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Introduction.




Chapter 1

Healthcare systems are under increasing pressure to maintain the high quality of care currently
provided with fewer resources. Due to the aging population, the demand for care will increase
rapidly in Europe in the coming thirty years [1] while the supply of care will likely decline [2].
Many anticipate that the use of technology could decrease this gap between supply and demand
[3], coinciding with a surge of projects that develop novel technologies for healthcare funded
by the European Union.

In the past decade, expectations were particularly high for technologies that use analytics.
Many noted that using analytics could lead to health benefits and/or cost savings for many
areas of disease and clinical settings [4-17]. Alongside these high expectations, billions of dollars
have been invested by both public and private entities to develop big data analytics and Al for
healthcare [18-21].

However, the empirical evidence that healthcare analytics can solve an endless stream of
problems remains grossly lacking. Moreover, development challenges and failures are gradually
appearing in the literature probably coinciding with a spectacular loss of investment. In a recent
review, researchers found that of 232 predictive analytics and 62 machine learning models for
detection and prognostication of Covid-19 only 2 were eligible for large scale validation [22,23].
Further, ten years and billions of dollars after IBM Watson’s winning Jeopardy, evidence of its
benefits are absent, and evidence of failed development in hospitals such as the MD Anderson
Cancer Center, the Memorial Sloan Kettering Cancer Center, and the University of North Carolina
School of Medicine is widely reported [24-26].

In this dissertation, | aimed to explore the value of evaluating the potential of healthcare analytics
alongside development to assist decision-making by developers and increase the likelihood of
successful development. In this chapter, an introduction is provided for the topics addressed
in more detail in the remainder of this thesis. Hereafter, the use cases are discussed that are
examined in the remaining chapters of this dissertation. To conclude this first chapter, a brief
overview of the remaining chapters and their contents is presented.

Analytics

Analytics has been defined as the discipline of analysis in which data is used to enable
decision-making [27]. Furthermore, Bates et al. have defined analytics as the “discovery and
communication of patterns in data” [5]. El Morr & Ali-Hassan define four types of analytics:
descriptive, diagnostic, predictive and prescriptive (Table 1) [27]. Even though descriptive and
diagnostic analytics offer relevant insights, we are often not only interested in knowing which
events have happened and why these events have happened. Historical data can also be used to
create a model which offers insights into what will happen in the future and how we can improve
future decisions [27]. Models can be defined as ‘a system of postulates, data and inferences
presented as a mathematical description of an entity or state of affairs’ [28].
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Table 1: Definition of different types of analytics according to Morr & Ali-Hassan [27].

Type of analytics Definition Example

Descriptive Present patterns observed in data Patients with diabetes have more hospital
admissions than healthy patients

Patients with diabetes have more hospital
Diagnostic Clarify the patterns observed admissions than patients without diabetes
because they become hypoglycemic

Patients with diabetes treated with
Predictive Knowing what will happen in the future sulfonylureas have a higher risk of
hospitalization because of hypoglycemia

Prescriptive Prescribe a treatment to realize an Patients with diabetes treated with
outcome sulfonylureas should carry a smart alarm
to warn of hypoglycemia

Even though analytics have been around for a long time, big data analytics and artificial
intelligence have renewed the interest in the topic (e.g., Mehta et al. 2018, Mehta et al. 2019
[4,29]). Big data analytics have previously been defined as analytics for data characterized by
its complexity and the three V’s (Volume, Variety and Velocity) [4]. Volume refers to the large
size of the dataset, variety refers to data originating from many different sources whereas the
velocity refers to the speed with which data is collected.

The term artificial intelligence (Al) was first used in the 20% century and is defined as the ability
of computers to imitate human intelligence [27]. The term Al was first described by Alan Turing
in 1950 but little progress was made in healthcare between its initial use and the year 2000 [30].
However, in the past decade, interest in its potential to improve healthcare has been renewed
due to the progression in natural language processing, the availability of electronic data sources
and improved hard- and software [30]. Moreover, expectations regarding its potential have been
noted in many clinical settings and areas of healthcare [31].

Data sources

The data used to develop healthcare analytics can come from a wide variety of sources. No
single classification of healthcare data is widely used although many authors have suggested
ways in which to classify healthcare data. Mehta et al. have reported several ways in which
‘big’ healthcare data sources have been classified in the past [4]. Potential data sources include
administrative databases (e.g., claims data, drug prescriptions), clinical data (e.g., electronic
health records, laboratory information system data, imaging results, monitoring data (e.g., heart
rate) and omics data) and patient generated data such as data obtained from social media,
patient sensors and patient reported outcomes.

Besides the wide variety of data sources, data is frequently collected through two types of
data collection: experimental and observational. The randomized controlled trial (RCT) is the
golden standard intervention study if the aim is to establish the efficacy of a treatment. In an
RCT, patients are randomly assigned to either the intervention or the control arm [32]. The aim
of randomization is to increase internal validity by ensuring that individuals in the intervention
and control arms differ only in the treatment they received, and not in any other ways; this
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Chapter 1

ensures that the observed effect cannot be attributable to confounding factors [32]. An RCT,
however, is not always desirable, ethical, or feasible [33]. Important limitations of RCTs are that
the generalizability of results can be limited, and follow-up is short [34]. The generalizability
refers to the extent to which the treatment effect found in an RCT would also be found in daily
practice. When performing an RCT, strict eligibility criteria apply and elderly patients, children,
and patients with comorbidities are regularly excluded, thus limiting generalizability. Moreover,
the time required to complete an RCT is not always available, thereby forcing researchers and
developers to adopt a more pragmatic approach, such as an observational study.

In observational research, contrary to experimental research, the researcher does not actively
assign an intervention to individuals but observes individuals in their natural setting. Most of the
data sources used for development of analytics contain observational data. These often include
a population representative of the general population and a prolonged duration of follow-up
[34]. A limitation of observational research is that causation cannot be established [35], and
results are at risk of being biased. Common forms of bias are confounding bias, information
bias, and selection bias. Confounding bias occurs when the exposure and outcome variables
share a common cause [36]. Selection bias occurs when selecting on a common effect [37] and
information bias refers to bias caused by erroneous collection of data [38]. Thus, when using
observational data, researchers should be aware of these risks.

Economic evaluations

Many authors have emphasized the potential for analytics to lead to health benefits and savings
[4-17]. A means to measure the impact of a novel technology on health and financial benefits is
by using economic evaluations. Economic evaluations assist decision-making of stakeholders by
comparing costs and effects of alternative technologies. Several types of economic evaluations
can be distinguished, depending on whether, and how, effects are measured [39]. In a cost-
minimization analysis, health effects are assumed equal for the technologies compared, whereas
in a cost-benefit analysis, outcomes are expressed in monetary terms. A cost-effectiveness
analysis measures effects in natural units, such as mortality reduction or life years gained, while
in cost-utility analyses, effects are often reported in quality adjusted life years (QALYs).

Economic evaluations are usually performed to assist market-access decisions of regulators
and healthcare payers. However, they can also be used alongside development of healthcare
technologies, aiding in design and investment decisions [40-44]. These ‘early’ economic
evaluations may assist decision-making of developers, for instance to inform market-access and
pricing strategies, or to identify relevant requirements of a technology and for go/no go decisions
in the development phase [40,41,44]. Economic evaluations performed after development of
technologies to assist decision-making of payers and regulators are referred to as ‘late’ economic
evaluations.

Extrapolating Survival

There are multiple guidelines to assist researchers when performing an economic evaluation
facilitating best-practice research [39,45]. Often, decision analytic models are used to combine
input from a variety of sources to estimate cost-effectiveness. Moreover, decision analytic
models enable researchers to estimate results beyond the duration of the clinical studies
from which input parameters are derived. For instance, the follow-up in an RCT is 4 years, but
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guidelines for economic evaluations recommend researchers estimate cost and health outcomes
over the lifetime of patients instead of for that short 4-year period [45,46]. This can be done by
fitting parametric models to the data available and using these models to estimate long-term
outcomes (Figure 1). In Figure 1, the black Kaplan-Meier survival curve (KM data cut) reflects
the true survival for a subset of patients for a short follow-up period. Here the red Kaplan-
Meier curve represents the true long-term survival for the same subset of patients. In economic
evaluations, the short-term survival data is used to model long-term survival represented in
Figure 1 by the smoothed curves fitted for a time horizon exceeding 12 years.

Extrapolations Overall Survival 1y Data Cut

R B — KMastson
= ~ — KMlong-lem
M — expSorezomin
Y — weluliBoriszomiy
) gomperzEonizomip
(18] | \, gammaSorezomin
o ? InormBSortezomin
\ —— loglsSorezomin
— - o ymasonezomin
[] \ — genfSonezomid
= ©
2 o 7 )
3
w
T < |
[ o
=
(@]
o~
o
<= |
o
I T I I I I I
0 2 4 6 8 10 12
Time in Years

Figure 1: Here the Kaplan-Meier estimate refers to the empirical evidence available for patients with
multiple myeloma treated with bortezomib. The smoothed curves represent survival estimated for 12
years using several standard parametric models

However, there is often considerable uncertainty surrounding long-term survival in any economic
evaluation and different models can result in very different outcomes. In earlier studies, authors
found that different models were most accurate for different durations of follow-up (a.k.a.
‘data cuts’) [47] which likely coincided with higher percentages censored and a lower number
of absolute events. Moreover, the number of patients for which the time to event (i.e., death
due to disease or other causes) was not reported (i.e., censored patients) was associated with
increased error in survival estimates [48]. Insight into the impact using of shorter follow-up for
extrapolations is relevant for economic evaluations that assess technologies where the follow-
up of the patients included is relatively short.

Clinical Use Cases

There are many types of healthcare problems for which analytics can be developed and for
which economic evaluations can be performed. In this dissertation use cases were derived from
the AEGLE project. In this project, use cases were selected based on the variety of data sources
available and the characteristics of the use case. The use cases differed in the type of data they
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included (e.g., next generation sequencing (NGS), electronic health records (EHRs), monitoring
data), the characteristics of the data (e.g., volume, velocity with which the data was collected
and the variety of the data sources) as well as the type of disease addressed (e.g., acute care,
non-malignant chronic disease, and hematological malignancies).

Intensive Care Unit

First, the intensive care unit is a fast-moving environment where patients can deteriorate rapidly.
Decisions must be made quickly, and early detection of deterioration is considered essential
to reduce the impact an intensive care unit (ICU) admission has on a patient’s remaining life.
Although the need for an ICU admission is not very common, the consequences are severe, not
only in terms of lost health, but also in terms of costs. The average costs of an ICU Day exceed
€2,000 [49,50] and thus improving outcomes and reducing length of stay for these patients may
result in considerable savings.

The poor outcomes and high costs of patients in the ICU makes it an interesting setting for which
to develop analytics that aim to improve provision of ICU care. Many application domains for
big data analytics and Al have been suggested for the ICU, including predictions to optimize
resource use (i.e., length of stay, readmissions), predictions of progression, sepsis, complications
and mortality and analytics to optimize interaction between patients and mechanical ventilators
[7,8]. A constant stream of patient level data is collected using electronic health records, bio-
signal monitors, and mechanical ventilators (Figure 2). For instance, for mechanical ventilation
alone, there are 236 variables intensivists should monitor [8] and the sheer volume of the data
renders it impossible for health care professionals to process all variables without analytics.

— R
(%)
L4

51

21
1)

nennr®

w125/t
"

Figure 2: A display containing a few of the vital signs monitored in an intensive care environment. Source:
Vital Signs Monitor Display, Petty Officer 1% Class James Stenberg [Internet] https://commons.wikimedia.
org/w/index.php?search=hospital+monitor&title=Special:MediaSearch&go=Go&type=image. Taken
February 11, 2014. Public domain.

Diabetes Mellitus

Care for patients with diabetes type 2 could be considered the opposite of ICU care. Diabetesis a
chronic disease in which the inability to process or produce insulin results in elevated blood sugar
levels [51]. It often takes many years for the disease to develop but the consequences can be
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severe. Prolonged elevated blood sugar can lead to serious complications such as cardiovascular
disease, neuropathy, foot ulceration and amputation, retinopathy, and kidney damage. In 2019,
almost 9% of the European population was living with diabetes; 90% of them has type 2 diabetes
[52]. Its financial impact is substantial, with annual European expenditures in 2019 exceeding
160 billion USD [52] and both the prevalence and expenditures are expected to steadily increase
in the coming twenty years. Many treatments are available for type 2 diabetes that can be
prescribed in various combinations and sequences. The many treatment options have resulted in
large practice variation and uncertainty about the relative effectiveness of the different options.

This use case focused on data collected slowly and routinely in electronic health records in a
hospital setting in Northern Ireland. Because of this variation in treatment, observational data
from EHRs is considered a valuable source of information. The potential ways in which to support
conclusions about effectiveness of treatments for diabetes patients using routinely collected
data (e.g., EHRs, registries) has been emphasized by researchers [34,53]. However, there is also
a need for caution since many challenges can arise when using EHR data [34,53] and the large
practice variation requires access to big data sets to enable any meaningful analyses.

Two hematological malignancies

The last clinical use cases were two hematological malignancies. The first is chronic lymphocytic
leukemia (CLL) which is characterized by its heterogeneous nature. CLL is the most common
hematologic malignancy in the western world [54,55] with more than 12,000 new patients in the
Europe each year [56]. Some of these new patients are treated upon diagnosis and have a short
life expectancy while 40% of patients never require treatment and die long after diagnosis due to
causes unrelated to the disease [55]. The treatments available for patients progressing are often
costly [57] and given the variation in outcomes, optimally allocating these treatments is essential.
When treatment is required, the drug administered will depend on patient characteristics (i.e.,
their overall “fitness’) and the chromosomal alterations the patient has.

For this use case the aim was to use data from next-generation sequencing (NGS) to develop
prognostic indexes that enable clinicians to stratify patients according to their risk of progression
and treatment response. With NGS, many genes are examined simultaneously, resulting in large,
complex data sets [13]. Generating results valuable for clinical practice requires analytics and
computing power due to the size and complexity of the data.

The second hematological malignancy, multiple myeloma (MM), is a rare, incurable oncological
malignancy of plasma cells [58]. In Europe, roughly 40,000 people are diagnosed with MM
annually and this number will increase to almost 46,000 by 2025 [59]. The treatment of patients
with MM has evolved considerably in the past two decades. Where in 2004 the majority of
patients were treated with chemotherapy-based regimens (e.g., melphalan), novel drugs have
become available since then, such as immunomodulatory drugs (e.g., thalidomide, lenalidomide),
followed by a proteasome inhibitor (bortezomib) [60], the use of autologous peripheral blood
stem cell transplantation has offered substantial improvement for younger patients [61], and
recently chimeric antigen receptor T cells therapies may offer better outcomes following a
diagnosis with MM [58].
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Where the previous use cases focused on the development of analytics and how economic
evaluations can be used to estimate their impact, the final use case focused on the data required
when performing these economic evaluations. The Netherlands Cancer Registry (NCR) has
collected data on treatment and survival of patients with hematological malignancies for many
years. The NCR has data on the care provided (e.g., treatments) for MM patients but also includes
the long-term survival of these individuals. Databases such as the NCR offer unique opportunities
to assess the accuracy of different models used to extrapolate survival, an essential component
of many economic evaluations.

Thesis Aim

The aim of this dissertation was to assess the potential of using economic evaluations to assist
decision-making of developers of healthcare analytics. When initiating this dissertation, it was
apparent that, despite the many promises, performing good quality economic evaluations
for adopting health information technologies in clinical practice was not common practice
[13,62-64]. Therefore, my aim was to address this gap and increase the likelihood that future
development and implementation of technologies that use healthcare analytics may succeed.
| assessed how economic evaluations may assist decision-making of developers of healthcare
analytics. First, the current use of economic evaluations to evaluate healthcare analytics was
explored. Hereafter the ways in which economic evaluations can assist decisions-making of
analytics development were analyzed and recommendations were formulated how they should
be performed alongside development.

Thesis Outline

In the first part of this thesis, the limited evidence on cost-effectiveness of novel analytics
is discussed (Chapter 2). For Chapter 2, the current use of economic evaluations to assess
healthcare analytics was explored. In addition to examining the studies that have been
performed, areas for improvement were identified. Hereafter, in Chapter 3, | presented the
results from an early cost-effectiveness analysis in which the potential of analytics for the
intensive care by identifying suboptimal interaction between a patient and their mechanical
ventilator is explored. The availability of routinely collected data from sources such as electronic
health records has increased the possibilities for observational research. However, conducting
observational research using EHRs can be challenging, and results are at risk of being biased.
In Chapter 4, | discussed how target trial emulation can assist researchers using observational
data to identify and assess the ability to adjust for confounding and other forms of bias while
considering the limitations of the dataset such as missing data. Hereafter, for Chapter 5 a
framework was developed to assist decision makers when using economic evaluations to guide
development. As discussed in Chapter 4, there are important limitations to historical data
sources, and these should be considered at an early stage during development. In Chapter 6, |
discussed the challenges that might occur when extrapolating long-term survival from short-
term data. For analytics, RCTs are rare, and long-term follow-up data for extrapolating survival
is lacking. Therefore, insights into the consequences of extrapolating using shorter duration of
follow-up can assist decision making on future collection of data on efficacy and effectiveness of
analytics. For Chapter 7, the main findings of this dissertation were summarized. In this discussion
| reflected on how economic evaluations can assist decision-making of developers and how they
should be used during the process of development.
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Chapter 2

ABSTRACT

Objective: Much has been invested in big data analytics to improve health and reduce costs.
However, it is unknown whether these investments have achieved the desired goals. We
performed a scoping review to determine the health and economic impact of big data analytics
for clinical decision-making.

Materials and Methods: We searched Medline, Embase, Web of Science and the National Health
Services Economic Evaluations Database for relevant articles. We included peer-reviewed papers
that report the health economic impact of analytics that assist clinical decision-making. We
extracted the economic methods and estimated impact, and also assessed the quality of the
methods used. In addition, we estimated how many studies assessed ‘big data analytics’ based
on a broad definition of this term.

Results: The search yielded 12,133 papers but only 71 studies fulfilled all eligibility criteria.
Only a few papers were full economic evaluations; many were performed during development.
Papers frequently reported savings for healthcare payers but only 20% also included costs of
analytics. Twenty studies examined ‘big data analytics’ and only 7 reported both cost-savings
and better outcomes.

Discussion: The promised potential of big data is not yet reflected in the literature, partly since
only a few full and properly performed economic evaluations have been published. This and
the lack of a clear definition of ‘big data’ limit policymakers and healthcare professionals from
determining which big data initiatives are worth implementing.
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INTRODUCTION

Extracting valuable knowledge from big healthcare data has been an important aim of many
research endeavors and commercial entities. While no clear definition for big data is available,
it is often described according to its complexity and the characteristics of the data such as the
size of a dataset (Volume), the speed with which data is retrieved (Velocity) and the fact that
the data comes from many different sources (Variety)[1]. Bates et al. [2] emphasize that big
data comprises both the data with its large volume, variety and velocity, as well as the use of
analytics. In this respect, analytics are the ‘discovery and communication of patterns in data’.

Big data’s potential to assist clinical decision-making has been expressed for a variety of clinical
fields such as the intensive care [3,4], emergency department [2,5], cardiovascular diseases [6,7],
dementia [8], diabetes [9], oncology [10-12], and asthma [13]. Big data analytics could also lead
to economic benefits [1,2,14-17]. Annual savings for the United States (US) healthcare system of
providing timely, personalized care have been estimated to exceed US$140 billion [18].

Over the years, much has been invested to achieve the promised benefits of big data. For
instance, the US has invested millions in their Big Data to Knowledge centers [19]. While in
Europe, many calls and projects in Europe’s Horizon 2020 program have focused on the use of
Big Data for better healthcare (e.g., AEGLE, OACTIVE, BigMedylitics). In 2018, US$290 million was
allocated to The All of Us initiative which aims to personalize care using a wide variety of data
sources (e.g., genomic data, monitoring data, electronic health record data) from one million
US citizens [20]. The investments by governments are far exceeded by the investments in ‘big
data technologies’ in the commercial sector [21]. For example, IBM has already invested billions
of dollars in ‘Dr. Watson’ and big data analytics [22], and Roche purchased Flatlron Health for
US$1.9 billion in 2018 [11].

For optimal spending of scarce resources, economic evaluations can be used to assess the
(potential) return on investment of novel technologies. Economic evaluations are comparative
analyses of the costs and consequences of alternative courses of action [23]. Economic
evaluations that provide evidence on the health and economic impact of a technology can assist
decision-making and justify further investments required to achieve a technology’s potential.
Despite the promise that big data analytics can lead to savings, it is unclear whether this promise
is corroborated by good evidence. Therefore, we aimed to determine the health and economic
impact of big data analytics to support clinical decision-making. Given the absence of a clear
definition for big data, we first determined how analytics impacted clinical practice. We then
considered which of these analytics could be classified as big data analytics.

METHODS

The study follows the Preferred Reporting Items for Systematic reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) Checklist [24].

Search strategy and study inclusion
Since there is no consensus on the definition of big data [1], we widened the scope of our search
to identify economic evaluations of a variety of analytics. An information specialist from the
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Academic Library at the Erasmus University Medical Centre was consulted when developing
the search strategy (Supplementary Appendix A). In the search strategy, we included MesH and
title/abstract terms related to (big data) analytics, economic evaluations, and health care. These
terms for (big data) analytics included artificial intelligence, tools used to extract patterns from
big data such as machine learning, and generic tools that use analytics to enable decision-making
such as clinical decision support. We combined these with terms such as economic evaluations
and cost-effectiveness and terms to exclude studies that had no relation to healthcare (e.g.,
veterinary care).

