different costs and health benefits included. Furthermore, 
studies employing a societal perspective rarely estimated costs and/or benefits over a 
lifetime horizon. 

In chapter 3, we evaluated the effect of early interventions in Sierra Leone during 
the Ebola virus disease outbreak from 2014 to 2016. A deterministic and stochastic 
compartment model, aiming to capture transmission on a district level, incorporating 
setting-specific effects – such as bed availability in treatment centers and 
underreporting of cases – was estimated using publicly available data. The start date of 
the early-intervention scenario was implemented fourweeks earlier than a comparator 
scenario. DALYs and costs were attached to the model compartments. The effect of 
earlier interventions was found to greatly decrease the health losses and resulted in 
productivity gains by preventing premature deaths due to Ebola.

In chapters 4 to 7,  we estimated the future costs that occur if interventions prolong 
life. These costs are of particular relevance in the context of preventing and treating 
infectious diseases. Future costs can be broadly divided into three categories: related 
medical costs, unrelated medical costs, and non-medical costs. 
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In chapter 4, we estimated non-medical costs to be included in economic evaluations. 
Using Dutch household consumption data spanning multiple decades, we decomposed 
age, period, and cohort effects using P-splines. By using the same model specifications, 
we also estimated household size and combined the predictions of consumption 
and household size, to calculate the impact on the ICER by including non-medical 
consumption using life-table techniques. We found that the inclusion of non-medical 
consumption costs increased the ICER, but that the effect varied by age. Here, we 
showed the importance of economies of scale of consumption within households and 
that ignoring this effect leads to an overestimation of costs. 

In chapter 5, we provided updated estimates of future non-medical consumption and 
future medical consumption costs, adjusting for time to death, in the Netherlands. 
We also showed how to adjust these costs to populations that differ from the average 
population in terms of underlying illnesses. The inclusion of future costs increased the 
ICER and may affect choices by decision-makers.

In chapter 6, we explored the distributional consequences of including future non-
medical consumption costs in economic evaluations by estimating the impact on the 
ICER for specific socioeconomic groups. The results showed that the impact was the 
largest for interventions aimed involving higher socioeconomic groups. However, after 
adjusting for household size and quality of life, the differences were mitigated. 

In chapter 7, we updated a previously published study evaluating vaccination against 
pneumococcus disease with the 13-valent pneumococcal conjugate vaccine. We 
recalculated the ICER after including future medical costs. The inclusion of future 
medical costs increased the ICER substantially, as did the inclusion of future non-
medical consumption costs. The impact varied greatly by risk groups, defined by the 
types of underlying diseases, and the age at which death was averted. 

In conclusion, this thesis has explored the methods used to evaluate interventions 
against infectious diseases and provided standardized estimates for including future 
costs in economic evaluations. For evaluations adopting a  societal perspective and for 
interventions that prolong life, these costs may be of particular relevance. Theoretical 
and practical issues persist, but this thesis has clarified some key components of 
economic evaluations in the field of infectious diseases.
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Infectieziekten hebben in de loop van de geschiedenis een grote ziektelast veroorzaakt. 
Verbeteringen in de surveillance, volksgezondheidscampagnes en medische 
behandelingen hebben de ziektelast de laatste decennia sterk verminderd. De 
COVID-19-pandemie heeft echter aangetoond dat uitbraken van infectieziekten nog 
steeds een bedreiging vormen voor de volksgezondheid en grote economische schade 
kunnen veroorzaken. Investeringen in maatregelen ter preventie en behandeling 
van infectieziekten blijven dus noodzakelijk. Een belangrijke vraag is echter welke 
investeringen prioriteit behoeven. Kosteneffectiviteitsanalyses (KEA’s), waarbij de 
incrementele kosten en baten van interventies in de gezondheidszorg worden ingeschat, 
kunnen worden gebruikt om deze prioritering te ondersteunen en te zorgen voor 
een efficiënt gebruik van het gezondheidszorgbudget. Welke kosten moeten worden 
meegenomen in KEA's is echter nog steeds onderwerp van discussie. Dit proefschrift 
is erop gericht om de methoden die gebruikt worden in KEA’s van interventies tegen 
infectieziekten te onderzoeken, en beter te begrijpen welke kosten moeten worden 
meegenomen en hoe deze kosten moeten worden geschat.