All major databases were searched (Embase, Medline, Web of Science, and the NHS Economic
Evaluations Database). We included all English, peer-reviewed, primary research papers and
limited our search to studies of humans. The primary search was performed in March 2018 and
updated in December 2019. Initial screening was performed by one author (LB). Hereafter, all
studies about which there was uncertainty regarding their inclusion were discussed with two
other authors (JA, WR). Studies were included if they met the following criteria: a) the study
reported pattern discovery, interpretation, and communication to assist decision-making of
clinical experts at the individual patient level; b) the study implemented analytics in clinical
practice using computerized technology; and c) the study reported a monetary estimation of
the potential impact of the analytics. Application of these three criteria led to the exclusion of
studies that only reported time or computation savings and studies that did not assist clinical
experts at the individual patient level. Thus, we did not include studies that informed guidelines
or policymakers. We also excluded analytics that produced results that could be easily printed
on paper for use in clinical practice (e.g., Ottawa Ankle Rules) and studies that simply used data
mining technologies to extract records from an electronic health record (EHR) but not to perform
any analyses of the extracted data.

Data extraction

Data extraction was performed by one author (LB). For a random 10% of papers data was
extracted by a second author (KR) to check for concordance. In the end, there were no significant
differences in the results. We extracted the following data for each study; patient population,
description of the technology in which the analytics are embedded (i.e., clinical decision support
systems), the analytics used for discovery and communication of patterns in data, description
of the data, the intervention and the comparator in the economic evaluation, the perspective,
outcomes, and costs included, results, recommendations, and conflicts of interest. Conflicts of
interest included those reported in the paper (related and unrelated), commercial employment
of authors and funding by industry.

We also reported the type of economic evaluation (e.g., full, or partial) that was used. A
full economic evaluation compares two or more alternatives and includes both costs and
consequences. Partial economic evaluations do not contain a comparison or exclude either
costs or consequences [23]. Thus, when a study reported cost estimates but no health outcomes
they were classified as partial. For full economic evaluations we reported the ratio of costs over
effects, also known as the incremental cost-effectiveness ratio (ICER). Furthermore, economic
evaluations can offer valuable insights for decision-makers at many different stages in the
development process (e.g., during and after development) [25]. After development, they can
assist healthcare payers when choosing novel technologies in which to invest their constrained
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budget. During development, an ‘early’ economic evaluation can assist developers by identifying
minimal requirements of the technology, areas for further research, and viable exploitation and
market access strategies [25-27].

In our results, we also distinguished in which stage of development the economic evaluation was
performed. If a study provided recommendations for developing a technology that did not exist,
it was categorized as ‘before’ development. Studies were categorized as ‘during’ development
when the economic evaluation was performed and presented alongside development unless
the aim of the study was to inform purchasing decisions of funding bodies (i.e., perspective of
the National Healthcare Services) or when the analytics were already implemented in clinical
practice. All remaining studies were categorized as being performed ‘after’ development.

We also performed an analysis to identify economic evaluations that might be classified as ‘big’
data analytics. We used broad criteria to select the highest possible number of papers to sketch
a best-case scenario. We defined these criteria based on the volume, variety, and velocity of the
data. We classified papers as having big volume when they utilized next generation sequencing
(NGS) data, EHR records or claims data with a sample size of more than 100,000 units (e.g.,
patients, admissions), and all imaging papers published after 2013. Papers were included because
of their variety when they combined multiple datatypes (e.g., structured, and unstructured data,
combining multiple data sources). All papers that used monitoring data published after 2013
were included because they might fulfil the velocity criteria.

RESULTS

The initial search yielded 12,133 records of which seventy-one papers were included in the final
analysis after title/abstract and full-text screening (Figure 1). Important exclusion criteria for
full-text papers were that no monetary estimates were included and that no analytics were used.
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Total number duplicates removed
(n=6352)

Excluded based on title/abstract
(n=11528)

Figure 1: PRISMA flowchart

Summary of papers

We found that all papers could be classified into four categories according to the type of data
that was used; medical history databases (e.g., data from EHRSs, clinical trial databases, claims
databases), imaging data, monitoring data (e.g., continuous data collection using sensors), and
omics data (e.g., proteomics, genomics, transcriptomics, metabolomics) (Table 1). Almost all
papers originated from North America and Europe (87%). The US was well represented with 39
papers mainly focusing on the use of medical history and omics data. The number of papers
originating from Europe was considerably lower (n=20) while few or no papers originated
from South America, Australia, and Africa. There has been a clear increase in the number of
publications from 2016 onwards (Figure 2).
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Number of publications

Year

Figure 2: Number of publications according to the year of publication

Most studies were partial economic evaluations and found that analytics may improve outcomes
and generate savings. A perspective was not often reported, and no study reported a societal
perspective. Almost all partial economic evaluations reported savings compared to half of the
studies reporting results from full economic evaluations. When grouped according to conflict
of interest, no significant differences were found in the percentage of studies that reported
savings and improved health. For economic evaluations without a conflict of interest, 61%
were performed during development compared to 22% with no conflict of interest. All but one
reported savings.

In the following paragraphs we will discuss economic results for all four data types. An overview

of the economic results for all papers can be found in Supplementary Appendix B. A detailed
description of all analytics and data used can be found in Supplementary Appendix C.
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Table 1: Summary of all records according to data type used

Total Medical history Imaging Monitoring Omics

Total 71 44 8 8 11

Continent
North America 42 27 3 3 9
Europe 20 11 2 5 2
Asia 7 5 2 - -
Africa 1 - 1 - -
South America 1 1 - - -
Australia - - - - -

Type of economic evaluation

Full 22 8 5 2 7
Partial 49 36 3 6 4
Perspective
Payer perspective 7 3 - - 4
National healthcare system 8 3 1 2 2
Provider perspective 3 1 - 1 -
Other 2 - 2 - -
No perspective reported 52 37 5 5 5
Stage of development
Before development 1 1 - - -
During development 33 31 2 - -
After development 37 12 6 8 11
Measure of effectiveness
QALYs and Life Years 15 5 4 2 4
Model Performance 29 27 2 - -
Other 20 10 2 3 5
Not included 7 2 - 3 2
Incremental health effects
Decrease in effects 5 2 1 - 2
No difference 5 3 - 2 -
Increase in effects 41 23 7 4 7
Not included 20 16 2 2
Incremental costs
Savings 54 39 5 5 5
No difference 5 2 - 3 -
Increase in costs 12 3 3 - 6
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Table 1: Continued.

Total Medical history Imaging Monitoring Omics

Include costs of implementing analytics 22 2 5 5 10

Recommendations for research & development

Focus development on improving the

analytics 30 23 2 2 3
Validation and feasibility of implementation 19 13 3 2 1
SDuet;/;rlstr:ﬁsent for other clinical areas or 1 8 ) 1 )
Pricing and economics of the analytics 9 2 3 - 4
Cost-effectiveness research 5 4 - 1 -
Development of the intervention that follows 3 3 - - -
Multidisciplinary collaboration 2 2 - - -
Refer to big data in the text 6 6 - - -
Potential to be classified as big data analytics 20 8 5 4 3

QALYs= Quality Adjusted Life Years

Analytics for medical history data

The first category consisted of studies that used historic databases containing information on
patient demographics and medical history (e.g., test results and drug prescriptions) (n=44) [28-
71]. All papers presented predictive or prescriptive analytics that assist clinical decision-making
using a variety of techniques (regression, support vector machines, Markov decision processes).
The risk of readmission (n=9) and problems pertaining to the emergency department (n=5) were
most often examined and one study addressed pediatric care [42]. Both structured data such as
demographics and laboratory results, as well as unstructured data such as free text messages
(n=4) [37,40,44,50] were used and the sample size varied from N=80 patients [65] to more than
800,000 urine samples [68]. This was the only category in which authors referred to the term
‘big data’ (n=6) [32,35,37,40,50,60].

Most of the studies in this category were partial economic evaluations (n=36) and most were
conducted during development (n=31). Results were often limited to model performance (e.g.,
classification accuracy, area under the curve) and were rarely translated into health benefits
such as quality-adjusted life-years. Almost all studies found that the analytics could lead to
monetary savings, yet only two papers included implementation costs of the analytics [33,62].
These costs could for instance consist of licensing costs and costs of implementing analytics
within a hospital system. Authors often recommended to continue development and focus on
improving the analytics. Furthermore, the need for further validation prior to implementation
was frequently emphasized.

Analytics for imaging data
Eight studies presented predictive analytics for seven different types of imaging data (CT, MRI,
Chest radiographs, digital cervical smears, mammographies, digital photographs and ventilation-
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perfusion lung scans) [72-79]. The number of full economic evaluations [73,75-77,79], and studies
performed after development [73-76,78] were both higher than the first group of papers that
used medical history data. Four studies measured effects in (quality-adjusted) life-years [73,75-
77], and more than half of the studies included implementation costs of analytics [73-77]. The
number of studies that found the analytics could lead to cost-savings was once again quite high
(63%) [72-74,78,79]. Just like the studies that used medical history data, authors of studies in this
category emphasized the need for further validation prior to implementation. However, several
studies also emphasized the balance between the requirements of the technologies (e.g., test
sensitivity) and potential health benefits and cost-savings [75,76,79].

Analytics for monitoring data

Monitoring data collected with a variety of devices and sensors (e.g., airflow monitoring,
continuous glucose monitoring, continuous performance tests, infrared cameras, vital signs
monitors) was used in eight studies [80-87]. Five of these studies reported descriptive analytics
that monitored patient outcomes and compared this to a range or reference value [81,83-
85,87]. This group of papers differed from those using imaging and medical history data since
most analytics were implemented in a medical device. All technologies were evaluated after
development of which many were partial economic evaluations. Roughly half of the studies
resulted in more effects [82-84,86], savings [82,84-87], and included costs of the device and/
or analytics [81,86,87].

Analytics for omics data

Eleven papers reported the potential impact of predictive and prescriptive analytics of omics
data, often with the aim of applying them as a test in clinical practice [88-98]. Only two of these
papers focused on the use of Next Generation Sequencing data [94,96], and one paper combined
multiple types of data (pharmacogenomics, literature, medical history) [89]. The remaining
papers utilized microarray data and all the analytics that were adopted as a test were used in
oncology (n=9) [88,90-93,95-98].

Compared to the other categories, the percentage of full economic evaluations was high
[90,92,93,95-98]. In half of the studies the perspective used were that of the payer or the
healthcare system. Furthermore, just like the studies that used monitoring data, all economic
evaluations were performed after development. Seven studies reported increased effects
[88,90-93,96,97], and six studies reported that use of analytics would increase costs [90,93-
95,97,98]. All but one study included the costs of the analytics or the test in which the analytics
were implemented [89]. Moreover, unlike the other categories, several papers discussed price
thresholds at which the analytics or the test would be cost-neutral, dominant (i.e., more effects
and lower costs) or thresholds at which the analytics or test would be cost-effective (i.e., where
the ICER would be below a specific cost-effectiveness threshold).

Big Data Analytics

We found that less than a third of all papers (n=20) might fulfil criteria for classification as ‘big
data analytics’ (Table 2). Most papers were included because their volume might be large enough
to be considered big data (e.g., N>100,000, imaging data) and studies that used monitoring data
were included because of the potential speed with which the data is collected (velocity). Eight
of these papers used medical history data [32,37,40,44,45,50,60,68], five used imaging data
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[72-74,76,78], four used monitoring data [80,82,83,87], and three used omics data [89,94,96].
Most were partial economic evaluations (n=15) and twelve were performed after development.
All but five [44,76,80,83,94] corroborated expectations that big data analytics could result in
cost-savings, varying from US$126 per patient [89] to more than US$500 million for the entire
US healthcare system [72]. However, only a handful of papers included the costs of the analytics
[73,74,76,87,94,96].

Table 2: Classification of papers that could be defined as ‘big data’ studies based on the criteria of volume,
velocity, and variety. These papers represent a subset of the initial 71 papers.

Volume Velocity Variety

Article Next Medical Imaging data  Monitoring Combines
generation history data  published data multiple
sequencing with n > after 2013 published datatypes
data 100,000 after 2013

Burton 2019 X

Duggal 2016 X

Golas 2018 X

Hunter-Zinck 2019

Jamei 2017

Lee 2015

Rider 2019

X | X | X | X X
>

Wang 2019

Carballido-Gamio 2019

Crespo 2019

Philipsen 2015

Sato 2014

X | X X X X

Sreekumari 2019

Brocklehurst 2018

Calvert 2017

Hollis 2018

X | X | X | X

Sénchez-Quiroga 2018

Brixner 2016 X

Mathias 2016 X

Nicholson 2019 X
Total 2 6 5 4 5
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DISCUSSION

In this review, we aimed to determine the health and economic impact of big data analytics
for clinical decision-making. We found that expectations of big data analytics with respect to
savings and health benefits are not yet reflected in the academic literature. Most studies are
partial economic evaluations and the costs of implementing analytics are scarcely included in
the calculations. To ensure optimal decision-making, guidelines recommend a full economic
evaluation that includes all relevant costs for payers (e.g., costs of analytics). Our results align
with earlier research noting deployment costs are rarely considered while these costs can be a
major barrier to successfully implementing analytics [99].

We found that a small subset might be classified as big data analytics. We adopted a broad
definition of big data to maximize the number of studies that would be considered as studies
of big data. Therefore, the actual number of studies would be even lower if papers were to be
assessed by a panel of experts. This corroborates a previous study from 2018 which found that
quantified benefits of big data analytics are scarce [1].

The studies were grouped into four categories according to the data sources used, which were
similar to those reported by Mehta et al [1]. Two main differences were that we grouped all
databases that reported information relating to a patient’s medical history (instead of separating
claims and EHR data) and we included a category that evaluated analytics for monitoring data
generated in the hospital. This category was not available in the classification used by Mehta et
al. However, they reported some categories (e.g., social media and wearable sensors) that are
not yet represented in the literature on economic evaluations. None of the studies evaluated
technologies that used patient generated data collected using different methods such as
healthcare trackers.

Recommendations for future economic evaluations

Good policymaking decisions about the use of analytics requires knowledge of the impact that
the analytics will have on costs and health outcomes. With this in mind, policymakers could
provide incentives to developers of analytics to perform good-quality economic evaluations.
Economic evaluations of analytics are still scarce and the studies that were available often did
not adhere to best-practice guidelines, thereby limiting their value to inform decision-making.
Often a partial instead of a full economic evaluation was performed, costs of purchasing and
implementing the analytics were excluded, or only intermediate outcomes were reported. For
payers and policymakers, excluding for instance the costs of the analytics could result in an
underestimation of the investment needed to implement the technology or an overestimation of
its financial benefits. By means of incentives, policymakers could stimulate developers to adhere
to guidelines and best practice recommendations (e.g., Drummond [23], Buisman [26], Morse
[99]). This could improve the quality of results and thus their ability to inform decision-making.

We found a relatively high number of studies that performed an economic evaluation of analytics
during development, compared to other fields (e.g., drug or medical device development)
[100,101]. A possible explanation for this is the high costs of validating and deploying analytics
which are known to be an important barrier of implementation [11,99]. Few artificial intelligence
and big data analytics solutions have been implemented successfully [3,11]. To overcome this
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challenge, Frohlich et al. recommend the use of pilot trials toillustrate the potential effectiveness
and efficiency of analytics. These results can then be used to find new investors for clinical
research [11]. In our results, we also saw that those without a conflict of interest (e.g., academia)
were more inclined to publish during development which might be explained by the need to
attract funders for further development.

Defining big data to assist evaluation

Without consensus on a definition, no objective assessment can be made as to whether
investments following the introduction of big data in healthcare have realized expectations,
whether they can be considered good value for money and whether future investments should
be stimulated. In our analysis, we found that it is likely that a small number of studies have
performed an economic evaluation of big data analytics. However, this absolute number is
uncertain since a clear definition of ‘big data’ is still lacking almost ten years after its introduction
in healthcare. For policymakers and those that wish to practice evidence-based medicine, it is
essential to know where and how big data analytics would result in health and financial benefits
before investing in products described in mainstream media as ‘big data’ technologies (e.g.,
Afirma GSC, YouScript) [102,103]. This remains a challenging task if there is no consensus on
its definition. Therefore, we recommend experts in the field to reconsider the possibility of
generating a quantitative definition of big data in healthcare.

Defining big data is no easy task and we think that a definition will only be accepted by the
healthcare field if it is developed by a multidisciplinary collaboration of experts from academia,
healthcare organizations, insurers, federal entities, policymakers, and commercial parties.
Many authors have described the term in slightly different words [1,104], some have tried to
quantify [105], and others have purposefully refrained from doing so [14]. Auffray et al [14]
stated in 2016 that a single definition of big data would probably be ‘too abstract to be useful’
and proposed the use of a workable definition in which big data covers the high volume and
diversity of data sources managed with best-practice technologies such as advanced analytics
solutions. However, descriptions such as ‘best-practice’, ‘advanced’ [14], or ‘traditional’ [106]
are time-dependent. What is ‘traditional’ in 2014 is not necessarily ‘traditional’ in 2020. Thus,
perhaps a definition of big data should quantify the ‘data’ element, include a concrete list of
analytics that are considered advanced or best practice, be time-dependent, and be updated
regularly. We recognize that it might be extremely difficult to achieve wide consensus and we
do not think this can be realized without support from academic, clinical, policy, federal and
commercial stakeholders.

Limitations

One limitation of our research is that economic evaluations do not always describe the analytics
element of the intervention that was being evaluated. For instance, in studies of omics data the
papers generally referred to the tool (e.g., Afirma GSC) but did not describe the analytics used
in this tool. One way to ensure that economic evaluations that assess a big data technology are
included in future reviews would be to specify explicit tools that might contain big data analytics
(e.g., Afirma GSC) for each data type in a search strategy. However, such a list is likely to be
very long, and this will also be challenging without a definition of big data. Research into the
economic value of big data analytics might also be facilitated by better reporting in economic
evaluations on the data and analytics used for development. Another limitation is that studies
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that did not refer to cost estimations in their title/abstract were excluded. This could have led to
exclusion of studies that perform a cost estimation but do not report this as a primary outcome
in the abstract. A possible solution for future research would be to include studies for full-text
screening when one of the authors is a health economist or employed in a health policy or
economics department.

Also, since our review included only published economic evaluations, it is possible that our results
are influenced by the absence of an incentive to submit an academic paper and by publication
bias. Commercial developers do not always have an incentive to publish but do have an incentive
to market their products using the results of economic analyses. If these studies do not include
costs of analytics in their estimation of benefits, this would only underline the importance of
our recommendations. It is also possible that studies that do not find a technology cost-effective
include costs of analytics more often and are rejected for publication because of negative results.

Methodological limitations were that study selection and data extraction were performed by a
single reviewer due to the size of the hits from the search strategy, and the fact that Business
Review Complete (BSC) was not included in the literature search. While this may have resulted in
the exclusion of some relevant studies, we expect this number to be small. Moreover, this does
not affect the conclusions of our study. Our search was limited to analytics for decision-making of
clinical experts at the individual patient level. There are many other ways in which analytics could
improve health such as managing epidemics and policy making to improve population health
that were beyond the scope of this paper. To conclude, it is possible that developers sometimes
have a valid reason for not including costs of analytics which we did not consider in this study.

CONCLUSION

This is the first study to assess the health and economic impact of big data analytics for clinical
decision-making. At present the potential benefits of big data analytics for clinical practice
cannot yet be corroborated with academic literature despite high expectations. We found that
economic evaluations were sometimes used to estimate the potential of analytics. However,
many studies were partial economic evaluations and did not include costs of implementing
analytics. Therefore, economic evaluations that adhere to best practice guidelines should be
encouraged. This and the lack of an appropriate definition of big data complicates justification
of future expenses and makes it exceedingly difficult to determine whether expectations of big
data analytics have thus far been realized. Therefore, we recommend key experts in the field of
data science in healthcare to reconsider the possibility to define big data analytics for healthcare.
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APPENDIX
APPENDIX A - Search strategies

Search strategy embase.com

(‘economic evaluation’/de OR ‘economic aspect’/de OR cost/de OR ‘cost control’/de OR ‘health
care cost’/de OR ‘economic model’/de OR ‘economics’/de OR investment/de OR funding/
de OR ‘device economics’/de OR ‘resource allocation’/de OR ‘health care financing’/de OR
‘hospital purchasing’/de OR ‘cost benefit analysis’/exp OR ‘cost effectiveness analysis’/exp
OR ‘cost minimization analysis’/exp OR ‘cost utility analysis’/exp OR ‘biomedical technology
assessment’/de OR ‘research and development’/de OR ‘Markov chain’/de OR ‘device approval’/
de OR ‘product development’/de OR ‘diagnostic test approval’/de OR ‘strategic planning’/exp OR
‘return on investment’/de OR ((econom* NEAR/3 evaluat*) OR ((cost OR costs OR expenditure*
OR economic*) NEAR/6 (benefit* OR effectiv* OR utili* OR minimi* OR implement* OR instal*
OR operat* OR development* OR analy* OR implication* OR associat* OR perform* OR optim*
OR reduc* OR avoid* OR save OR saving* OR increase* OR decrease* OR health* OR medical*
OR consider* OR impact* OR control*)) OR funding OR (business* NEAR/3 perform*) OR (value
NEAR/3 money) OR (technolog* NEAR/3 assessment*) OR (research NEAR/3 development)
OR headroom* OR head-room* OR Markov OR ((device* OR product* OR diagnostic-test*)
NEAR/3 (approv* OR develop* OR economic*)) OR (strateg* NEAR/3 plan*) OR (return NEAR/3
invest*)):ab,ti,kw) AND (‘big data’/exp OR ‘clinical data repository’/de OR ‘clinical decision
support system’/de OR ‘computerized provider order entry’/exp OR ‘alarm monitor’/de OR
‘alarm monitoring’/de OR ‘artificial intelligence’/de OR ‘clinical prediction rule’/de OR ((‘decision
making’/de OR ‘medical decision making’/de OR ‘clinical decision making’/de) AND (‘computer
assisted diagnosis’/de OR ‘computer assisted therapy’/de)) OR (‘machine learning’/exp NOT
‘hidden Markov model’/de) OR ((‘information technology’/de OR automation/de OR ‘medical
informatics’/de OR ‘electronic medical record’/de OR ‘information processing’/de OR ‘hospital
information system’/de OR ‘medical information system’/de) AND ‘decision support system’/
de) OR (‘big data’ OR (clinical NEAR/6 data NEAR/6 repositor*) OR (clinical* NEAR/6 decision*
NEAR/6 (system OR systems OR support* OR automat* OR computer* OR technolog* OR
algorith* OR tool*)) OR (computer* NEAR/6 (provider* OR order*) NEAR/6 entr*) OR ((alarm*
OR alert* OR warning) NEAR/3 (monitor* OR system*)) OR (electronic* NEAR/3 (ordering* OR
prescri*)) OR E-prescri* OR (clinical* NEAR/3 predict* NEAR/3 (rule* OR model*)) OR ((computer*
OR automat* OR technolog* OR algorith*) NEAR/6 (decision* OR protocol*) NEAR/6 (diagnos*
OR therap* OR surg*)) OR ‘machine learning’ OR ‘artificial intelligence’ OR (data NEAR/3 mining)
OR datamining OR (mining NEAR/3 (health* OR patient* OR medical*) NEAR/3 record*)):ab,ti,kw)
AND (‘health care facilities and services’/exp OR ‘health’/exp OR ‘medicine’/exp OR ‘diseases’/exp
OR ‘health care personnel’/exp OR ‘health care organization’/exp OR patient/exp OR (hospital*
OR clinic* OR medic* OR health* OR disease* OR practitioner* OR physician* OR doctor* OR
patient* OR diagnos* OR therap*):ab,ti,kw) NOT ([Conference Abstract]/lim OR [Letter]/lim OR
[Note]/lim OR [Editorial]/lim) AND [english]/lim

Search strategy Medline

(“Costs and Cost Analysis”/ OR Health Care Costs/ OR Models, Economic/ OR Economics/ OR
Economics, Medical/ OR Hospital Costs/ OR Health Expenditures/ OR Diagnostic Test Approval/
OR Investments/ OR Resource Allocation/ OR Purchasing, Hospital/ OR exp Cost-Benefit Analysis/
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OR Technology Assessment, Biomedical/ OR Markov Chains/ OR Device Approval/ OR Strategic
Planning/ OR Cost Savings/ OR ((econom* ADJ3 evaluat*) OR ((cost OR costs OR expenditure*
OR economic*) ADJ6 (benefit* OR effectiv* OR utili* OR minimi* OR implement* OR instal* OR
operat* OR development* OR analy* OR implication* OR associat* OR perform* OR optim* OR
reduc* OR avoid* OR save OR saving* OR increase* OR decrease* OR health* OR medical* OR
consider* OR impact* OR control*)) OR funding OR (business* ADJ3 perform*) OR (value ADJ3
money) OR (technolog* ADJ3 assessment*) OR (research ADJ3 development) OR headroom*
OR head-room* OR Markov OR ((device* OR product* OR diagnostic-test*) ADJ3 (approv* OR
develop* OR economic*)) OR (strateg* ADJ3 plan*) OR (return ADJ3 invest*)).ab,ti,kf.) AND
(Decision Support Systems, Clinical/ OR Medical Order Entry Systems/ OR Clinical Alarms/ OR
Decision Making, Computer-Assisted/ OR ((Decision Making/ OR Clinical Decision-Making/) AND
(Diagnosis, Computer-Assisted/ OR Therapy, Computer-Assisted/)) OR Artificial Intelligence/ OR
exp Machine Learning/ OR ((Information Technology/ OR Automation/ OR Medical Informatics/
OR Medical Informatics Applications/ OR Electronic Health Records/ OR Automatic Data
Processing/ OR Hospital Information Systems/) AND Decision Support Techniques/) OR (big data
OR (clinical ADJ6 data ADJ6 repositor*) OR (clinical* ADJ6 decision* ADJ6 (system OR systems
OR support* OR automat* OR computer* OR technolog* OR algorith* OR tool*)) OR (computer*
ADJ6 (provider* OR order*) ADJ6 entr*) OR ((alarm* OR alert* OR warning) ADJ3 (monitor*
OR system*)) OR (electronic* ADJ3 (ordering* OR prescri*)) OR E-prescri* OR (clinical* ADJ3
predict* ADJ3 (rule* OR model*)) OR ((computer* OR automat* OR technolog* OR algorith*)
ADJ6 (decision* OR protocol*) ADJ6 (diagnos* OR therap* OR surg*)) OR machine learning OR
artificial intelligence OR (data ADJ3 mining) OR datamining OR (mining ADJ3 (health* OR patient*
OR medical*) ADJ3 record*)).ab,ti,kf.) AND (exp Health Care Facilities, Manpower, and Services/
OR exp health/ OR exp Medicine/ OR exp “Diseases (Non MeSH)”/ OR exp Health Personnel/
OR exp Patients/ OR (hospital* OR clinic* OR medic* OR health* OR disease* OR practitioner*
OR physician* OR doctor* OR patient* OR diagnos* OR therap*).ab,ti,kf.) NOT (letter* OR news
OR comment* OR editorial* OR congres* OR abstract* OR book* OR chapter* OR dissertation
abstract*).pt. AND english.la.

Search strategy Web of science

TS=((((econom* NEAR/2 evaluat*) OR ((cost OR costs OR expenditure* OR economic¥)
NEAR/5 (benefit* OR effectiv* OR utili* OR minimi* OR implement* OR instal* OR operat* OR
development* OR analy* OR implication* OR associat* OR perform* OR optim* OR reduc* OR
avoid* OR save OR saving® OR increase* OR decrease* OR health* OR medical* OR consider* OR
impact* OR control*)) OR funding OR (business* NEAR/2 perform*) OR (value NEAR/2 money)
OR (technolog* NEAR/2 assessment*) OR (research NEAR/2 development) OR headroom* OR
head-room* OR Markov OR ((device* OR product* OR diagnostic-test*) NEAR/2 (approv* OR
develop* OR economic*)) OR (strateg* NEAR/2 plan*) OR (return NEAR/2 invest*))) AND ((“big
data” OR (clinical NEAR/5 data NEAR/5 repositor*) OR (clinical* NEAR/5 decision* NEAR/5
(system OR systems OR support* OR automat* OR computer* OR technolog* OR algorith* OR
tool*)) OR (computer* NEAR/5 (provider* OR order*) NEAR/5 entr*) OR ((alarm* OR alert*
OR warning) NEAR/2 (monitor* OR system*)) OR (electronic* NEAR/2 (ordering* OR prescri*))
OR E-prescri* OR (clinical* NEAR/2 predict* NEAR/2 (rule* OR model*)) OR ((computer* OR
automat* OR technolog* OR algorith*) NEAR/5 (decision* OR protocol*) NEAR/5 (diagnos* OR
therap* OR surg*)) OR “machine learning” OR “artificial intelligence” OR (data NEAR/2 mining)
OR datamining OR (mining NEAR/2 (health* OR patient* OR medical*) NEAR/2 record*))) AND
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((hospital* OR clinic* OR medic* OR health* OR disease* OR practitioner* OR physician* OR
doctor* OR patient* OR diagnos* OR therap*)) ) AND DT=(article) AND LA=(english)

NHS EED via https://www.crd.york.ac.uk/CRDWeb/ 59

((((econom* NEAR2 evaluat*) OR ((cost OR costs OR expenditure* OR economic*) NEARS
(benefit* OR effectiv* OR utili* OR minimi* OR implement* OR instal* OR operat* OR
development* OR analy* OR implication* OR associat* OR perform* OR optim* OR reduc* OR
avoid* OR save OR saving* OR increase* OR decrease* OR health* OR medical* OR consider* OR
impact® OR control*)) OR funding OR (business* NEAR2 perform*) OR (value NEAR2 money) OR
(technolog* NEAR2 assessment*) OR (research NEAR2 development) OR headroom* OR head-
room* OR Markov OR ((device* OR product* OR diagnostic-test*) NEAR2 (approv* OR develop*
OR economic*)) OR (strateg* NEAR2 plan*) OR (return NEAR2 invest*))) AND ((“big data” OR
(clinical NEARS data NEARS repositor*) OR (clinical* NEARS decision* NEARS (system OR systems
OR support* OR automat* OR computer* OR technolog* OR algorith* OR tool*)) OR (computer*
NEARS (provider* OR order*) NEARS5 entr*) OR ((alarm* OR alert* OR warning) NEAR2 (monitor*
OR system*)) OR (electronic* NEAR2 (ordering* OR prescri*)) OR E-prescri* OR (clinical®* NEAR2
predict* NEAR2 (rule* OR model*)) OR ((computer* OR automat* OR technolog* OR algorith*)
NEARS (decision* OR protocol*) NEARS (diagnos* OR therap* OR surg*)) OR “machine learning”
OR “artificial intelligence” OR (data NEAR2 mining) OR datamining OR (mining NEAR2 (health*
OR patient* OR medical*) NEAR2 record*))) AND ((hospital* OR clinic* OR medic* OR health*
OR disease* OR practitioner* OR physician* OR doctor* OR patient* OR diagnos* OR therap*)) )
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Chapter 3

ABSTRACT

Background: Mechanical ventilation services are an important driver of the high costs of
intensive care. An optimal interaction between a patient and a ventilator is therefore paramount.
Suboptimal interaction is present when patients repeatedly demand, but do not receive,
breathing support from a mechanical ventilator (>30 times in 3 min), also known as an ineffective
effort event (IEEV). IEEVs are associated with increased hospital mortality prolonged intensive
care stay, and prolonged time on ventilation and thus development of real-time analytics that
identify IEEVs is essential. To assist decision-making about further development we estimate
the potential cost-effectiveness of real-time analytics that identify ineffective effort events.

Methods: We developed a cost-effectiveness model combining a decision tree and Markov
model for long-term outcomes with data on current care from a Greek hospital and literature. A
lifetime horizon and a healthcare payer perspective were used. Uncertainty about the results was
assessed using sensitivity and scenario analyses to examine the impact of varying parameters
like the intensive care costs per day and the effectiveness of treatment of IEEVs.

Results: Use of the analytics could lead to reduced mortality (3% absolute reduction), increased
quality adjusted life years (0.21 per patient) and cost-savings (€264 per patient) compared to
current care. Moreover, cost-savings for hospitals and health improvements can be incurred
even if the treatment’s effectiveness is reduced from 30% to 10%. The estimated savings
increase to €1,155 per patient in countries where costs of an intensive care day are high (e.g.,
the Netherlands). There is considerable headroom for development and the analytics generate
savings when the price of the analytics per bed per year is below €7,307. Furthermore, even
when the treatment’s effectiveness is 10%, the probability that the analytics are cost-effective
exceeds 90%.

Conclusions: Implementing real-time analytics to identify ineffective effort events can lead
to health and financial benefits. Therefore, it will be worthwhile to continue assessment of
the effectiveness of the analytics in clinical practice and validate our findings. Eventually, their
adoption in settings where costs of an intensive care day are high and ineffective efforts are
frequent could yield a high return on investment.
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BACKGROUND

Annual intensive care costs in the United States represent more than 13% of all hospital costs [1].
The costs of an intensive care unit (ICU) day per patient are high (e.g., €5,695) and an important
factor that contributes to these high daily costs is whether or not patients receive mechanical
ventilation [2]. Therefore, better management of mechanically ventilated patients could be a
worthwhile investment when it reduces length of stay and their time on ventilation support.

One way to achieve better outcomes in the intensive care is by using analytics to process the
huge amounts of monitoring data that are continuously collected in order to improve clinical
decision-making [3]. Ventilation monitors in the ICU generate a wealth of data on a patient’s
status and patient-monitor interaction. Ideally, this data can be used to help clinicians intervene
promptly when the interaction between the patient and the monitor is poor. One example of
poor interaction is when a patient tries but does not receive a breath. These so-called ‘ineffective
efforts’ are reflected in the airway pressure and airflow data from the monitor [4]. When many
ineffective efforts occur in a short period of time (>30 ineffective efforts in 3 min.) it is referred
to as an ineffective effort event (IEEV) which have been associated with higher hospital mortality,
anincrease in ICU length of stay of almost 10 days and prolonged time on mechanical ventilation
[5]. Timely identification of ineffective effort events is crucial and early-warning systems using
big data analytics have been portrayed as an important means to improve care for mechanically
ventilated patients [4, 6] since the complexity and velocity required to process this data in real-
time are beyond the capacities of humans such as healthcare professionals.

Real-time analytics of ventilation data would enable clinicians to identify IEEVs and intervene
accordingly thereby shortening their duration and potentially reducing mortality risks and
healthcare costs. Several types of interventions are recommended to improve the interaction
between a patient and a mechanical ventilator such as, adjustment of ventilator settings,
reducing sedation when managing pain and anxiety [7,8] and adjustments in the management
of bronchodilation [8]. Developing real-time analytics that identify IEEVs would enable clinicians
to adopt these interventions currently already recommended when other forms of suboptimal
interaction are present, identified manually for instance through waveform graphics [9]. However,
large investments will need to be made in further research and development before these
analytics could be implemented in clinical practice; the need for these investments can pose a
major barrier for their development and future success. We aim to assist future development
and clinical trial plans by identifying the performance requirements of the technology such as
maximum costs or minimum efficacy. We performed a cost-effectiveness analysis in which we
estimated how analytics that identify IEEVs in real-time could generate health improvements
and/or financial savings.

METHODS

We used a decision tree model to assess the potential cost-effectiveness of analytics to detect
IEEVs. Short term effects were estimated, such as hospital mortality and length of stay, but also
long-term outcomes such as life years gained, and quality adjusted life years gained (QALYs).
Where policy makers involved with national reimbursement decisions would be familiar with
outcomes such as life years gained and QALYs developers of analytics and hospitals deciding on
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their acquisition may be less familiar with these outcomes but interested in mortality and length
of stay. The target population consisted of patients who receive assisted modes of ventilation in
a Greek ICU. In current care, IEEVs are not detected in these patients, which means that clinicians
do not intervene to stop them. We compared current care with the intervention in which IEEVs
are detected with analytics that process data from mechanical ventilators in real-time. Their
detection would enable clinicians to provide treatment to reduce duration of the IEEV.

Decision tree model

We developed a decision tree model that compared the health and cost outcomes of current care
to the use of analytics for early detection of IEEVs (Figure 1). In the intervention arm, data from
ventilation monitors is analyzed in real-time and an alarm is generated when a patient has an
IEEV (branch 1-5). An alarm sounds when patients are labelled as having IEEVs (branch 1, 2 & 3)
while no alarm sounds when patients are labelled as not having IEEVs (branch 4 & 5). When the
alarm sounds, a clinician will carry out a treatment that may or may not be successful (branch 1
vs branch 2). The other arm in the decision tree represents current care (branch 6). Since IEEVs
are currently not identified, no treatment is performed.

Successful p=0.3 @ Branch 1

IEEV + p=0.98, TP Treatment
Alarm + p=0.34 Unsuccessful p=0.7 Branch 2
With real-time IEEV - p=0.02 pp Treatment
analytics @ Branch 3
IEEV + p=0.07, FN No Treatment @ Branch 4
Mechanically Ventilated
ICU patients Alarm - p=0.66
—L IEEV - p=0.93 No Treatment
2 ™ © Treatmen @ Branch 5
Current Care No Treatment
@ Branch &

Figure 1: Cost-effectiveness model structure comparing use of real-time analytics to current care. All
probabilities were estimated using the sensitivity, specificity, and prior probability of having an IEEV
reported in Table 1. Legend: ICU=Intensive Care Unit, IEEV= Ineffective Effort Event, FN= False Negative,
TP=True Positive, FP=False Positive, TN= True Negative, M=Markov Model.

Fig. 1 also shows a Markov model with four states (‘ICU’, ‘hospital ward’, ‘discharged’ and ‘death’),
which was used to estimate the long-term outcomes of IEEV detection and treatment. At the start
of this model, all patients start in the ICU. At the end of the first cycle, patients transition to the
general ‘hospital ward’ or ‘death’; the cycle length equals the median length of ICU stay. Within
the data used to model results, no patients were readmitted to the ICU after ICU discharge.
Therefore, we excluded the possibility to transition back to the ICU from the hospital ward.
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At the end of the second cycle, all patients in the ‘hospital ward’ transition to either ‘discharged’
or ‘death’; this cycle’s length equals the median length of hospital stay (following ICU discharge).
For the remainder of the cycles, patients can remain in the ‘discharged’ state or die; the length of
these cycles was one year. Because it was uncertain as to where in the cycle patients transitioned,
a half-cycle correction was applied assuming patients transitioned on average in the middle of
the cycle. Without the correction, patients would either be assumed to transition at the start
or end of a cycle incurring more or less of the costs they should be assigned. The time horizon
was lifetime, and we adopted a healthcare payer perspective including only direct medical costs.
Since Greece does not have a national guideline for performing economic evaluations, health
outcomes and costs were discounted at a rate of 3.5%. Key model assumptions can be found in
Table A.1 (Appendix) and the model was built in R v.3.3.1.

Analytics and treatment parameters

Table 1 shows the values and distributions of the input parameters used in the model. Identifying
IEEVs and the subsequent treatment can be complex and to estimate its potential several
parameters need to be combined. First, ineffective efforts need to be identified from airway
pressure and airflow data. In the Greek ICU a prototype monitor was used to identify ineffective
efforts. Data from this ‘ineffective effort monitor’ can be used to calculate ineffective effort
events. The sensitivity and specificity of the algorithm that identified ineffective efforts were
derived from the literature [10]. Real-time analytics would use the data from the prototype
monitor to identify clusters of ineffective effort events [5]. The prior probability of IEEVs was
38% [5]. When an IEEV is detected, the clinician can perform one of the following treatments:
adjust the ventilator settings, reduce sedation when managing pain and anxiety [7,8], or change
the management of secretions and bronchodilation [8].

There is evidence that patients experiencing ineffective effort events have worse outcomes such
as increased hospital mortality and prolonged ICU stay [5]. However, assessing the probability
that treatments are effective when IEEVs occur can only be done once these real-time analytics
are available. Therefore, we assessed the impact on health and cost benefits when varying the
probability of effective treatment from 0 to 50%. Because the treatment was performed shortly
after an IEEV occurred (3 minutes) while the median duration of the events was 21 minutes [5] we
assumed that an effective treatment would lead to an outcome similar to those without IEEVs.

Health parameters

Long term health benefits were quantified in life years gained and QALYs gained. QALYs are
estimated by multiplying the life years gained by the quality of life in those years. Therefore, if
a patient lives two extra years but in suboptimal health, the QALYs gained will be less than two.

We used patient data on current care from a medical-surgical ICU in Greece (the University
hospital of Heraklion (PAGNI)) [5] to estimate life years gained and QALYs. The study was
approved by the hospital’s ethics committee and detailed results from the observational study
can be found elsewhere [5]. All 110 patients in that study received assisted modes of mechanical
ventilation for >12 hours (total of 4,456,537 breaths).

Life years gained were estimated by combining patient level data with results from the literature.
The probability of surviving the ICU was considerably higher - although not statistically significant-

85




Chapter 3

amongst patients without IEEVs compared to patients with IEEVs (75% vs 63% (p=0.249)). The
probability of surviving the hospital was statistically significantly higher for patients without
IEEVs compared to patients with IEEVs (67% vs 41% (p=0.025). Life years gained after discharge
were estimated using the post-discharge hazard ratio of mortality for ICU patients [11] combined
with a baseline hazard of the Greek general population [12,13].

Unsurprisingly, no research is available on quality of life of patients during ICU stay. Therefore,
using a value set from the United Kingdom, quality of life for those in the ICU whilst on mechanical
ventilation was assumed to be 0.297. This corresponds with an EQ-5D state of individuals who
have extreme problems with mobility and self-care, cannot perform their usual activities but no
pain, discomfort or anxiety. QALYs during a hospital stay were estimated using utility estimates
derived from the literature [14]. Quality of life after discharge was estimated using the mean
age of the patients and the time since ICU discharge [15].

Resource Use and Unit Costs

To estimate costs, we obtained time on mechanical ventilation and length of stay from the
patient level data from PAGNI. For patients with IEEVs, median ICU length of stay was longer
than for patients without IEEVs (26 vs 17 days (p=0.017)), as was the median time on mechanical
ventilation (16 vs 11 days (p=0.02)). We assumed annual licensing costs for the analytics (€1,918)
to estimate the costs of the analytics per ICU day [16]. This estimate was varied extensively in
uncertainty analyses. The costs included for treatment when IEEVs occur were assumed to be
low since the interventions currently performed to improve interaction between a patient and
the mechanical ventilator are easy and cheap to perform (e.g., adjusting sedation, adjustment
of ventilator settings). Base case estimates for the costs per ICU day [17] and costs per hospital
day [18] were derived from micro-costing studies conducted in Greece. There was a considerable
amount of uncertainty in especially the ICU costs per day and these were therefore varied
extensively in the univariate uncertainty analyses. These daily ICU costs were decreased by 10%
for patients who remained in the ICU but were successfully weaned. All costs were adjusted to
2019 euros.