In hoofdstuk 2 van het proefschrift is de gepubliceerde literatuur over economische 
evaluaties van interventies bij grote uitbraken van infectieziekten op een rij gezet. 
Van de 34 studies die voor dit onderzoek werden geselecteerd, analyseerde een 
meerderheid farmaceutische interventies in hoge inkomenslanden. De bevindingen in 
dit hoofdstuk tonen aan dat de gebruikte methoden evenals de kosten en baten voor de 
gezondheid die zijn meegenomen aanzienlijk verschillen tussen de studies. Bovendien 
hebben studies met een maatschappelijk perspectief zelden een schatting gemaakt van 
de kosten en/of baten op de lange termijn. 

In hoofdstuk 3 evalueerden wij het effect van vroegtijdige interventies in Sierra 
Leone tijdens de uitbraak van het Ebolavirus van 2014 tot 2016. Een deterministisch 
en stochastisch compartimentenmodel, gericht op het modelleren van transmissie 
op districtsniveau, rekening houdend met de beschikbaarheid van bedden in 
behandelcentra en onderrapportage van gevallen, werd geschat met behulp van publiek 
beschikbare gegevens. Disability Adjusted Life Years (DALYs) en kosten werden aan 
de modelcompartimenten gekoppeld. Modelanalyses lieten zien dat vroegtijdige 
interventies resulteerden in grote gezondheidswinst en  productiviteitswinst door het 
voorkomen van vroegtijdige sterfgevallen als gevolg van Ebola.

In de hoofdstukken 4 tot en met 7 hebben wij een schatting gemaakt van de kosten 
die ontstaan wanneer interventies het leven verlengen. Deze kosten zijn van bijzonder 
belang in het kader van de preventie en behandeling van infectieziekten. De kosten 
kunnen grofweg in drie categorieën worden ingedeeld: gerelateerde medische kosten 
in gewonnen levensjaren, niet-gerelateerde medische kosten in gewonnen levensjaren, 
en niet-medische kosten in gewonnen levensjaren. 



163

S

Samenvatting

In hoofdstuk 4 hebben wij een schatting gemaakt van het effect van het meenemen 
van niet-medische kosten in gewonnen levensjaren in economische evaluaties. Met 
behulp van data over consumptiegegevens van Nederlandse huishoudens hebben 
wij leeftijdspatronen van kosten van niet-medische consumptie geschat rekening 
houdend met  periode- en cohorteffecten. De analyses in dit hoofstuk lieten zien 
dat het meenemen van niet-medische consumptiekosten de kosteneffectiveitsratio  
verhoogde, maar dat het effect sterk afhangt van leeftijd. Tevens toonden wij het 
belang aan van schaalvoordelen met betrekking tot consumptie binnen huishoudens 
en dat het negeren hiervan leidt tot een overschatting van de niet-medische kosten in 
gewonnen levensjaren. 

In hoofdstuk 5 presenteren we schattingen van kosten in gewonnen levensjaren van 
medische en niet-medische consumptie naar leeftijd in Nederland. Wij lieten ook 
zien hoe deze kosten kunnen worden meegenomen in economische evaluaties voor 
uiteenlopende interventies in verschillende doelgroepen. 

In hoofdstuk 6 onderzochten wij de distributieve gevolgen van het opnemen van niet-
medische kosten in gewonnen levensjaren in economische evaluaties door het effect op 
de kosteneffectiviteitsratio voor verschillende sociaaleconomische groepen te schatten. 
Uit de resultaten bleek dat het effect het grootst was voor interventies gericht op hogere 
sociaaleconomische groepen. Na correctie voor huishoudgrootte en kwaliteit van 
leven werden de verschillen in de kosteneffectiviteitsratio tussen sociaaleconomische 
groepen echter kleiner. 

In hoofdstuk 7 hebben wij een eerder gepubliceerde studie geactualiseerd waarin 
vaccinatie tegen pneumokokkenziekte met het 13-valent pneumokokkenconjugaat 
vaccin werd geëvalueerd. Wij hebben de kosteneffectiviteitsratio herberekend na 
het meenemen van (niet) medische kosten in gewonnen levensjaren. Het meenemen 
van medische kosten in gewonnen levensjaren verhoogde de kosteneffectiviteitsratio  
aanzienlijk, net als het meenemen van niet-medische kosten in gewonnen levensjaren. 
Het effect varieerde echter sterk per risicogroep en leeftijd. 

Concluderend kan worden gesteld dat dit proefschrift methoden heeft verkend 
die worden gebruikt om interventies tegen infectieziekten te evalueren en dat het 
gestandaardiseerde schattingen heeft opgeleverd voor het meenemen van kosten  
in gewonnen levensjaren in economische evaluaties. Voor evaluaties met een 
maatschappelijk perspectief en voor interventies die het leven verlengen, kunnen deze 
kosten van groot belang zijn. 
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