Cost-effectiveness analysis

We determined the incremental costs, life years gained, quality adjusted life years and the
incremental cost-effectiveness ratio of using analytics to identify IEEVs compared to current care.
First, base-case estimates for all outcomes were calculated using the most likely input values
based on patient-level data and the literature. We then performed univariate sensitivity analyses
in which one input parameter at a time was varied to determine how they affected the cost-
effectiveness results. Costs of an ICU day are much higher in countries such as the Netherlands
compared to the parameter values used in the base case [19]. Therefore, we assessed the impact
of increasing this value to the Dutch estimate (€2,153) on the cost-effectiveness results. Finally,
we also examined a ‘worst case’ scenario and ‘best case’ scenario using the highest and lowest
estimates presented in Table 1. In the ‘worst case’ scenario the analytics and the treatment were
expensive, whilst the number of people with IEEVs, the probability of effective treatment, and
the sensitivity and specificity of the ineffective effort algorithm were all low. For the ‘best case’
scenario, the analytics and intervention costs were reduced whilst the probability of having IEEVs,
the probability of an effective treatment, sensitivity and specificity were all high.
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Table 1: Input parameters for the cost-effectiveness model.

Parameter Base Case Lowest Highest Distribution Source
estimate estimate estimate

Discount rate costs (%) 3.5 3 5 -
Discount rate health benefits (%) 3.5 1 5 -
Sensitivity prototype monitor (%) 88 79 94 Beta [10]
Specificity prototype monitor (%) 99 80 100 Beta pert [10]
Prior probability of IEEVs (%) 38 10 50 Beta pert [5]
Treatment’s effectiveness (%) 30 0 50 - [E)fp?rt
opinion]
ICU survival (%)
with IEEVs 63 48 77 Beta Hospital
data
Hospital
without IEEVs 75 63 84 Beta ospita
data
Hospital survival (%)
with IEEVs 41 27 57 Beta Hospital
data
Hospital
without IEEVs 67 55 77 Beta ospita
data
Haza'rd.ratlo of death.aft.er ICU 501 164 246 Normal [11]
admission vs no. admission
Quality of Life (utilities)
ICU 0.297 0.24 0.36 Beta Assumed
Hospital 0.60 0.53 0.67 Beta [14]
Year 1 post discharge 0.67 0.62 0.71 Beta [15]
Year 2-10 post discharge 0.70 0.65 0.75 Beta [15]
Year>10 post discharge 0.68 0.62 0.74 Beta [15]
Resource Use
ICU LOS (days)
with IEEVs 28 23 34 Gamma Hospital
data
without IEEVs 22 18 27 Gamma Hospital
data
Time on MV (days)
with IEEVs 21 17 27 Gamma Hospital
data
Hospital
without IEEVs 15 12 17 Gamma ospita
data
H ital LOS t-1CU disch
Ospital s pos Ischarge 173 14 21 Gamma [20]
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Table 1: Continued.

Parameter Base Case Lowest Highest Distribution Source
estimate estimate estimate

Unit costs (in 2019 Euros)

Analytics licensing (per bed, per

1918 100 20,000 - [16]

year)
E t
Treatment 100 57 155 Gamma [ x.pfer
opinion]

ICU day 686 392 1060 Gamma [17]
Hospital day 298 170 460 Gamma [18]
Reduction in ICU costs when 10 0 35 Beta pert [Expert
patients no longer receive MV (%) opinion]

IEEVs = Ineffective Effort Events, ICU = Intensive Care Unit, LOS = Length of stay, MV = Mechanical Ventilation, Hospital
data = Patient level data from the intensive care unit of PAGNI in Greece

Probabilistic sensitivity analysis and headroom analysis

In a probabilistic sensitivity analysis (PSA) we varied all parameters simultaneously with the
exception of the price and the probability of the treatment’s effectiveness. In the PSA we
performed 10,000 simulations during which random parameter values for all input parameters
were simultaneously drawn from their underlying distributions. We ran the PSA three times
using different levels for the probability that the treatment is effective (10%, 30% and 50%). The
results were shown using cost-acceptability curves, which display the probability that using the
analytics is cost-effective given various willingness-to-pay thresholds. We also estimated the
headroom per patient which is the maximum price that could be charged for the analytics per
patient or per bed given a fixed willingness-to-pay and can be estimated as follows;

Headroom=N+A *Q

Where N are the savings given a price of zero for the analytics per bed, A is the threshold used
and Q refers to the incremental QALYs gained [21]. We assumed the device would be sold to
a hospital on a per bed basis and that patients needed the device for an average of 17 days.
Since no official willingness-to-pay threshold is used in Greece, we adopted three alternative
thresholds. The first two were based on opportunity costs proposed by Woods et al resulting in
thresholds of €4,946 and €7,758 [22]. Alternatively, we also used a threshold of €30,000 which
has been adopted in the past in Greek economic evaluations [23, 24].

RESULTS

Cost-effectiveness analytics

We found that the analytics could reduce hospital mortality (3% absolute reduction), increase
QALYs (0.21 per person) and lead to cost-savings (€246 per person) when the probability of
the treatment’s effectiveness is 30% (Table 2). Even if the probability that the treatment is
effective is small (10%) health improvements and cost-savings were gained. Long-term health
outcomes (QALYs and life years) were influenced by hospital survival and the discount rate of

88



Analytics for better care for mechanically ventilated patients

health benefits. Incremental costs were greatly influenced by the costs of the analytics, the
prevalence of IEEVs, the probability the treatment is effective, and the costs of an ICU day
(Figure 2). Increasing sensitivity and specificity of the monitor that identifies ineffective efforts
had a limited effect on costs; but when sensitivity increased so did health gains. In the base-
case scenario, when the price of the analytics was €1,918, cost-savings were generated (Figure
3). When the costs of the analytics exceeded €7,307 per year, using the analytics was more
expensive than current care. Moreover, when costs of an ICU day were high (e.g., €2,153), savings
increased from €183 to €1,155 per patient. In the ‘best case’ scenario, the analytics resulted
in greater health benefits (0.50 QALYs), reduced mortality (6% absolute reduction) and higher
cost-savings than the base case scenario (€831). However, in the ‘worst case’ scenario, using the
analytics offered no health benefits and increased average costs per patient (€895).

Table 2: Discounted results from the base case analysis and the worst and best case scenarios.

Scenario Costs € Length of ICUfstay Hospital Mortality Life Years QALYs®
Base Case

Current Care 19,501 24.28 0.43 6.87 4.72
With Analytics 19,255, 23.68 0.40 7.18 4.93
Incremental -264 -0.6 -0.03 0.31 0.21
ICER? Dominant Dominant Dominant Dominant

Worst Case ®

Current Care 18,474 22.6 0.36 7.73 5.31
With Analytics 19,369 22.6 0.36 7.73 5.31
Incremental 895 0 0 0 0

ICER - - - -

Best Case®

Current Care 19,942 25.00 0.46 6.50 4.46
With Analytics 19,111  23.59 0.40 7.22 4.96
Incremental -831 -1.41 -0.06 0.72 0.50

ICER Dominant Dominant Dominant Dominant

High ICU day costs ¢

Current Care 53,520 24.28 0.43 6.87 4.72
With Analytics 52,366 23.68 0.40 7.18 4.93
Incremental -1,155 -0.6 -0.03 0.31 0.21
ICER Dominant Dominant Dominant Dominant

2|CER = Incremental Cost Effectiveness Ratio,® High costs of the analytics (€20,000) and treatment intervention (€155),
Low probability of IEEVs (0.1), sensitivity (0.79), specificity (0.8) and an unsuccessful treatment intervention (0), < Low
costs of the analytics (€100) and the intervention (€57), High probability of IEEVs (0.5), sensitivity (94%), specificity
(1) and probability of successful intervention (0.5), d High costs of an ICU day, ¢ QALYs = Quality Adjusted Life Years,
fICU = Intensive Care Unit
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Figure 2: Tornado diagram illustrating the influence of individual parameters on the incremental costs.

Legend: ICU=Intensive Care Unit, IEEV= Ineffective Effort Event

Probabilistic sensitivity analysis and headroom analysis

Fig. 4 shows a cost-effectiveness plane that illustrates the degree of uncertainty surrounding
the differences in costs and effectiveness between using real-time analytics and current care.
Three scatterplots are shown, one for each of the scenarios. This figure shows us that a greater
probability that the treatment is effective increases the degree of cost-savings and health gain
from using real-time analytics. The cost-effectiveness acceptability curves shown in Fig. 5 present
the probability that the analytics are considered cost-effective for a range of willingness-to-pay
thresholds. We presented three different acceptability curves each with their own probability
of the treatment’s effectiveness. Fig. 5 illustrates that for a low willingness-to-pay threshold
(€4,946), the probability that the analytics for IEEVs are cost-effective exceeds 90% even when
the probability that the treatment is effective is 10%. The headroom was €1,963 per patient
(equivalent to €41,468 per bed), for a willingness-to-pay threshold of €7,758. Moreover, for a
threshold of €30,000 the headroom per patient was much higher (€6,634 per patient equivalent
to €140,128 per bed).
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Figure 4: Cost-effectiveness plane for real-time analytics of an ineffective effort event. Results are presented
for three probabilities of a successful treatment; 10%, 30% (base case) and 50%.
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Figure 5: Cost-effectiveness acceptability curves for real-time analytics of an ineffective effort event. Results
are presented for three probabilities of a successful treatment; 10%, 30% (base case) and 50%.

DISCUSSION

We estimated the potential cost-effectiveness of real-time analytics that identify ineffective
effort events in mechanically ventilated ICU patients. Even when the probability that the
treatment is effective is low, use of real-time analytics could still lead to health benefits for
patients (0.21 QALYs per person) and savings (€264 per person) for healthcare payers. Moreover,
there is considerable headroom for development since the maximum price that can be charged
per bed varies from €28,994 to €140,128 depending on the willingness-to-pay threshold used.
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This is the first study to examine the cost-effectiveness of analytics that detect IEEVs. These
estimates are important to stimulate further development of analytics that detect IEEVs in real-
time since patients with IEEVs have much poorer outcomes compared to those without IEEVs.
Previous studies have emphasized that patients with IEEVs have a longer time on mechanical
ventilation compared to those without IEEVs and authors have reported that health and
economic benefits can be gained by reducing time on mechanical ventilation [25, 26]. Moreover,
Marchuk et al. found that those patients with many ineffective efforts in a brief timeframe had
reduced oxygen saturation [4]. This further confirms that using analytics that enable timely
identification of IEEVs are essential since this allows clinicians to intervene rapidly to improve
their oxygen saturation. The underlying assumption that an intervention is successful in at least
a small subset of these patients is an important one in the analysis and we cannot be sure
that this assumption is valid without further research. However, the results available thus far
suggest that it is more likely that an intervention improves outcomes compared to the possibility
that the intervention has no or a negative effect. First, we see that patients with IEEVs are
severely worse off compared to patients without IEEVs suggesting that there is a lot of room for
improvement [4,5]. Second, IEEVs can be identified after 3 minutes while their median duration at
present is 21 minutes leaving a large time window in which a clinician can intervene to stop their
continuation [5]. This is very important because the potential interventions are relatively easy to
perform, are straightforward and are unlikely to lead to any adverse effects. In the unlikely case
that there would be absolutely no effect of an intervention whatsoever, we expect purchasers
would lose money, but patients would not necessarily be worse off. Since the probability of
successful treatment influences the health benefits and savings from using real-time analytics,
we recommend further development of these analytics for clinical practice and performing a
prospective clinical trial to assess their true impact. This study should provide more information
about the percentage of patients with IEEVs, and the effectiveness of treating them.

Transferability of our findings to other countries and hospitals could be influenced by the cost
estimates used in our analyses. Especially ICU costs had a large influence on the results, and
we therefore varied these costs by 25% in the univariate sensitivity analysis. Moreover, we also
performed a scenario analysis using the ICU costs of the Netherlands as an example for other
western countries. The benefits for hospitals also depend on the reimbursement system in
place. Diagnostic related groups in which hospitals receive a fixed payment for patients with a
specific diagnosis can stimulate hospitals to reduce length of stay which could in turn lead to
financial savings for hospitals. However, if services are reimbursed on a fee-for-service basis in
which the hospital is reimbursed for each additional day in the hospital, there could be perverse
incentives to increase length of stay. Either way, the aim of healthcare providers should be to
maximize the health outcomes of their patients which makes use of analytics to detect IEEVs
desirable. We excluded the possibility that alarms generated by the analytics might sometimes
be ignored because of alert fatigue which could lead to lower benefits than estimated here. We
also excluded the possibility that patients are readmitted to the ICU and excluded any side effects
of treatments to stop an ineffective effort event. Even though no patients were readmitted in
the observational study and experts thought that side effects did not necessarily occur, both
should be verified in a clinical trial.

Our results are not generalizable to all ICU patients receiving mechanical ventilation, since we
only considered patients who were expected to remain on proportional assisted mechanical

93




Chapter 3

ventilation for a longer period of time (>24h). Furthermore, a small subset of patients can have
IEEVs a couple of days after initiation of ventilation support. Our assumption that all treatments
are performed on the first day could therefore have led to an overestimation of the benefits of
using the analytics. Even though few patients had IEEVs after the first day, additional research
on the estimated number and timing of IEEVs could improve the estimate of the benefits. A
final limitation is that we did not include any benefits of reducing any delays in ICU admission
of other patients. Since there is a shortage of ICU beds in Greece, reducing length of stay for
patients with IEEVs could reduce health losses incurred by other patients because of delays in
admitting them to the ICU. Therefore, the true benefits could be higher than presented here.

Although clinical experts have emphasized the relevance of developing analytics to detect IEEVs
[5, 27] their adoption is uncertain and compromised by constrained budgets and competing
investments. Our results provide developers with estimates of the potential benefits of these
analytics, which they can show to healthcare payers. There is a considerable market that could
benefit from analytics that identify IEEVs since the number of critical care beds in Europe has
been previously estimated at 75,585 [28]. Sixty percent of all ICU patients receive mechanical
ventilation, of which 30% will receive prolonged ventilation [29,30]. Therefore, the analytics
would be relevant for 18% of ICU patients. In Greece, there is a shortage of ICU beds and because
of this all ICU beds are constantly occupied. If this is also the case in other European countries,
the analytics would be relevant for 18% of these 75,585 beds in Europe alone. Based on our
results, the analytics should first be assessed in countries where ICU costs are high, such as the
United States or The Netherlands, where the potential financial benefits of the analytics would
be considerably higher.

CONCLUSION

Real-time analytics to identify ineffective effort events have the potential to improve patient
outcomes and generate financial savings for healthcare payers even when the probability of an
effective treatment is low. There is considerable headroom for development, and this should
therefore be encouraged. Exploitation in countries where the costs of an ICU day are high could
yield a higher return on investment. One important next step is to obtain additional clinical
evidence of using these analytics in settings where there is a high frequency of IEEVs.
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APPENDIX

Table A.1: Overview of key assumptions underlying the model

Assumption

Potential Impact

We assumed patients do not transition
back to the ICU during their initial hospital
visit.

If the number of patients transitioning back to the ICU during
the initial visit is high, we may have underestimated the costs
in care with the analytics. With the analytics more patients
survive their initial ICU visit and thus more of these patients
are eligible for a readmission and thus higher costs. However,
this would only be the case if the intervention performed
when IEEVs occur has no impact the risk of readmission

We assumed a base case effectiveness
estimate of 0.3

This estimate was varied very extensively in the uncertainty
analysis. Therefore, the potential impact of this assumption
is clearly demonstrated throughout the paper. Of course, it
is crucial to perform a clinical trial once real-time analytics
have been developed.

We assumed patients in the ICU have a
utility estimate of 0.297 which was based
on no pain, discomfort, or anxiety

It is possible that when sedation is adjusted when an IEEV
occurs, a clinical expert has difficulty finding the balance
between a patient’s ability to trigger the ventilator (so no
excessive sedation) while avoiding pain/anxiety. However, if
pain or anxiety occurs (thus the balance has not been found)
it is unlikely that patients will experience this for very long
because the clinician will continue adjusting medication until
this balance is found.

We assumed costs of the analytics to be
€1918

This estimate was varied very extensively in the uncertainty
analysis. Therefore, the potential impact of this assumption
is clearly demonstrated throughout the paper.

We assumed costs of the intervention to
be €100

At present all interventions that are applied to improve the
interaction between a patient and a mechanical ventilator are
quite simple and relatively low in costs. We therefore consider
this assumption reasonable. Would these costs be higher in
reality we may have slightly overestimated the savings.

We assumed patients used the analytics
for 17 days on average when estimating
the headroom per bed and that all beds
were constantly occupied (thus a shortage
of ICU beds).

This estimate was based on the results from the observational
study performed in PAGNI and the shortage of ICU beds in
Greece. It is possible that in other European countries the
headroom would be slightly lower because there is no
shortage of ICU beds. Furthermore, we expect that ICU stay
could be shorter in other countries for instance because of
differences in quality of care and patient characteristics.
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ABSTRACT

Aim: Electronic health records (EHRs) are increasingly used in effectiveness and safety research.
However, these studies are often at risk of bias. This study demonstrates the relevance, and
discusses challenges, of using target trial emulation to avoid bias, such as selection bias, immortal
time bias and confounding when performing observational research with EHRs.

Methods: Target trial emulation can be used to identify and address some of the drawbacks
of observational research in a systematic way. Potential sources of bias are identified by
describing key components of an ideal randomized controlled trial and comparing this to the
observational study actually performed. The methods were applied to assess treatment response
to antidiabetic treatment using EHRs from patients with diabetes treated in secondary care.

Results: Using target trial emulation ensured prevalent users were excluded and patients
were not included based on information generally not available when initiating a clinical trial.
Furthermore, applying these methods demonstrated how the number of records eligible for use
can rapidly decrease. Hereafter, adjustments were performed to address potential sources of
bias and it was shown that missing variables essential for adjustment can be an important issue.

Conclusions: Using target trial emulation, sources of selection bias and confounding were
identified and adjusted for accordingly when analyzing treatment response in patients with type
2 diabetes. However, when using EHR data to emulate a target trial, samples containing sufficient
information on outcome measures and variables to adjust for confounding and selection bias
are essential given the risk of missing data.
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INTRODUCTION

The randomized controlled trial (RCT) is the preferred method for assessing the efficacy of
novel treatments. Randomly assigning patients to either the treatment group or the comparator
enables researchers to isolate the effect the treatment has on the outcome. However, RCTs are
often costly to perform, have a limited generalizability and may pose ethical challenges [1,2].
Furthermore, for diseases such as diabetes, where many different treatment combinations are
possible, performing an RCT for each possible antidiabetic treatment combination is often not
feasible. The use of observational research and electronic health records (EHR) to assess the
real-world effectiveness of these treatments has sometimes been suggested as an alternative
[1]. However, observational studies can be challenging to perform due to missing data and the
risk of bias [1,3-7]. Even though best practice methods have been emphasized for observational
research in a chronic disease such as diabetes [8], recent systematic reviews have found that
many observational studies are still at risk of bias such as selection bias, immortal time bias and
confounding [1,5,7].

Target trial emulation can be used to identify and address some of the drawbacks of observational
research in a systematic way [2]. In target trial emulation, potential sources of bias are identified
by describing an ideal trial and comparing this to the observational study that is designed to
emulate this target trial [9]. If shortcomings of the observational study that have a large impact
on the quality of the study cannot be overcome, researchers can adjust their design or find
additional data [9]. Elements of target trial emulation (e.g., eligibility criteria) are sometimes
already presented and used in observational research [2,8,9]. However, these elements are
often not used in a systematic way and the necessity of using them, and the challenges that
can be expected, may not always be apparent to researchers [2]. In this paper, we aim to offer
practical guidance for those performing real-world effectiveness and safety research using EHRs.
We demonstrate the value of target trial emulation but also discuss several challenges that can
be expected by emulating a target trial using EHRs of patients with diabetes.

METHODS

Identifying bias

Throughout the remainder of the paper, we will discuss the components of target trial emulation
based on Herndn et al. [2] and demonstrate how these can be used to systematically reduce the
risk of bias. There are many ways in which results from observational research are at risk of bias.
While the definitions of these types of bias may differ between research disciplines, they can
be clearly illustrated using directed acyclic graphs (DAGs). A DAG presents all assumed potential
causal relationships between variables using directional arrows [10]. Thus, when an arrow is
drawn from the exposure variable (e.g., treatment) to the outcome variable (e.g., Hemoglobin
A1C (HbA1c) response) the arrow cannot also go the other way (Figure 1a). Moreover, DAGs are
acyclic, thus no variable can cause itself. DAGs may contain both measured and unmeasured
causal variables as well as common causes and effects of exposure and outcome [11]. If the
rules for drawing DAGs are followed, the graphs can be used to determine which statistical
adjustments are required. Statistically, an exposure and outcome are associated when the DAG
contains an open connection (‘path’) between them [10]. These paths can be closed or opened
by applying statistical adjustments, conditioning, or altering the research design.
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Target trial emulation

In target trial emulation, the seven components of the target trial protocol are compared to
the observational study to be performed. The first component of the protocol is to define
eligibility criteria using only data that would be available prior to treatment initiation [2]. In
the target trial, information on follow-up would not be available prior to starting treatment
and using this information for patient selection could induce selection bias. Selection bias can
occur when conditioning on a common effect of outcome and exposure (Figure 1c & 1d) [11].
This opens a path between exposure and outcome, which had been closed due to the presence
of the common effect (‘collider’). Studies are at risk of selection bias when future information
is used to define inclusion and exclusion criteria. In research that uses EHRs, a frequently seen
example of this is the selection of patients based on the availability of outcome data (Figure 1c)
[1,6,12]. It is possible that there is no difference in HbA1C reduction between treatment with a
sodium glucose transporter-2 inhibitors (SGLTs) vs a dipeptidyl-peptidase 4 inhibitors (DPP4s) but
patients receiving SGLTs are at risk of more severe side effects of treatment, which may reduce
attendance at follow-up visits [13]. Meanwhile, depression may independently result in loss to
follow-up and higher HbA1C values [14,15]. Missing patient data in a patient prescribed an SGLT
may therefore relate both to side effects of treatment and to depression. Thus, when including
only those with data at follow-up we would open the backdoor path from treatment to HbA1C
at follow-up through depression. We would find that patients included in follow-up receiving
DPP4s have lower HbA1C values while actually there is no difference in HbA1C.

The second component of target trial emulation describes the treatment strategies, preferably
including only new users [2]. By including all events that occur early after drug initiation, a new-
user design reduces the risk of selection bias [16]. This form of selection bias, also referred to
as prevalent user or survival bias, occurs when patients are included in the study that were
already prescribed the drug prior to the start of follow-up (Figure 1d). Thus, if we were to include
patients already prescribed treatment by the general practitioner prior to hospital referral then
some patients that already failed treatment early after initiating therapy would be excluded. If
DPP4s are more often prescribed by the general practitioner than SGLTs, this could lead to an
underestimation of the benefits of SGLTs over DPP4s.

The third component contains the assignment procedures to reduce the risk of confounding.
Where random assignment is often the preferred strategy in the target trial, adjustment for
potential (post-) baseline confounders is required in observational research [2]. Confounding is
present when the exposure and outcome share a common cause (Figure 1b) [10]. In Figure 1b,
it is assumed that treatment and HbA1c response are both (partially) influenced by a patient’s
weight, measured before treatment. This opens a path between treatment and outcome that
does not represent the causal effect of treatment. Failing to adjust for weight in such an analysis
could result in incorrect conclusions that treatment improves HbAlc while in truth weight causes
both the exposure and the outcome.
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Figure 1: Directed acyclic graphs that represent the causal relationships between treatment and treatment
response (HbAlc at follow-up). A) Assumes that the effect of treatment on HbAlc response is only decided
by treatment. B) Confounding: Assumes that the selected treatment and HbAlc response share a common
cause, namely baseline weight. C) Selection bias: Patients are included when follow-up data is present. If in
truth no relation between treatment and HbA1c exists, a spurious relation would be induced by selecting
on a collider thus opening the backdoor path through depression. D) Prevalent user bias: Here we assume
no difference exists in HbA1lc at follow-up between dipeptidyl-peptidase 4 inhibitors (DPP4s) and sodium
glucose transporter-2 inhibitors (SGLTs). However, if DPP4s are more often prescribed prior to hospital
referral and only those users with a good response are still on DPP4s when referred to the hospital, this
would open the backdoor path through the initial HbAlc measurement ‘HbAlc T1’ by selecting on the
collider; ‘Prescribed in hospital’. E) Immortal time bias: In truth no relation exists between treatment and
time to progression defined as elevated HbAlc measurements. If inclusion criteria require patients on an
SGLT receive treatment for at least 1 month but follow-up starts at treatment assignment, results would
be biased upwards for SGLTs. HbAlc T1= HbAlc at time 1, HbAlc T2= HbA1lc at time 2.

The next component contains the follow-up period defined by the start and the end of follow-
up. When initiation of follow-up is not aligned with eligibility criteria and treatment assignment,
immortal time bias can influence results [17]. Immortal time is the time in which the outcome
cannot occur [6,18]. Suppose we wish to compare time to progression according to elevated
HbA1c in patients prescribed an SGLT compared to DPP4s. If inclusion criteria require patients
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on SGLTs receive treatment for at least 1 month because of the intensification schedule, but
follow-up starts when the drug is first prescribed, then results are at risk of immortal time bias.
The time to progression will be higher for patients in the SGLT arm since they receive additional
time in which they cannot progress at the beginning of follow-up (Figure 1e). Excluding prevalent
users and avoiding use of future information can ensure alignment of inclusion criteria, treatment
assignment and follow-up, aiming to avoid immortal time bias [6].

This is followed by a description of the relevant outcome for which blinded measurements are
often preferred [2], but often not possible in the observational study. The causal contrast of
interest is then selected in the following component, which often includes the intention-to-
treat and/or the per-protocol effect [2]. An intention-to-treat analysis includes all patients in
the analysis within the arm to which they were originally randomized, irrespective of whether
they completed treatment. A per-protocol effect includes only those patients that completed
treatment. Both contrasts may require specific statistical adjustments.

In the final component, the analysis plan reports the analyses that need to be performed
to properly estimate the causal contrasts of interest. Statistical techniques such as inverse
probability weighting, imputation, stratification, g-methods, and regression can be used to adjust
for (postbaseline) selection bias and confounding [2,10,12].

We applied target trial emulation to an example from diabetes care by assessing the effectiveness
of SGLTs compared to DPP4s added to insulin therapy in patients with type 2 diabetes.

Patient level data

To demonstrate several benefits and challenges of target trial emulation, hospital EHRs were
used from patients with diabetes treated between June 2012 and December 2017 at the Western
Health and Social Care Trust in Northern Ireland. The analyses were performed as part of the
AEGLE project and ethical approval was granted by the Chelsea Research Ethics Committee (REC
reference 16/L0/2018). The EHR was a specific diabetes management system: Diamond (Hicom,
Surrey, UK). EHR patient demographic information was populated from a patient administration
system. Laboratory test results were transferred automatically from the local Laboratory
Information Management System. Clinical data were entered live at the time of the patient
consultation by the clinical medical or nursing staff; this included the recording of updated
anthropometric data, medication changes or the development of new clinical problems. In the
records, any active ingredient and/or trade name mentioned were given an individual identifier.
These were automatically classified into subgroups (e.g., antidiabetic drugs, antibiotics etc.). This
list was checked manually to identify any drugs wrongly classified and active antidiabetic drugs
were grouped according to drug class. The initiation date of a drug combination was the first
date on which the combination was recorded. The end date was the first date of the record on
which the combination was no longer recorded after initiation.

Target Trial Emulation Applied to EHRs in Diabetes Care
In Table 1, we present the target trial protocol alongside the design of the observational study.
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Table 1: A description of the protocol components of target trial emulation, the protocol of the target trial
and the observational study. All steps are based on the description as provided by Hernan et al. [2].

Protocol

Target trial

Observational study using
EHR data

Eligibility criteria

- Patients with type Il diabetes treated in
secondary care

- Patients receiving insulin £ an oral
antidiabetics (metformin/sulfonylurea)]
for 84 days or more.

- Patients do not reach their (personalized)
HbA1C target on current therapy

- Patients with type Il diabetes
treated in secondary care

- Patients received insulin £ an
oral antidiabetics (metformin/
sulfonylurea) for at least 84
days.

Treatment strategies

An SGLT compared to a DPP4 inhibitor
with insulin £ an oral antidiabetics
(metformin/sulfonylurea).

Similar to target trial

Assignment procedures

Patients are randomly assigned to an
SGLT or a DPP4 in combination with
insulin + an oral antidiabetics (metformin/
sulfonylurea).

Decided by physicians and
their patients on a case-
by-case basis. Adjusted for
several confounding variables
or their proxies measured at
baseline e.g. weight, HbAlc,
duration of diabetes, age,
insulin regimen, number of
non-diabetes drugs.

Follow-up period

Starts at randomization.
Ends at 6 months of follow-up, when lost
to follow-up or death

Started on the prescription
date for the SGLT or DPP4.
Ended at first HbAlc
measurement at least 3
months after drug initiation,
when lost to follow-up or
death.

Outcome

Blinded measurement of HbAlc 6 months
after randomization.

Blinded first measurement
of HbAlc > 3 months after
treatment initiation.
Measurement was blinded as
this was not performed by the
prescribing clinician.

Causal contrast of interest

Both intention-to-treat effect and per
protocol effect.

Analog of the intention-to-
treat effect

Statistical Analysis plan

Intention-to-treat analysis. Per-protocol-
analysis with correction for baseline
variables and correction for variables
associated with loss-to follow-up.

Intention-to-treat analysis (as-
started). Generalized linear
model was fitted after inverse
probability weighting and after
multiple imputation to correct
for post-‘randomization’
selection bias due to loss of
follow-up.

EHR= Electronic Health Record, SGLT= sodium glucose transporter-2 inhibitors, DPP4= dipeptidyl-peptidase 4 inhibitors

105




Chapter 4

Eligibility Criteria

The target trial is an RCT including patients with type 2 diabetes managed in secondary care who
do not achieve their personalized HbA1C target after at least 12 weeks of treatment with insulin
with or without oral antidiabetics (metformin/sulfonylurea). Thus, these are generally not newly
diagnosed patients with diabetes but more complex, progressed patients seen by specialists
in secondary care. The eligibility criteria in the observational study were identical except that
we explicitly assumed that all those receiving intensification do not achieve their personalized
targets and that the personalized target itself does not influence the treatment prescribed. We
refrained from using the availability of Hbalc follow-up measurements as a criterion for inclusion
since this would have also been unknown upon inclusion in the target trial.

These criteria were applied to the EHRs available, and Figure 2 illustrates how the number of
patients eligible for inclusion can greatly reduce with each criteria. The initial dataset consisted
of 183,570 prescription records of 7,927 patients. This number reduced with almost 90% after
applying selection criteria. Only 57% of patients remained when only patients with type 2
diabetes were included, 21.3% received treatment with an insulin + an oral antidiabetic and
12.8% received this treatment for at least 84 days. The treatment that followed varied greatly
since a wide variety of diabetes treatment combinations are available and treatment decisions
depend on the patient and hospital. Of course, the number of patients for whom relevant
baseline and follow-up data was missing is not yet considered here but this is known issue
when using EHR data.

Treatment Strategies

In both the target trial and the observational study, eligible patients are randomly assigned to an
SGLT or a DPP4 added to insulin with or without an oral antidiabetic (metformin/sulfonylurea). In
this example, we did not limit the strategy to a specific dose. However, if the aim is to evaluate
specific dosing schedules it should be considered that missing information on dose prescribed
can be an important issue [19].

In Table 2, we present the sample of patients that fulfilled eligibility criteria and received the
relevant treatment strategy. By including only patients that were on a treatment with insulin
+ an oral antidiabetic for at least 84 days we did not include any prevalent users. Patients that
received an SGLT were generally younger, had a shorter duration of diabetes and were heavier.
HbA1c within 6 months prior to treatment initiation was similar for both groups however, the
number of missing values was high. The time between measuring weight and HbA1lc prior to
treatment and initiating treatment was similar between the two groups. Furthermore, patients
that received an SGLT were more often treated with a combination of basal and bolus insulin
compared to patients that received a DPP4.
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Figure 2: The number of prescriptions that remain when applying relevant selection criteria to the initial
7,927 patients. The column on the right hand side illustrates the variation in the next perscribed treatment
for the remaining 10% that received insulin + an oral antidiabetic after applying selection criteria. OAD = Oral
antidiabetic drug
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Table 2: Patients included in the analysis.

Received DPP4 Received SGLT
(N =160) (N=123)
Sex, n(%)
Female 77 (48) 51 (41)
Male 83 (52) 72 (59)
Age, n, mean(sd) 134;70.29 +10.10 110; 57.30 + 10.62
Duration of diabetes in years, n, mean(sd) 134; 17.54 (7.89) 110; 13.22 (6.19)
Weight in kg, n, mean(sd) 116; 87.64 (20.01) 112; 105.00 (21.69)
zae\;si:‘c;:g:)aselme weight to treatment, n, 116; 36.50 (20-112) (121025?;325;()3
Baseline HbAlc in mmol/mol, n, mean(sd) 82;78 (17) 73; 80 (20)
Baseline HbAlc in %, n, mean(sd) 82;9.3(1.6) 73;9.5(1.8)
Days from baseline HbA1lc to treatment, n, median(IQR) 82; 36.50(6.25-70.25) 73; 33.50 (20-56.25)
HbA1c at follow-up in mmol/mol, n, mean(sd) 77;72 (16) 74; 74 (17)
HbA1c at follow-up in %, n, mean(sd) 77; 8.7 (1.5) 74; 8.9 (1.6)
Days to HbAlc measurement, mean(sd) 77;196 + 83 74,221 +75

Receive antidepressants, (%)

Yes 6 (4) 9(7)
No 154 (96) 114 (93)
Number of non-diabetes drugs, mean(sd) 1.54 (1.98) 1.71(1.97)

Insulin Type, n(%)

Basal and bolus 111 (69) 104 (85)
Basal or bolus 49 (31) 19 (15)

Sulfonylurea, n(%)

Yes 26 (16) 21(17)
No 134 (84) 102 (83)

DPP4= dipeptidyl-peptidase 4 inhibitor, SGLT=sodium glucose transporter-2 inhibitor, IQR= interquartile range,
sd=standard deviation

Assignment Procedures

While in the target trial, patients are randomly assigned to either treatment, in the observational
study statistical adjustments, selected based on subject knowledge, would be used to emulate
randomization. When drawing a DAG to determine for which variables should be adjusted, all
potential confounders should be included. Figure 3 shows an example of a DAG of the assumed
causal relationship between treatment and HbA1lc response. Here potential baseline confounders
would be duration of diabetes, HbAlc, age, glomerular filtration rate (eGFR), frailty, insulin
resistance and weight. It is evident that in the observational study missing data on confounders
can be an important issue (Table 2) in addition to variables being absent altogether. Sometimes

108



Analyzing electronic health records: target trial emulation

confounders are not available in the data and alternative measures to acquire the data such
as linking records from different settings have not yielded sufficient input. In that case, proxies
can sometimes be used to adjust for bias [20]. For instance, in the EHRs from which the sample
was selected, eGFR, insulin resistance and frailty were unmeasured confounders. Here type of
insulin (basal vs bolus vs basal-bolus insulin) [21], weight and duration of diabetes [22] could be
included as proxy variables for insulin resistance in subjects with type 2 diabetes. The number
of non-diabetes drugs a patient received prior to treatment initiation could serve as a proxy for
frailty [23]. For recent eGFR results, no suitable proxy would be available and thus this would
remain an unmeasured confounder. eGFR is an unmeasured confounder since patients with an
eGFR between 30-60 ml/min would be eligible for receiving a reduced dose of some DPP4s but
not SGLTs. At this point it can then be considered whether it is worth continuing with the study,
given the absence of such an important confounder.

Another important point when including baseline confounders is the time at which these
variables are measured. Ideally, a baseline HbAlc measurement is available from a date as close
as possible before the date of novel treatment initiation. Therefore, an important difference
between the observational study and target trial would therefore be that baseline HbAlc is
defined as the most recent measurement within 6 months prior to treatment initiation, and
weight is defined as the most recent measurement within 365 days before treatment initiation.
It would be expected that a recent HbAlc measurement is available given that an elevated HbAlc
will often be a reason to switch treatments. However, in the records included in the example,
routine HbA1C measurements could also be performed in primary care and therefore not directly
available in secondary care EHRs. For HbAlc, only 14% of available measurements were obtained
more than 3 months before initiating treatment.

Follow-up Period
In the target trial, follow-up starts at randomization and ends at six months of follow-up, loss
to follow-up or death. The follow-up period of the observational study is similar and starts on
the date that the first prescription of the treatment combination is recorded and ends at the
first follow-up visit more than 3 months after treatment initiation, at 12-months after treatment
initiation or death.

Outcome

In the target trial, researchers are blinded when measuring the outcome, HbAlc in mmol/mol
at 6 months after randomization. However, in the observational study the follow-up visit is
unlikely to take place at 6 months after treatment initiation and a wider time interval would
be adopted, including the first follow-up visit recorded between 3-12 months after treatment
initiation. Such differences in time to measurement may influence results if there are differences
between the two treatment arms in time to first follow-up. For a disease such as diabetes HbA1C
values generally tend to increase over time and thus if one of the arms has a longer time to first
measurement it could be that these measurements are biased upwards simply because of the
time to measurement. In the patient sample in Table 2, the time between treatment initiation
and follow-up measurement is similar between the two arms.
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Figure 3: Directed Acyclic Graph representing the underlying causal structure of the difference in
response between patients receiving a sodium glucose transporter-2 inhibitor or a dipeptidyl-peptidase 4
inhibitoradded to insulin * oral antidiabetics. Variables in red were not measured and when available, proxy
variables were used. eGFR = glomerular filtration rate

Causal Contrast of Interest

In a target trial, often the intention-to-treat effect as well as the per-protocol effect are
estimated. Here in the observational study, only the estimation of the intention-to-treat effect
would be possible. In the EHR, only prescription data is available and thus there is no insight
concerning whether patients received and ingested their medication.

Statistical Analysis Plan

When estimating the intention-to-treat effect in the observational study, adjustments would be
needed for baseline confounding (Figure 3) and selection bias due to loss to follow-up (Figure
1c). HbA1C measurements between 3-12 months would be included as the outcome variable and
the type of drug prescribed (SGLT or DPP4) would be the exposure variable. Confounders would
include the following baseline variables: HbA1C, weight, type of insulin, number of non-diabetes
drugs, age, and diabetes duration and whether or not a patient receives antidepressants would
be used to adjust for selection bias.

Adjusting for confounding could be achieved by for instance regression and adjusting for
selection bias due to loss to follow-up could be achieved by inverse probability weighting [24]
or multiple imputation [12]. Inverse probability weighting has been recommended because it is
valid and less complex to perform, whereas multiple imputation is considered complex but also
efficient and has been previously recommended when analyzing EHR data [1,12]. When using
inverse probability weighting to adjust for loss to follow-up related to depression, weights can
be based on a logistic regression model that estimates the inverse of the probability of being
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lost to follow-up while including whether or not a patient receives antidepressants at baseline.
The 95% confidence intervals can be estimated using a bootstrap variance estimator.

The second option would be to use multiple imputation which is generally accepted as one of the
better practices for handling missing data [1,12,25,26]. In multiple imputation, the distribution of
the observed data is used to impute realistic values for the missing data [25]. Multiple imputation
using chained equations is often used in which a model is estimated for each variable containing
missing data [25]. These missing variables are then repeatedly imputed, and Rubin’s rules can
be used for pooling the imputed datasets [26]. Sensitivity analyses can then be performed in
which imputed variables are varied for instance up to 50%.

All variables included in the analysis model should also be included in the imputation model
as well as variables used to adjust for selection bias. Auxiliary variables (e.g., sex and baseline
height) can be included in the model to improve model fit. Auxiliary variables are those that are
not included in the final analysis but are used for imputation because they provide information
on the missing variables, increasing the likelihood that the ‘missing at random’ assumption holds
[25,27]. The fraction of missing information can be used to decide which auxiliary variables to
include. The fraction of missing information is high when the variables in the dataset provide
limited information to impute the missing values [27]. When performing multiple imputation
using chained equations, predictive mean matching is often used for larger sample sizes and
imputation of continuous variables [25]. However, other methods such as logistic regression and
weighted predictive mean matching (MIDAStouch) can be selected for specific types of variables
(e.g., nominal) or with smaller samples [26]. The number of imputations (m) can be estimated
depending on the fraction of missing information and the proportion of missing data. With for
instance the observational study, data are assumed to be missing at random and missingness
therefore depends on covariates measured in the sample. Furthermore, in the example the
sample size is small, the fraction of missing information is high, and the proportion of missing
data is high, therefore, the number of imputations should be high (m=70) and a method for small
samples such as MIDAStouch can be used [26,28].

After adjusting for selection bias using either multiple imputation or inverse probability weighting
regression can be performed to adjust for confounding. To estimate effects for the observational
study a generalized linear model with a gamma distribution and log link can be used, results
are then presented as the relative change in HbAlc when receiving an SGLT compared to a
DPP4 (Table 3). Thus, if the HbAlc after 6 months of follow-up for a patient is 9.2% (77 mmol/
mol) when receiving a DPP4, a coefficient of -10% would imply that this same patient would
have had an outcome of 8.5% (69 mmol/mol) had they received an SGLT. In the example, no
evidence of a clinically meaningful difference in effect can be found, estimated as a 1.7% relative
increase in HbAlc when receiving an SGLT compared to a DPP4 with considerable uncertainty
(95%Cl: -5.4%;9.4%) (Table 3). When adjusting for confounding, small differences can be seen
after correcting for loss to follow-up using inverse probability weighting (1.0% change, 95%Cl:
-8.5%;11.5%) and after multiple imputation (-0.3% change, 95%Cl: -7.5%;7.5%). Both report small
differences between the two drugs with wide confidence intervals. The effect estimated using
multiple imputation varies from -5% to 3% throughout sensitivity analyses and including the
use of a sulfonylurea and smoking as auxiliary variables does not lower the fraction of missing
information.

111




Chapter 4

Table 3: Relative change in HbA1C from the generalized linear model after adjustment for baseline
confounders and selection bias due to loss to follow-up (i.e., when patients receive a sodium glucose
transporter-2 inhibitor (SGLT) compared to a dipeptidyl-peptidase 4 inhibitor (DPP4), the relative increase
in HbA1C is 1.0%). The results are presented as the exponentiated coefficients which translates to the
relative change in HbAlc when receiving an SGLT compared to when a patient receives a DPP4. Thus, if the
HbA1c after 6 months of follow-up for a patient is 9.2% (77 mmol/mol) when receiving a DPP4, a coefficient
of -10% would imply that this same patient would have had an outcome of 8.5% (69 mmol/mol) had they
received an SGLT.

Relative change in HbA1C 95% Confidence Interval

No adjustment 1.7% -5.4%; 9.4%
Adjust t f founding,

Jus.men or confounding 1.4% 7.2%: 10.8%
No adjustment for loss to follow-up
Adjustment for confounding, 1.0% 8.5%; 11.5%

Adjustment for loss to follow-up using IPW

Adjustment for confounding, -0.3% -7,5%; 7,5%
Adjustment for loss to follow-up using Ml

IPW= Inverse probability weighting, MI= Multiple Imputation

DISCUSSION

The use of EHRs has resulted in many opportunities for real-world effectiveness and safety
research for chronic diseases such as diabetes. However, using these EHRs for research purposes
remains challenging. Missing data can limit feasibility of research and bias (e.g., selection bias
and confounding) is often not properly addressed [1,5-7] which limits the value of results for
clinical practice. Here, target trial emulation can be used to systematically identify potential
sources of bias and adjust results accordingly.

We discussed the use of target trial emulation and apply this to an example for diabetes research.
By identifying differences between the target trial and the observational study performed,
important sources of bias can be identified. Frequently recurring pitfalls, such as including
patients based on future information and including prevalent users, can be avoided by comparing
eligibility criteria of the target trial with those of the observational study. Furthermore, by
identifying differences in the assignment procedures and outcomes between the target
trial and observational study, potential sources of bias can be identified and adjusted where
needed. However, despite its advantages, target trial emulation should be used thoughtfully.
Some sources of bias, though identified, cannot be addressed (i.e., absence of eGFR data) and
sometimes decisions to reduce bias and improve internal validity can limit generalizability and
reduce sample size. Where strict inclusion criteria reduce the risk of bias, they also reduce
generalizability. Furthermore, correcting for certain confounders in the treatment assignment
step requires sufficient data to be available on confounders. Use of imputation could address
issues with missing confounders but is complex to apply and could also lead to bias when used
incorrectly. As with all observational studies, it is unlikely that researchers are able to exclude
all potential sources of bias. Therefore, they will carefully need to consider whether results are
still of clinical value despite the potential of residual bias to be present.
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The amount of missing data is an important problem that influences many steps of target trial
emulation using EHRs. Missing data are an unavoidable fact of life in the realm of EHRs and
registries. Target trial emulation stimulates researchers to critically consider which variables
are essential to generate valid inferences when drafting the protocol for the target trial. In the
example, data on a relevant confounder (eGFR) was absent and it is uncertain whether continuing
is worthwhile in the presence of residual confounding and the study could also be halted until
additional data is collected. To improve validity of results, we recommend researchers formulate
expectations concerning the proportion of missing data as well as the availability of variables
needed for imputation or weighting (e.g., outcome variables, exposure variables, confounders,
causes of selection bias and potential auxiliary variables) when using EHR data. When large
amounts of missing data are to be expected, collecting additional data would be the preferred
option. Ideally, EHRs are available from for instance initiatives such as the Clinical Practice
Research Datalink in which only those primary care practices are included that adhere to certain
quality standards in terms of reporting and linking to for instance data from secondary care is
possible.

Selecting variables to include in DAGs can be challenging and depends on the setting and
time [29]. For instance, physicians in the US are likely to consider a patient’s social economic
status (SES) in treatment selection whereas in Northern Ireland no out-of-pocket payments are
required to receive SGLTs or DPP4s. Therefore, SES was excluded as a confounder in the analyses.
Medication adherence was also not included but could be an important confounder in many
other settings. When including variables such as medication adherence as a confounder across
various treatments, the value of this confounder will depend on the time of measurement [5].
When adjusting for time-dependent confounders, appropriate statistical analyses should be
used such as g-estimation [6]. It should be recognized that obtaining information on medication
adherence from EHRs can be challenging [30], and it might therefore often be included as an
unmeasured confounder. In our analyses, eGFR was considered an important unmeasured
confounder but sometimes proxies can be used. In the example in this study, we included proxies
for insulin resistance and frailty. However, when interpreting results, it should be recognized
that proxies are often imperfect and therefore residual bias can remain. Furthermore, proxies
should be used with care since their use can also open backdoor paths, thus introducing bias [20].

However, generally some data will remain missing despite efforts of additional data collection
and researchers will need to perform analyses while taking into account this missing data.
Multiple imputation when analyzing EHR data is often recommended since it is one of the
few methods that is both efficient and effective in reducing bias, if used correctly [1,12,25].
However, results from multiple imputation can also be biased when the likelihood of model
misspecification is large for instance when the proportion of missing data is high [31]. In the
example provided in this study, we illustrated that the large amounts of missing data that can
be present in EHRs might limit the value of imputation when other (auxiliary) variables have a
limited predictive value and are themselves also missing. The proportion of missing data and the
fraction of missing information were high while correlations with many of the variables included
were low. When auxiliary variables contain many missing values, the risk of bias in regression
estimates increases because of the higher proportion of missingness and ratio of variables to
complete cases [32]. In such scenarios, inverse probability weighting might be preferred [31].
However, both strategies assume data are missing at random and when this assumption does
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not hold, and data are missing not at random both methods could lead to biased estimates
[31]. When collecting additional information or performing statistical adjustment such as
inverse probability weighting or multiple imputation are not possible, researchers can consider
whether continuation is worthwhile. For instance, in the example used in this study, the absence
of information on eGFR could be a motivation to cease the study altogether. In other cases
when adjustments cannot be made for all sources of bias, but their impact is considered small,
acknowledging their presence could assist interpretation of results.

In this study, we used EHRs of the Western Health and Social Care Trust to discuss several benefits
and challenges when using target trial emulation. The dataset presented several challenges one
of which was the small size of the sample after applying eligibility criteria. The required sample
size to assess significance of the effect found in this study is 868 patients per arm assuming an
alpha of 0.05 and a beta of 0.8. Thus, if the same amount of missing data is expected, EHRs of
roughly ten times as many patients (n=71,673) would be required before applying eligibility
criteria. Furthermore, it should be noted that there are many more aspects that should be
considered when performing an observational study using EHRs relating to for instance data
extraction, data pre-processing and data validation not addressed in this study [33].

Observational research that uses EHRs to assess real-world effectiveness and safety is crucial
for informing clinical practice. Target trial emulation is a useful tool for conducting these studies
since it enables researchers to avoid frequently recurring problems such as selection bias,
immortal time bias and confounding. However, researchers should consider that emulating a
target trial using EHRs can be challenging when large variations in treatments prescribed are
expected and the amount of missing data is large. Therefore, target trial emulation can only be
used to improve care when sufficient information on outcome measures and variables to adjust
for bias is collected.
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Chapter 5

ABSTRACT

Background: Much has been invested in big data and artificial intelligence-based solutions for
healthcare. However, few applications have been implemented in clinical practice. Early economic
evaluations can help to improve decision-making by developers of analytics underlying these
solutions aiming to increase the likelihood of successful implementation, but recommendations
about their use are lacking. The aim of this study was to develop and apply a framework that
positions best practice methods for economic evaluations alongside development of analytics,
thereby enabling developers to identify barriers to success and to select analytics worth further
investments.

Methods: The framework was developed using literature, recommendations for economic
evaluations and by applying the framework to use cases (chronic lymphocytic leukemia
(CLL), intensive care, diabetes). First, the feasibility of developing clinically relevant analytics
was assessed and critical barriers to successful development and implementation identified.
Economic evaluations were then used to determine critical thresholds and guide investment
decisions.

Results: When using the framework to assist decision-making of developers of analytics,
continuing development was not always feasible or worthwhile. Developing analytics for
progressive CLL and diabetes was clinically relevant but not feasible with the data available.
Alternatively, developing analytics for newly diagnosed CLL patients was feasible but continuing
development was not considered worthwhile because the high drug costs made it economically
unattractive for potential users. Alternatively, in the intensive care unit, analytics reduced
mortality and per-patient costs when used to identify infections (-0.5%, -€886) and to improve
patient-ventilator interaction (-3%, -€264). Both analytics have the potential to save money but
the potential benefits of analytics that identify infections strongly depend on infection rate; a
higher rate implies greater cost-savings.

Conclusions: We present a framework that stimulates efficiency of development of analytics
for big data and artificial intelligence-based solutions by selecting those applications of
analytics for which development is feasible and worthwhile. For these applications, results
from early economic evaluations can be used to guide investment decisions and identify critical
requirements.
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BACKGROUND

With the increasing ability to collect healthcare data, billions of dollars have been invested in
(big) data analytics and artificial intelligence (Al) by private (e.g., IBM, Google, hospitals) and
public institutions worldwide (e.g., Agency for Healthcare Research and Quality, the Patient-
Centered Outcomes Research Institute, European Commission) [1-9]. Analytics can be applied
in many ways, and it has often been suggested that they can improve care for a wide variety of
clinical fields [10-15]. Bates et al. define big data analytics as the discovery and communication
of patterns in datasets that are extremely complex due to their size (volume), rapid collection
(velocity) and/or the need to combine multiple data sources (variety) [14]. The term Artificial
Intelligence was first mentioned many years ago and is defined as the ability of computers to
mimic or simulate the human mind [16]. However, despite many publications on the potential of
big data analytics and Al, few analytics have been implemented [6,17-20] and resulted in health
benefits and/or cost savings [21,22,23].

Data availability can be an important barrier to the development of analytics that improve
healthcare [4,12,17,24-26]. The datasets required to develop machine learning models should be
large and, depending on the method used, should contain sufficient data on relevant features [11,
27]. Data-related problems mentioned in the literature include limited sample size [4,24-26,28],
a short duration of follow-up [24], validity of results with heterogeneous patient populations and
selection bias [4,13,17,24,28,29] and bias due to missing data [12,24,29,30]. Moreover, successful
development does not mean easy implementation; important barriers to implementation include
the need for prospective validation [4,24,28] and the high costs of validation and implementation
[4,19,24,31-33].

For other healthcare technologies, such as drugs, medical devices and diagnostic tests,
economic evaluations are used to assess the potential impact of anticipated barriers early on
during development [34-38]. In economic evaluations, the health benefits and costs of novel
technologies are compared to the benefits and costs of an alternative such as current care.
Use of these economic evaluations alongside development is recommended to assist decision-
making by developers, to analyze the impact of uncertainty in performance of the technology
on outcomes, and to identify critical requirements (e.g., price) for successful market access
and dissemination [36,37]. A key aim of this approach is to increase the likelihood of successful
market uptake and avoid wasting investments due to failed implementation.

Very few economic evaluations of analytics exist [13,17,20-23,39,40] and the ones that do have
omitted relevant costs [19,22]. Moreover, recommendations on how and when to perform
economic evaluations of analytics do not exist, even though their use could improve development
efficiency by identifying analytics with the greatest potential health impact. In this paper, we
present a framework that can assist developer decision-making by selecting applications of
analytics that are not only worth developing but also feasible.

METHODS

We present a framework that efficiently selects analytics that are relevant, feasible and capable
of generating important health and economic benefits (Figure 1). The framework was developed
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based on challenges of analytics development defined in the literature and best practice
recommendations for economic evaluations. It was then further refined by applying it in three
clinical use cases. The use cases were selected from a European Horizon 2020 funded project
(AEGLE) that aimed to develop a cloud-based big data analytics platform. The three use cases
focused on chronic lymphocytic leukemia (CLL), the intensive care unit (ICU) and diabetes.

Step 1: Select clinically relevant problems
« Identify clinically relevant problems for which analytics could be
developed
* Select problem for which to initiatedevelopment

l
0 [ )
T

Step 2: Assess data for development Select new
~ 77 7’| * Assess the quantityand quality of the data available or to be problem
collected

—Continue?

YES

Step 3: Identify critical barriers for successful
development and implementation
+ Narrowdown the scope of the problem using the Patient,
Intervention, Comparator, Outcome (PICO) method
* Note any important barriers from this scope that could limit
feasibility of realising successful implementation

e

YES

-

Step 4: Economic evaluation
_,| * Develop conceptual model

* Determine input parameters

« Estimate potential benefits and thresholds

~ep

YES

— { Develop and revisit previous steps

Figure 1: Flowchart for assessing health economic benefits of novel analytics alongside development.
p=problem

Step 1: Select clinically relevant problems

This first step involves selecting relevant clinical problems. Whether problems are considered
clinically relevant depends on the setting for which analytics are developed and the experts
involved. When analytics are developed for a local hospital (e.g., for a learning health system),
local experts should be consulted to identify relevant problems. When the aim is to develop
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analytics for a wider audience such as clinical experts in different countries or continents, then
interviews with multiple potential users are recommended alongside a review of guidelines and
the literature. Needless to say, a multidisciplinary approach throughout this step is crucial [10,41].

Step 2: Assess data for development

After relevant problems are selected, it is necessary to assess whether the data available, or to be
collected, is of sufficient quantity and quality to address the problem. Such an assessment may
include careful scrutiny of the sample size, duration of follow-up, expected frequency of missing
data, potential sources of bias and heterogeneity in care practices between sites. Moreover,
the timing of data collection and the types of outcomes collected during follow-up may differ
between clinical sites.

Step 3: Identify critical barriers to realizing successful development and
implementation

The scope of the problem should be narrowed down and used to identify critical barriers prior
to estimating costs and benefits. Narrowing down the scope is a critical step in any economic
evaluation [37] and one way to achieve this is through the Population (or Patient), Intervention,
Comparator, and Outcomes (PICO) method [37]. First, the target population (P) is defined, which
can include a description of the setting and the population size. The intervention (l) should
include a description of the care pathways involved, including the analytics to be developed, the
additional software and hardware needed to use the analytics, and the actions that follow from
use of the analytics. The description of the comparator (C) entails a discussion on treatments
available and relevant software and hardware elements used in current care. The final component
of outcomes(0), refers not just to clinical outcomes but all outcomes considered relevant by
users and purchasers, including mortality, life years gained, quality-adjusted life years gained
(QALYs) and economic benefits. Ideally, they should go beyond diagnostic performance metrics
like Area Under the Curve (AUC) [4,17,42,43] and include outcomes related to health benefits,
satisfaction, and costs.

The detailed description of the scope, formulated using the PICO method, can then be used
to identify potential barriers to successful development and implementation of the analytics.
An example of a critical barrier is whether the health information system currently used in a
health center is sufficient to support the analytics or whether major upgrades are needed. If the
examination of possible barriers does not reveal any insurmountable barriers, the health and
economic benefits can be estimated. When continuing development seems risky, for instance
because of the limited availability of required software and hardware elements in current
practice, a developer can decide to select a new problem or cease development altogether.

Step 4: Economic evaluation

The next step is to perform an economic evaluation of the analytics that are considered feasible
to develop. An evaluation starts by developing a conceptual model and collecting input data. A
conceptual model can be developed in different ways, including the estimation of the number
needed to treat [44], decision curve analysis [42,43], decision trees, and Markov models.
Depending on the stage of development, the models may vary from very simple to very complex.
The validity of the model should be assessed according to best practice guidelines [37,45].
Information on relevant input parameters required to populate the model can be collected
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alongside model development from sources such as patient-level data and the literature, but
are sometimes limited to expert opinion or assumptions, particularly in the early stages of
development. Uncertainty surrounding parameter estimates generally decreases as development
progresses and more information becomes available [36,38].

Base case estimates of potential benefits can then be determined using the most likely parameter
values. Results can be presented using the incremental cost-effectiveness ratio (ICER) but more
importantly; results should be presented such that they are understandable to the target
audience (investors, future users, and purchasers). The uncertainty in these point estimates
should always be analyzed using uncertainty analyses. Uncertainty analyses can include scenario
analyses and sensitivity analyses, but also analyses to determine critical thresholds of relevant
parameters, such as accuracy and pricing thresholds needed to realize health and economic
benefits. The headroom can also be estimated according to the following formula:

Headroom=N+A*Q

Here N refers to the potential savings where the costs of the technology are set to zero, A is the
willingness to pay threshold and Q are the health effects gained [46]. Moreover, probabilistic
sensitivity analyses can be used to estimate the impact of uncertainty in all parameters
simultaneously. For each parameter, random estimates are drawn many times (e.g., n=1000)
from their underlying distribution. For these estimates, the costs and effects are calculated
and presented using a cost-effectiveness plane and a cost-effectiveness acceptability curve. In
a cost-effectiveness acceptability curve, the probability that an intervention is cost-effective is
plotted against a range of willingness to pay thresholds.

Iterative Approach

When a developer decides to continue development, the different steps (assess data for
development, critical barriers to realizing success, and the economic evaluation) should be
revisited as needed throughout development, represented by the dotted line in Figure 1.

Clinical use cases

Chronic lymphocytic leukemia

The first clinical use case, focused on developing cloud-based analytics using next generation
sequencing (NGS) data of CLL patients from three clinical sites across Europe (Sweden, Italy &
Greece). CLL is characterized by considerable heterogeneity in disease progression [47,48] and
after diagnosis, the majority of CLL patients are followed according to a ‘watch and wait’ (W&W)
strategy. Roughly 60% of these patients progress to having active disease requiring treatment
[47]. The treatment they receive depends on their molecular profile and general fitness as well
as on treatment approval and availability [47].

Intensive care

In the second use case, the aim was to develop analytics for ICU care using routinely collected
data. Data from electronic health records (EHRs) and mechanical ventilators of patients from a
Greek ICU was available for development. There are many ways in which analytics can improve
ICU care and a variety of applications have been suggested in the literature [10,11]; these include
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analytics to determine readmission risk, predict length of stay, diagnose sepsis, and improve the
interaction between patients and mechanical ventilators [11].

Diabetes Mellitus (diabetes type 2)

Many diabetes treatments are available, and these can often be combined to improve
effectiveness. However, evaluating efficacy for all combinations, types of patients and
treatment lines in randomized controlled trials would not be feasible, and using EHRs to evaluate
effectiveness of treatment combinations has previously been suggested [30]. In this third use
case, the aim was to develop analytics using EHRs in the United Kingdom to personalize diabetes
treatment for patients.

RESULTS

The framework was applied to three clinical use cases (e.g., CLL, intensive care and diabetes)
(Table 1). The results for each case are described one by one.

Table 1: The methodology applied to address problems in care for chronic lymphocytic leukemia, the

intensive care and diabetes.

CLLProblem1 CLL Problem 2 ICU Problem1 ICU Problem 2 Diabetes
Clinically relevant Variations in Imperfect Identifying Diagnosing Unknown
problem treatment algorithms for patients with catheter variation in
response to 1t identifying newly ineffective related response to
and 2" line diagnosed, high- efforts at bloodstream  treatment
risk CLL patients  risk of poor infections with SGLTs+
outcomes (CRBSI) GLPs
Assess data for - NGS data - NGS data - Monitoring -EHR & - EHR data
development available available & EHR data biosignal data available from
- Follow-up - Follow-up available available & secondary
probably sufficient - Sufficient continued care.
sufficient sample size, prospectively - Large
- Large sufficient - Limited amounts of
variation in follow-up, missing data missing follow-
treatments limited missing anticipated. up data.

data.
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Table 1: Continued.

CLL Problem 1 CLL Problem 2 ICU Problem 1 ICU Problem 2 Diabetes
Identify critical - P: Newly P: Patients P: Patients -
barriers for diagnosed CLL on assisted with central
successful patients without mechanical venous
development and treatment ventilation. catheter
implementation indication. I: Identify I: Early
I: Analytics that  patients at identification
identify high risk  risk of poor of CRBSI,
patients followed outcomes catheter
by treatment with analytics  removal &
with ibrutinib. and intervene  antibiotics.
C: Stratification  to avoid C: Late
using clinical ineffective identification
symptoms efforts of CRBSI,
without receiving C: Care catheter
treatment. in which removal &
0O: Costs, LYG, ineffective antibiotics.
QALYs efforts are not  O: Mortality,
identified LOS, costs,
Barriers: O: Mortality, LYG, QALYs
- Site-specific LOS, costs, LYG,
validation QALYs Barriers:
required. - Varying
- Reimbursement Barriers: prevalence of
of novel - Availability CRBSI.
treatment. of monitor - Integration
that identifies  of analytics in
ineffective an EHR.
efforts. - Site-specific
- Site-specific  validation.
validation.
Economic - Benefits: 0.13 Benefits: -3% Benefits: -
Evaluation QALYs, +€89,985 mortality, 0.21 -0.5%
QALYs, -€264 mortality,
[58] +0.06 QALYs,
-€886
Continue Not feasible. Not feasible. Feasible. Invest Feasible. If the Not feasible.
development Sample size High costs of in research target market Small sample
too small treatment offset  into the extends size and large
and large benefits gained. effectiveness beyond amount of
variations in of intervention Greece the missing follow-
prescribing and the price impact of the  up data.
practices. of the analytics prevalence
[58]. of CRBSI
on benefits
should be
considered.

CLL= Chronic Lymphocytic Leukemia, ICU= Intensive Care Unit, NGS= Next generation sequencing, SGLTs= sodium
glucose transporter-2 inhibitors, GLPs= glucagon-like peptide-1 agonists, CRBSI= Catheter related bloodstream infection,
EHR= Electronic Health Record, LOS= Length of Stay, LYG= life years gained, QALY=quality-adjusted life years gained
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Case 1: CLL

Because of the heterogeneous nature of CLL progression and treatment response, stratifying
patients according to their expected prognosis could improve care [47]. In discussions with
clinical experts, problems were selected based on the three decision points suggested by Baliakas
et al. The first is upon diagnosis, when clinicians want to determine which patients are likely
to progress to active disease. The second decision point is the moment when patients have
active disease, and a first-line treatment needs to be selected. The third is the decision point
when first-line treatment has failed, and a decision needs to be made about which second-line
treatment is best for a patient [47]. CLL experts stated that decision points two and three were
the most clinically relevant.

Regarding decision point one, developing analytics to improve stratification for these patients
was considered feasible with the data available (Table 1). In contrast, the feasibility regarding
decision point two was limited because of large variations between countries in the treatments
prescribed. For decision point three, development of analytics to improve decision-making would
not be feasible because it was expected that few patients in the data set received second-line
treatment, which therefore meant a small sample size. Consequently, the first decision point
was considered the best choice for analytics development.

When defining critical barriers, the scope included newly diagnosed Swedish CLL patients. In
current care, these patients are not treated, but are regularly seen by the hematologist and
undergo a blood test. When developing the analytics in 2015-2016, no treatment was available
for patients with a high risk of progression. The only possible changes in care available at the
time was the ability to personalize the intensity of follow-up and the ability to inform patients
about their risk. These very limited options of ‘treatment’ can be considered a critical barrier for
success since it is likely that costs of NGS and analytics are high while health benefits could only
be expected through the reduction in a patient’s uncertainty (and anxiety) regarding prognosis.
Therefore, at the time, analytics development did not continue beyond research purposes.
However, a recent publication has suggested that early treatment of intermediate- and high-
risk patients with ibrutinib could delay time to next treatment. Given these new findings, we
updated results for this application, including the possibility of treatment with ibrutinib as part
of the intervention.

After the PICO question was formulated, input parameters (probabilities, utilities, unit costs and
resource use) were derived from the literature, Swedish guidelines, and expert opinion (Table
S1). A four state Markov model (Figure S1) was used to estimate costs, life years and quality-
adjusted life years adopting a lifetime time horizon and a healthcare payer perspective. Long-
term survival was estimated by combining results on time to next treatment from Condoluci
et al [49] with the hazard ratio reported in preliminary results from a randomized controlled
trial comparing early ibrutinib treatment with current care [50]. More details on the model
structure and input parameters used to estimate the health and economic benefits can be
found in the Supplementary File. Even if an effective treatment is available, it is unlikely that
analytics to improve stratification of newly diagnosed watch and wait CLL patients would be
considered cost-effective: use of analytics would lead to a substantial cost increase (€89,985)
but only a modest gain in health (0.13 QALYs) (Table 2). We demonstrated the relevance of
univariate uncertainty analyses to assess the impact of parameter uncertainty (Figure S2). In
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univariate uncertainty analyses, the impact of an individual parameter is assessed by varying its
estimate while keeping all other parameters constant. Here, the high costs of the treatment in
the intervention arm are decisive in the incremental costs. The relevance of scenario analyses
is demonstrated in Table 2 where even in the best-case scenario, analytics are unlikely to be
cost-effective, since the incremental cost-effectiveness ratio exceeds thresholds used in Sweden.
When varying all parameters simultaneously in the probabilistic sensitivity analyses, most of the
estimates are in the upper right and left quadrant (Figure 2). This means that most estimates
reflect higher costs and either higher or lower QALYs. When these results are shown on a cost-
effectiveness acceptability curve, we can see that better stratification of watch and wait patients
and subsequent treatment with ibrutinib has an extremely low chance of being cost-effective
(Figure S3).

Cost-Effectiveness Plane

300000

200000

Costs
o

-100000

-200000

—-300000

QALYs

Figure 2: Cost-effectiveness plane reporting the quality-adjusted life years and costs (€) from the
probabilistic sensitivity analysis.
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Table 2: Results from the base case and best case scenario for analytics to improve stratification of watch
and wait patients in chronic lymphocytic leukemia compared to current care.

Costs Life Years QALYs
Base Case
Current Care €103,947 11.18 8.57
Care with analytics €193,932 11.51 8.69
Incremental €89,985 0.34 0.13
ICER - €268,373  €708,192
Best Case Scenarioa
Current Care €98,458 11.18 8.57
Care with analytics €155,667 11.58 8.91
Incremental €57,209 0.41 0.34
ICER - €141,972  €166,879

ICER= Incremental Cost-Effectiveness Ratio, °Best Case Scenario= Low HR of time to next treatment with early ibrutinib
treatment (0.11), 50% reduction in costs of ibrutinib per cycle (€2,542), 50% reduction of costs of venetoclax with 50%
(€2,731), low costs of analytics and genomic and genetic testing (€100), High quality of life for those receiving early
treatment with ibrutinib (0.78).

Case 2: The intensive care unit
For the intensive care, relevant problems were identified through discussions with an intensivist
at the Greek hospital that was involved in development.

Catheter Related Bloodstream Infection

The first ICU-related problem selected, was that infections caused by central venous catheters
were often diagnosed only after they are severe. Catheter related bloodstream infections
(CRBSIs) are considered an important issue in the ICU since infected patients have an increased
mortality and prolonged length of stay compared to other ICU patients [51]. The aim was to use
analytics to diagnose CRBSI in an early stage to reduce disease severity, risk of death and costs.

EHR and biosignal data were available to develop the analytics (N=2000) and additional
records were to be collected prospectively. The required follow-up was short, and the relevant
parameters needed to develop the analytics and evaluate outcomes (e.g., mortality, length of
stay) were routinely collected. Missing data was expected to be present but manageable.

No insurmountable barriers were identified when narrowing down the scope in the early stages
of development. An example of a potential barrier for the CRBSI analytics is the uncertainty
in the probability of CRBSI. The frequency of CRBSI varies tremendously across countries and
sites. In Western European countries, the reported incidence of CRBSI is low [52]. However, for
the Greek hospital for which analytics were developed 7.5% of patients developed CRBSI during
their ICU stay [53] and in other Greek hospitals reported even higher percentages (22.4%) [54].
If the target market for the analytics would have been limited to the US and western European
countries, obtaining better estimates of the frequency of CRBSI would have been recommended
prior to continuing with an economic evaluation. Another barrier might have been the need for
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EHRs to enable the analytics. However, since most Greek and European hospitals have adopted
EHRs this was not expected to be an issue. Additional validation when adopting results in other
hospitals would probably be required and feasible but would need to be taken into account in
the economic evaluation. Based on these barriers, continuing with the economic evaluation
was recommended.

A detailed description of the model and input parameters used to estimate health and economic
benefits can be found in Figure S4 and Table S2. A decision tree was combined with a four state
Markov model (Figure S4), adopting a lifetime time horizon, and including only direct medical
costs. Input parameters were derived from the literature, hospital reports, and expert opinion.
The effect of earlier intervention on ICU mortality and ICU length of stay were derived from a
study reporting the effect of earlier prescription of antibiotics [55]. Initial estimates demonstrated
that continuing development was worthwhile since analytics could reduce mortality (0.5%),
improve QALYs (0.06) and lead to cost-savings (€886) per patient. All input parameters were
varied extensively in uncertainty analyses but the probability of CRBSI had substantial influence
on the results. When the price of the technology was below €19,216 per bed, the analytics could
reduce costs compared to current care. This meant that the headroom to achieve cost-neutrality
with the intervention was €19,216 per bed, which meant there was sufficient room for costs of
analytics, validation, and implementation. Given the large potential for the analytics to generate
savings it was considered relevant to continue with development. However, the key factor that
influenced benefits was the prevalence of CRBSI (Figure 3). In this case, it was worthwhile to
closely monitor site-specific prevalence throughout development and carefully consider the
appropriate target market given the large variation in prevalence across sites.

Ineffective Effort Events

The second ICU-related problem to be addressed with analytics, was suboptimal interaction
between patients and their mechanical ventilator. One form of suboptimal interaction relates
to ineffective efforts where a patient tries, but fails, to trigger the mechanical ventilator into
providing a breath. Several studies have found that ineffective efforts could be associated with
worse outcomes [56,57]. Here the aim was to enable clinicians to intervene in those patients
with ineffective efforts, who are therefore at risk of having worse outcomes.

EHR records were available for all patients and once again relevant parameters were routinely
collected and missing data was expected to be manageable. Furthermore, recordings of > 24hrs
for more than 100 patients were available from a prototype monitor detecting patient-ventilator
interaction.

When assessing feasibility, no barriers were considered insurmountable (Table 1). An important
barrier was the need to have a monitor capable of measuring ineffective efforts in addition to
analytics that could identify patients with ineffective efforts at risk of having worse outcomes.
The prototype monitor available in the Greek ICU would need to be purchased in order to use
the analytics. Furthermore, costs of site-specific validation would need to be included in the
economic evaluation.
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The model and input parameters used to estimate the health and economic benefits have been
previously reported [58]. The potential impact of analytics that identify patients with ineffective
efforts at risk of having worse outcomes also suggests that continuing further development is
worthwhile [58] since it can reduce mortality by 3%, increase QALYs by 0.21 and reduce costs
(€264) [58]. Furthermore, it was demonstrated that even if the effectiveness of intervening
was varied extensively, benefits could still be achieved [58]. The headroom for the analytics
to generate savings (€7,307) was considered sufficient to cover relevant hardware costs and
additional costs of site-specific validation. Thus, further development was considered both
relevant and feasible and the potential impact of the analytics was considered substantial.

Case 3: Diabetes

For diabetes, clinicians indicated that a highly relevant problem was to determine predictors of
response to treatment with sodium glucose transporter-2 inhibitors combined with glucagon-like
peptide-1 agonists. EHR data was available from diabetes patients treated in secondary care in
the United Kingdom. However, a small sample size and substantial missing follow-up data raised
questions about the feasibility of development, which resulted in the decision not to assess
critical barriers and conduct an economic evaluation.

DISCUSSION

In this paper, we present a framework that aims to promote the efficient development
of high potential analytics by rapidly assessing whether it is feasible and worthwhile to
continue development. The use cases demonstrate the value of first assessing the feasibility
of development and identifying relevant barriers before estimating the potential health
and economic benefits of analytics. Examples were presented for CLL and diabetes where
development was not feasible given the data available. Furthermore, the essence of critically
narrowing down the scope is demonstrated for CLL and the ICU where the absence of actionable
output is an important barrier to realizing success and disease prevalence strongly influences
benefits.

Early economic evaluations of analytics can assist decision-making of developers and stimulates
them to develop those analytics with the greatest potential benefits. These evaluations allow
developers to assess the influence of certain requirements of analytics (e.g., the costs of the
technology, validation, and implementation) on their potential health and economic impact.
In our use cases, we see risks that could strongly influence widespread adoption, such as the
prevalence of CRBSI and the high drug costs for CLL. Early economic evaluations can also be
used to strengthen the business case of developers seeking funding for prospective validation
and evaluation. This is especially relevant since the high costs of validation and implementation
are important barriers to successful use of analytics in clinical practice [4,19,24,31-33]. During
implementation, data and tools used to perform early economic evaluations alongside
development can be reused to perform a ‘late’ economic evaluation to convince payers that
the analytics are worth purchasing. Elements covered in this framework align with key economic
information sought by payers such as the UK’s National Institute for Health and Clinical Excellence
[59].
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However, for efficient development, economic evaluations should only be initiated for those
applications deemed feasible and after ensuring that there are no critical barriers to success.
Often multiple analytics can be developed for a single setting, disease or using a single dataset
[27,60]. For instance, for the ICU [11] and diabetes care [61] many more types of EHR-based
analytics have been suggested than the ones presented here. This is an important difference
compared to when early economic evaluations are used to assist decision-making during
development of a technology with one or few applications (e.g., diagnostics). Since it is often
unrealistic to evaluate - all potential applications of a particular type of analytics, our framework
stimulates developers to select which applications are worthy of additional resources. Where
feasibility is clearly a problem for the diabetes use case, the lack of an actionable output is the
shortcoming for CLL; an issue often reported in the literature [10,15,24,25]. The initial analyses
performed in the early economic evaluation can be very simple at first but can become more
complex as development progresses; this corresponds with recommendations that analytics
development and validation should also be iterative [4,62]. However, as with analytics for CLL
and CRBSI, it is sometimes worthwhile to invest more time in adding additional details at an
early stage, since it is better to fail fast when limited investments have been made. Using early
economic evaluations in an iterative manner and providing a detailed definition of the scope
aligns with best practices for early economic evaluations of other healthcare technologies such
as diagnostic tests [34-38]. The recommendations provided by others such as Drummond et
al [63], or Buisman et al. [37] regarding the selection of a model structure (e.g., decision tree,
Markov model), estimation of input parameters, and calculating outcomes (such as the ICER) are
likely to be applicable when estimating benefits. We demonstrate in the CLL and diabetes use
cases how the framework may assist developers in selecting those applications that are likely to
succeed, before investing additional resources in performing an economic evaluation. Similar to
other papers [e.g.,4,12,17,24-26], we found the data available for development to be a barrier
to success in the CLL and diabetes case studies. Analytics for artificial intelligence are ‘data
hungry’ and therefore require large datasets [11,27]. Furthermore, the quality of the data is an
important issue when developing and using Al. Roberts et al. have emphasized in their review of
Al for the diagnosis and prognostication of secondary pneumonia, that many Al analytics were
hampered by poor quality data [64]. Our framework aligns with recommendations by Vollmer et
al. who include critical questions regarding the data used as part of their framework to inform
design and evaluate Al analytics [65]. Reviewing the data quality ensures developers select those
applications of analytics for which development is most likely to succeed. For instance, rapid
checks of potential sample sizes have been previously suggested [66]. For analytics with adequate
data quality, additional resources can then be invested to perform an economic evaluation.

In this study, the framework was applied to three clinical use cases. Therefore, validation in other
use cases is recommended. Other use cases can include different clinical areas (e.g., psychiatric
disorders) but also other data sources such as data from patient devices (e.g., Fitbits), imaging and
social media. Additional research could also assess criteria to value the quality of unstructured
data. Furthermore, the framework presented could be easily adopted alongside initiatives such
as RE-AIM used to translate research into practice [67]. This framework pays particular attention
to the timing of economic evaluations intended to assist development considering relevant
elements in the ‘Reach’, ‘Effectiveness’, ‘Adoption’, ‘Implementation’ and ‘Maintenance’ steps.
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Since many factors can influence the successful implementation and adoption of analytics, we
may have adopted a somewhat narrow approach by solely focusing on the value of economic
evaluations to support developer decision-making. A wider form of decision support can be
achieved through a broader evaluation of analytics, for instance using health technology
assessment, which includes social, and ethical elements besides the health and economic impact
[68]. Moreover, elicitation of stakeholder preferences such as patients and clinicians could ensure
that potential barriers to development, acceptability and implementation are addressed [69].

In recent years, there has been an increased interest in the ethical challenges that we face
relating to the adoption of artificial intelligence [70]. In this paper, we discuss that factors such as
the risk of bias and small sample sizes, should be assessed at an early stage of development prior
to performing an economic evaluation. Trocin et al emphasize the severity of the consequences
of failing to do so. Some of the challenges relating to the data quality mentioned in this paper
have also been emphasized by Trocin et al. Moreover, these authors also provide research
questions that need to be answered to ensure the responsible adoption of Al related technologies
[70]. Many answers to these questions could be very relevant for future improvements of the
flowchart. Depending on the setting and type of analytics, for instance, the quality of the data
can be assessed according to the risk of selection bias in the data [4,13], or the absence of ethnic
variation in the data which could limit generalizability of machine learning models [4,17,28].

CONCLUSION

This is the first study providing recommendations on the use of economic evaluations to support
development decisions of analytics for big data and artificial intelligence-based solutions. Many
types of analytics can be developed within a specific clinical setting or disease or using a particular
dataset. The framework presented in this study stimulates efficiency of development by selecting
those applications worth further investment after assessing the feasibility of development
and identifying critical barriers. For these applications, early economic evaluations can assist
decision-making of analytics developers by estimating for instance requirements of effectiveness
and the headroom for pricing, validation, and implementation.
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APPENDIX

Model & Input parameters case study 1: Chronic lymphocytic leukemia

Several risk scores for newly diagnosed chronic lymphocytic leukemia (CLL) patients are available
that combine clinical, laboratory and/or molecular data to stratify patients according to risk
of progression and time to treatment [1,2,3]. After diagnosis, patients without clinically active
disease are monitored during frequent follow-up visits also referred to as the ‘watch & wait’
phase. During the watch and wait phase, prognostic scores are currently used to identify patients
with a higher risk of progressing eligible for enrollment in clinical trials and to personalize their
frequency of follow-up. Even though at present, no early treatment is prescribed to patients at
higher risk of progressing, preliminary results from the CLL-12 study suggest that some patients
without active disease might benefit from early treatment with ibrutinib [4].

In light of these recent results, we estimated the potential cost-effectiveness of using next
generation sequencing data to improve prognostic algorithms for assessing the risk of
progressing to needing treatment of patients diagnosed with CLL. Even though development to
improve available risk scores is recommended [1], the potential health and economic benefits
of using them have not yet been assessed. Prior to continuing development of analytics, it
can be estimated whether further research into this area could be considered a worthwhile
investment given this novel treatment available. The patient population consisted of patients
newly diagnosed with CLL in a Swedish healthcare setting. Currently, these patients can be
classified as high, intermediate or low-risk by assessing their unmutated immunoglobulin heavy
variable gene status (IGHV), the absolute lymphocyte count, and the presence of palpable lymph
nodes [1]. These patients are followed through a watch & wait strategy in which they receive
frequent follow-up visits but do not receive treatment until the disease becomes clinically
active. At present, no additional genomic or genetic testing is performed. In care with the novel

analytics, those with a high and intermediate risk score would receive early treatment with
ibrutinib.

First Line Progression

Figure S1: Markov model used to estimate costs and effects of using analytics to estimate the risk of
progression of watch and wait patients with chronic lymphocytic leukemia compared to current care.
W&W= watch and wait patients

We used a Markov model with 4 states (Figure S1) to estimate costs, life years gained, and
quality adjusted life years gained (QALYs). Tunnel states in the first-line health state were
used to vary costs according to the respective time on treatment for the different treatments
prescribed. A lifetime time horizon was adopted, and the cycle length was 28 days. Even though
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a societal perspective has been recommended in Swedish guidelines for performing economic
evaluations, this is not reflected in recent reimbursement decisions for CLL treatments. Here,
cost-effectiveness was assessed by the TLV, The Dental and Pharmaceutical Benefits Agency in
Sweden that decides on reimbursement decisions, without considering non-medical costs [5].
Therefore, we adopted a healthcare payer perspective including only direct medical costs. A
discount rate of 3% was used for both costs and effects.

Transition Probabilities

Time to first treatment in current care was estimated using the survival curves presented in the
supplemental figures of Condoluci et al [1]. Individual patient data was reconstructed according
to Guyot et al. using Digizeit [6]. Care with the analytics assumed perfect stratification of patients
where those progressing within 3 years were considered high risk, those progressing within 3-7
years are intermediate risk and those progressing after 7 years would be considered low risk.
Background mortality in Sweden was used for the transition probabilities from watch and wait
to death and first-line to death [7,8]. Sylvan et al. found that for 80% of patients in Sweden,
treatments were prescribed in accordance with national guidelines [9]. Therefore, the first-line
treatment in current care depended on the prevalence of IGHV mutations, Tp53 mutations
and age and fitness of patients, in accordance with Swedish guidelines [10]. For the treatments
prescribed in first- and second-line, the probability of requiring novel treatment over the first 24
months was derived from the time to next treatment curves and converted to rates to estimate
probabilities in accordance with a 28-day cycle length. For second-line treatment in current
care, overall survival curves were used to estimate the 28-day transition probability of death.

Utilities

Utility of watch and wait patients was derived from a study by Holtzer-Goor et al. [11] while
utility values from Kosmas et al. [12] were used for utility of watch and wait patients receiving
oral treatment and for patients with progressive disease.

Costs

When available, costs were based on estimates from studies and reports for the Swedish health
care setting. The majority of unit costs for treatment in the first-line were obtained from a recent
Swedish drug approval report for venetoclax from the Swedish HTA organization [5]. Based
on recommendations from the Svenska KLL Gruppen, it was assumed that in the progression
state in current care 50% of patients received lbrutinib, 20% received treatment with FCR and
30% received monotherapy with venetoclax [10]. Costs of progression in the intervention arm
(€1,572) were based on rituximab treatment since patients have already received ibrutinib and
venetoclax. Costs of analytics were obtained from a micro-costing study performed by Swarzche
et al reporting the costs of genomic testing [13]. All costs were reported in 2019 euros.

Cost-effectiveness analysis
The base case input parameters were used to estimate the incremental cost effectiveness ratio.
The incremental cost-effectiveness ratio is the incremental costs of the novel intervention
compared to current care divided by the incremental effects. Hereafter, input parameters
were varied extensively in univariate sensitivity analyses and scenario analyses. All parameters
were varied simultaneously in the probabilistic sensitivity analysis using a beta distribution for
probabilities and utilities and a gamma distribution for costs. R v3.6.3 was used for the model
according to best practice modelling recommendations [14].
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Incremental Costs

Costs ibrutinib
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Figure S2: Tornado diagram for incremental costs when using analytics to estimate the risk of progression
of watch and wait patients with chronic lymphocytic leukemia compared to current care. W&W= watch &
wait patients, VR= venetoclax-rituximab.
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Cost-Effectiveness Acceptability Curve
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Figure S3: Cost-effectiveness acceptability curve with on the X-axis a range of willingness-to-pay thresholds
and on the Y-axis the probability that the analytics and subsequent treatment with Ibrutinib would be
cost-effective.

Model & Input parameters case study 2: Catheter related bloodstream infection
Infections are a recurring issue in the intensive care unit and can result in sepsis and septic shock.
A common cause of these infections in Greece is placement of a central venous catheter [31].
Catheter related bloodstream infections (CRBSI) have been associated with increased mortality,
prolonged intensive care unit (ICU) and hospital stay and prolonged mechanical ventilation
[31,32]. Furthermore, CRBSIs are relatively easy to avoid by timely identification and infection
control [33].

A decision tree model was combined with a four state Markov model to estimate the health and
economic benefits of using analytics for earlier detection of CRBSI compared to current care in
patients admitted to the ICU (Figure S4). In the decision tree, patients could receive care where
CRBSI is diagnosed early with novel analytics (Arms 1- Arm7) or current care in which CRBSI was
diagnosed according to clinical symptoms (Arm 8 -Arm 14). The diagnosis of CRBSI in current
care is primarily based on clinical symptoms whereas when using analytics, CRBSI would be
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diagnosed in real-time. After diagnosis, the interventions for current care and care with analytics
are identical; the catheter is replaced, and antibiotics are administered. In care with analytics, this
intervention would be administered earlier due to a timely diagnosis. Patients falsely classified
as having CRBSI would have their catheter replaced and receive antibiotics unnecessarily. False
negatives would progress to having clear clinical symptoms resulting in a delayed diagnosis for
which outcomes were assumed to be identical to patients in current care. When replacing the
catheter, a subset of patients experienced complications such as pneumothorax, hematoma,
and arterial puncture.

The decision tree ended in a Markov model in which all patients transitioned from ICU care to
the general ward and were then discharged from the hospital. Cycle length for both of these
states was identical to the median length of stay. For the post discharge state, a yearly cycle
length was adopted. The possibility to return from discharge to the hospital ward state was
not included given that there is no conclusive evidence that 30-day readmission rates are
higher in patients with CRBSI [34]. Relevant decision-makers were hospital employees such as
clinicians and budget managers in Greece. With these decision-makers in mind relevant health
outcomes modelled were ICU length of stay, mortality, life years gained, and quality-adjusted
life years gained (QALYs). Furthermore, a healthcare payer perspective was adopted including
only direct medical costs. A discount rate of 3.5% was used for both costs and effects since
national guidelines for performing economic evaluations in Greece are lacking. All analyses
were performed using R v3.6.3.

Probabilities

All input parameters can be found in Table S2. The prevalence of CRBSI was based on an earlier
report for the collaborating ICU in Greece (7.6%) [35]. Uncertainty surrounding these estimates
was based on the large variation reported in the literature (0.5%-29%) [31,32]. In current care,
the diagnosis is made according to clinical symptoms and the accuracy of the diagnosis in current
care is uncertain. Sensitivity was high given that the diagnosis was made at a late stage at which
clinical symptoms were clearly present whereas specificity was much lower. Sensitivity and
specificity of the analytics were considered to be at least as good as algorithms already available
in the literature (sensitivity= 85%, specificity= 83% [36,37]).
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Figure S4: Decision tree and Markov model used to estimate costs and effects of using analytics for earlier
identification of catheter related bloodstream infection compared to current care. CRI=Catheter related
Infection, TP=True Positive, FP= False Positive, FN=False Negative, TN= True Negative, ICU= Intensive Care
Unit.

The probabilities of ICU and hospital mortality were obtained from a large multicenter study
following patients with CRBSI (28.5%) and without CRBSI (19.6%) [38]. We adopted a conservative
approach in which we assumed that the analytics would result in earlier diagnosis and thus less
severe outcomes instead of avoiding the CRBSI event altogether. We assumed that mortality
with timely antibiotics resulted in a relative risk reduction in mortality (0.74) similar to the
impact of early administration of antibiotics reported by Ferrer et al [39]. For survival after
hospital discharge, the hazard ratio of dying after an ICU stay without CRBSI [40] and with CRBSI
[41] were combined with survival in the Greek population [42,43]. The average incidence of
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complications across puncture sites was used from a Greek study [44] since all sites were used
in the hospital in question.

Utilities

Utility estimates were obtained from the literature. No research is available reporting quality
of life of patients during their ICU stay. Therefore, we adopted a utility estimate of 0.30 which
corresponds to an EQ-5D state of extreme problems with selfcare, mobility and usual activities
but no pain or discomfort assuming sedation was adequate. Quality of life after discharge was
varied according to the time since hospital discharge and the mean age of the Greek patient
population [45].

Unit costs and resource use

Length of stay in the ICU for patients with CRBSI (13) and without CRBSI (3) were obtained
from Vught et al [38]. We assumed that ICU length of stay reduced with 24% with an early
intervention, similar to the effect of early administration of antibiotics reported by Ferrer et
al [39]. Length of stay after ICU discharge (15 days) was obtained from Vught et al. [38] and
assumed to be identical for the intervention and current care. Patients with CRBSI in the model
received treatment with antibiotics for 10.5 days [46]. This estimate was varied from 7-14 days.
Costs of catheter replacement were based on a duration of change of 10 minutes. For the base
case analysis, annual licensing costs per bed were included for the analytics (€959) [47]. Daily
costs of antibiotics were derived from the literature [46] and unit costs of an ICU and hospital
day were derived from Greek micro-costing studies [48,49]. Costs were reported in 2019 euros.

Analyses

For the base case estimate, incremental costs, length of stay, mortality, life years gained, QALYs
and the incremental costs-effectiveness ratio were reported. Base case estimates were varied
in univariate and probabilistic sensitivity analyses. In the probabilistic sensitivity analyses,
all parameters were varied simultaneously except for the costs of the analytics. Underlying
distributions adopted for probabilities were the beta and beta pert distribution. For costs and
resource use, the gamma and beta pert distribution were used. We also estimated the headroom
according to the following formula:

Headroom =N +A *Q

Here N refers to the potential savings where the costs of the technology are set to zero, A is
the willingness-to-pay threshold and Q are the health effects gained [50]. Willingness-to-pay
thresholds used were €4,946, €7,758 [51] and €30,000 [52,53]. We assumed patients occupied
the bed for 7.4 days on average [35] and that the analytics should be functional for at least three
years. At least 49 patients would be using the analytics each year. Costs of implementation were
obtained from a systematic review that reported cost estimates for developing and implementing
clinical decision support systems in EHRs for diabetes [54]. Costs of validation were based on
recommendations reported by Calster et al. [55] for an ICU with 13 beds and a validation study
including 100 patients.
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Table S2: Input parameters used to estimate costs and effects of using analytics for earlier identification
of catheter related bloodstream infection compared to current care. The values for the input parameters
were obtained from the literature and if no evidence was available through discussions with experts and

assumptions.
Parameter Base Case Distribution PSA Lowest Highest Source
estimate estimate estimate
Probabilities
Prevalence of CRBSI 7.6% Beta pert Min=0.5%, 0.5% 29% [31,32,35]
Max=29%,
Mode=4.025%
Sensitivity CRBSI 100% Assumption
diagnosis Current Care
Specificity CRBSI 60% Beta pert Min=40%, 40% 100% Assumption
diagnosis Current Care Max=100%,
Mode=55%
Sensitivity analytics 85% Beta pert Min=75%, 75% 100% [36,37]
Max=100%,
Mode=84%
Specificity analytics 83% Beta pert Min=63%, 63% 100% [36,37]
Max=100%,
Mode=84%
30-day mortality 19.6% Beta s.e.=1.96 15.9% 23.6% [38]
without CRBSI
30-day mortality with  28.5% Beta s.e.=2.85 23.1% 34.2% [38]
CRBSI
Relative risk of 0.74 Normal s.e.=0.007 60% 100% [38,39]
mortality with early
intervention
Hazard ratio of 1.39 Normal s.e.=0.07 1.26 1.52 [41]
mortality after
discharge sepsis vs. no
sepsis
Hazard ratio for 2.01 Normal s.e.=0.1 1.64 2.46 [40]
survival after ICU
discharge
Incidence of arterial 6% Beta pert Min=4.95% 4.95% 7.75% [44]
puncture Max=7.75%
Mode=6%
Incidence of 2% Beta pert Min=1.28% 1.28% 2.73% [44]
hematoma Max=2.73%
Mode=2%
Incidence of 0.5% Beta pert Min=0.15% 0.15% 0.85% [44]
pneumothorax Max=0.85%
Mode=0.5%
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Table S2: Continued.

Parameter Base Case Distribution PSA Lowest  Highest Source
estimate estimate estimate

Utilities
Quality of Life ICU 0.30 Beta s.e.=0.03 0.24 0.36 Assumption
Quality of Life hospital 0.60 Beta s.e.=0.06 0.48 0.71 [56]
Quality of Life First 5 0.67 Beta s.e.=0.023 0.62 0.71 [45]
years after discharge
Quality of Life 5-10 0.70 Beta s.e.=0.025 0.65 0.75 [45]
years after discharge
Quality of Life >10 0.68 Beta s.e.=0.031 0.62 0.74 [45]
years after discharge
Unit costs (2019 Euros)
Analytics (annual) €959 €100 €20.000 [47]
ICU day €670.4 Gamma s.e.=335.2 €565.9 €1,469.5 [48,57,58]
Hospital day €297.6 Gamma s.e.=148.8 €81.1 €652.2 [49]
Antibiotics for CRBSI €114.4 Beta pert Min=€85.2 €85.2 €137.4 [46]
per day Max=€137.4

Mode=€114.4
Catheter replacement €17.7 Gamma s.e.=€8.9 4.8 38.9 [58]
Catheter €12.6 Gamma s.e.=€6.3 3.4 27.6 [59]
Treatment of arterial €10.1 Gamma s.e.=€5.0 2.7 22.1 [60]
puncture
Treatment of €0 Beta pert Min= €0 0 50 [61]
hematoma Max=€50

Mode=€0
Treatment of €96.1 Gamma s.e.=€48.0 26.2 210.6 [61]
pneumothorax
Resource Use
Duration of infection 10.5 Beta pert Min=7 7 14 [46]
(days) Max=14

Mode=10.5
LOS ICU without CRBSI 3 Gamma s.e.=0.6 1.9 4.3 [38]
LOS ICU with CRBSI 13 Gamma s.e.=2.6 8.4 18.6 [38]
Relative change inICU  0.76 Normal Se=0.08 61% 100% [39]
LOS with intervention
LOS hospital after ICU 15 Gamma s.e.=3 9.7 21.43 [35,38]

discharge
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Chapter 7

“So in health care, it turns out maybe we [IBM] were too optimistic” [1]

For many clinical areas, diseases and data types, papers are available that discuss the ‘reaping’ of
health benefits and savings from technologies such as big data analytics and Al [2-14]. Following
these high expectations, companies, hospitals, and governmental bodies invested billions to
realize the benefits [15-18]. Unfortunately, success stories in this area are rare and few big data
analytics and Al technologies have been implemented so far [19-21]. Better yet, many are familiar
with the failure of IBM’s supercomputer Watson. Ten years after winning Jeopardy, stories of
failed development, a lack of clinical success and a lack of revenue for IBM have been widely
reported [22-24].

In this dissertation, | explored how economic evaluations may assist decision making of
developers of healthcare analytics during the exciting process of development aiming to
increase the likelihood of success. In the following paragraphs, | will first discuss how economic
evaluations are currently used to evaluate analytics. Hereafter, | discuss how the use of economic
evaluations might assist developers to increase the likelihood of feasible development and
adoption. Economic evaluations can assist developers by estimating clinically relevant benefits,
identify cost components that impact cost-effectiveness and enable developers to identify
variation in between practices in current care (Figure 1).

In the final section, | offer recommendations for those conducting economic evaluations since
several challenges could influence the timing and methods of economic evaluations. As can
be seen in Figure 1, | argue that an assessment of feasibility should precede any economic
evaluation and that any further assessments and evaluations should be conducted iteratively.
Moreover, when collecting evidence on survival for these economic evaluations reducing the
amount of censoring is crucial and both standard parametric and spline models should be fitted
for extrapolating long term survival.

HOW ARE ECONOMIC EVALUATIONS USED TO EVALUATE
HEALTHCARE ANALYTICS?

Despite expectations that analytics can improve care, my findings in Chapter 2 demonstrated
that economic evaluations corroborating these claims are scarce [25]. These findings align with
those of Voets et al., Mehta et al., and Wolff et al [2,26,27]. The economic analyses performed
were often of poor quality and did not compare alternative strategies or excluded costs or
consequences [25]. Cost calculations were frequently incomplete and especially costs of the
technology and implementation were generally missing [25]. In prior research, the costs of
validation and deployment are considered important barriers that jeopardize widespread
adoption of analytics [21,28] and thus including them in estimates that facilitate investment
and implementation decisions is essential. Possibly, developers are simply not aware of these
costs during development and therefore do not include them. Alternatively, their exclusion is
a conscious choice when economic analyses are used to attract investors. Demonstrating the
potential value of analytics in the most favorable light would allow developers to pique interests
of those willing to invest. However, the lack of studies that include costs of analytics makes it
difficult to verify claims that data technologies can lead to savings for healthcare payers.
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The outcome most often reported, besides costs, was technical model performance (e.g., area
under the curve, accuracy, sensitivity, specificity). Estimates on clinical utilities or quality adjusted
life years (QALYs) were reported in roughly half of the papers included [25].

Fifty percent of the analyses were performed alongside development, a frequency much higher
than of other health technologies such as pharmaceuticals and diagnostic tests [25]. A possible
explanation could be that the costs of additional validation are an important financial barrier
which might require developers to seek investors or other means of novel funding [28]. Evidence
from an economic analysis might stimulate third parties to provide the necessary additional
investments needed to continue with validation. Moreover, it is likely that many earlier economic
evaluations are performed but not published, sometimes to ensure a competitive advantage and
sometimes because the results are unfavorable. The question arises whether the shortcomings
of published economic evaluations included in this review also apply to unpublished evaluations.
Although the impact of any existing publication bias is uncertain, | expect that this is the case
since these challenges have also been emphasized by other researchers.

Even though economic evaluations (such as cost-effectiveness analyses) of big data analytics
were rare, other methods that aim to translate model accuracy into clinically relevant and
economic outcomes are increasingly reported. These methods are considerably less complex
than more traditional methods, such as decision analytic models, to estimate benefits [29].
Methods, in order of increasing complexity, include the number needed to benefit [30], decision
curve analysis [31,32], and a third method suggested by Katki et al [33]. The number needed
to benefit, for instance, estimates the potential economic benefits, is easily applicable since it
utilizes readily available input, and is understandable for a wide variety of stakeholders involved
in analytics development [30]. Decision curve analysis has been previously suggested to evaluate
predictive algorithms beyond model performance [31,32]. Katki et al. suggested the use of a
third method to estimate the incremental net benefit which was slightly more detailed than
decision curve analysis but slightly less complex than a full decision analytic model [33]. To my
knowledge, no study has ever compared these three methods and economic evaluations in terms
of the outcomes and recommendations they provide. | think such insights could be relevant for
developers but also for health economists performing these analyses.

HOW CAN ECONOMIC EVALUATIONS ASSIST DEVELOPERS OF
ANALYTICS?

For a variety of application domains, | demonstrated how economic evaluations can be used to
estimate outcomes relevant to users. Moreover, early economic evaluations provide relevant
insights for developers regarding the potentially high costs of novel analytics. Relevant outcomes
were presented, such as the thresholds for realizing benefits, the headroom for development,
and the uncertainty in the impact of healthcare analytics (Chapter 3 & 5). Moreover,
recommendations are made concerning the research needed to gain more insight into the costs
of purchasing and using these analytics.
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Present evidence relevant to users and buyers

Economic evaluations stimulate developers of analytics to calculate and present the
effectiveness of their analytics in outcomes relevant to users and healthcare payers. It has
been stressed that evidence on the effectiveness of analytics is often limited to technical model
performance. However, model performance does not clearly illustrate the value for end users of
the technology. Because of this, it has been previously stressed that developers and researchers
should evaluate and present outcomes relevant to these users [19,34,35].

In Chapter 3 and 5, outcomes were reported beyond model performance, estimating outcomes
relevant to users such as costs and QALYs. In Chapter 3, | described an economic evaluation
to estimate the potential impact of analytics to improve the interaction between patients and
their mechanical ventilator. The analysis was performed during the early stages of development.
In this early stage of development, the potential of the technology to yield healthcare and
economic benefits was high (i.e., + 0.21 QALYs and -€264 on average per patient). However, the
effectiveness of intervening as well as the costs of the technology and the monitor that measured
suboptimal interaction were highly uncertain. This can be a challenge since the actual costs are
unclear, thus increasing the risk for developers.

In Chapter 5, | estimated the potential benefits of identifying catheter related bloodstream
infection. Although initial results demonstrated that the average savings per patient could be
high (€886), the expected savings depended on the prevalence of the disease. The prevalence
of catheter related bloodstream infection was relatively high in the hospital involved in
development. Further research is needed to determine if the prevalence in other settings is
sufficiently high for further development to be worthwhile.

In this chapter, the potential impact on QALYs and costs of better stratification of newly
diagnosed chronic lymphocytic leukemia (CLL) patients was also assessed. Results demonstrated
that better stratification and subsequent treatment of patients with a poor prognosis resulted
in high incremental costs and a marginal QALY gain (incremental cost effectiveness ratio (ICER)
of €166,879 per patient), making it unlikely that further development would be worthwhile
given the current costs of treatment. Therefore, for stratification and treatment of watch & wait
patients to be considered a cost-effective alternative to current care, the treatment would need
to be more effective and/or considerably cheaper compared to estimates currently reported
for ibrutinib.

Moreover, developers should go beyond the evidence relevant to users and consider what kind
of evidence is needed to facilitate reimbursement and purchasing decisions of analytics. Hartz
& John have previously emphasized that for all health technologies, the outcomes to evaluate
depend on where results will eventually be presented [36]. | recommend that developers conduct
further research into the market access procedures for analytics in different countries. In this
process, developers should consider who the users and purchasers will be and thus who they
need to convince with their results. Then, when evaluating their own technologies, developers
can apply the rules and techniques that are applied by their prospective clients early on alongside
development. This might facilitate alignment with outcomes relevant to buyers but perhaps also
influence the target market selected.
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Although it is currently not always apparent which rules are applied by prospective clients,
the initiatives to develop guidelines and recommendations for developers and purchasers of
healthcare analytics are increasing. The National Health Service (NHS) in the United Kingdom
(UK) has published guidelines for both developers and potential users and buyers of data-driven
technologies (e.g., NHS Buyers Guide, NICE’s DHT Evaluation Framework [37,38]). For developers,
guidelines are available that provide recommendations to assist them in the steps to consider
when developing data-driven technologies for healthcare [38,39]. An important outcome
according to these guidelines is cost-effectiveness. For buyers, the guideline emphasizes that
they should be aware of the interoperability, data compatibility and the costs associated with
all those elements needed to use a novel Al algorithm [37].

Analyze whether the benefits of analytics justify their potentially high costs

The high costs of analytics, and especially the costs of validation and implementation, are
considered important barriers to the success of healthcare analytics. From a developer’s
perspective, these high future costs might be acceptable if the benefits for potential clients are
also high. Thus, if there is great potential for healthcare analytics to save money for a potential
client, the developer can ask a steep price and ensure a positive return on investment for both the
developer and the client. In my economic evaluations for the ICU (Chapter 3 & 5), | demonstrated
that the costs of the technology are an important parameter influencing incremental costs.
However, there also seems to be considerable headroom for development. So, although
economic evaluations might not lead to a reduction in the high costs of analytics, they could
enable developers to estimate whether the price they need to ask for their technology to cover
their costs is reasonable for the client given the potential savings from using the technology.

Nonetheless, literature on the costs of developing, validating, and implementing analytics is
grossly lacking and further research is essential. Prices and costs of simple analytics offered by
commercial parties are available and economic evaluations of analytics often include a fee-for-
use per patient (e.g., Rossi et al [40]). However, to my knowledge, the costs of implementing
complex analytics in for instance hospitals have not been estimated. Future research should
study whether the total costs of validating, purchasing, and implementing analytics allow
sufficient room for developers to generate a positive return on investment. A cost estimation
of analytics from the perspective of the developer should contain a wide variety of elements
relevant for a potential buyer, such as the costs of data storage, computing power, validation,
and evaluation [28,37]. Moreover, they should consider the infrastructure needed in the future to
host many different pipelines and the requirements that enable use of, for instance, siloed data.

Ideally, a future study that assesses the costs of analytics should cover multiple sites to
understand inter-site variation. In the EU project AICCELERATE the line of inquiry outlined in
this thesis will be continued in a novel project in which multiple hospitals collaborate with several
small and large companies developing technologies that enable the use of Al in healthcare [41].
Here, the costs of adopting Al technologies can be explored at these five different hospitals
across Europe. To my knowledge other costs of development are not mentioned explicitly as
a barrier. However, one can imagine that if development which is doomed to fail due to poor
data is not abandoned ‘quickly’ enough, the price of any analytics that eventually reach the
market will also have to cover the development costs of these failed attempts. Hartz & John
have previously stressed the essence of failing early and focusing on those treatments which
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will most likely generate positive returns and thus cover the expenses of failed development in
the pharmaceutical industry [36].

Identify variation in technologies used in current care

The costs of implementing data analytics are high, partly because of the variability of
technologies used in clinical practice. For instance, the electronic health records, the
monitoring devices, and the ways in which electronic health data are stored differ between
sites. Narrowing down the scope is the first step in any economic evaluation and could be an
important tool for developers and clinical stakeholders to better understand what happens
in current care and how care would change with their analytics. In the scope, the PICO is
defined, requiring developers to critically consider their target (patient) population, current
care, the intervention (i.e., any technologies and supporting infrastructures but also any
subsequent treatment), and relevant outcomes. Results of current care form the benchmark
for performance of the novel intervention and the poorer results are in current care, the more
room for improvement there is [36]. Thus, a good understanding of current care at an early stage
of technology development enables developers to estimate whether additional investments
are worthwhile. Only then can developers include the costs of technologies that enable use
of analytics by addressing poor interoperability when estimating their potential benefits for
future customers.

For analytics, describing current care during the scoping phase requires a detailed discussion
of technologies currently in place, including their limitations and barriers such as lack of
interoperability. Interoperability refers to the ability to exchange and use information from
two or more different systems [42]. Interoperability can be a challenge, but it is essential when
developing data-driven technologies [39,43]. Lehne et al go so far as to say that “Digital health
depends on interoperability” [42]. In recent years, progress has been made with electronic
health record (EHR) vendors such as Epic and Cerner investing in natural language processing
algorithms to be used within their EHRs, thereby facilitating access to the data stored within
them [44]. Moreover, initiatives such as the Observational Health Data Sciences and Informatics
initiative [45,46] facilitate better use of vast amounts of EHR data [44]. Nonetheless, analytics
developed using datasets from a certain hospital might be complex, time-consuming, and costly
to implement in other settings due to limited interoperability and therefore need extensive data
cleaning and pre-processing [42]. Identifying relevant barriers such as limited interoperability
during development is worthwhile [39] and the procedures performed to narrow down the scope
in an early economic evaluation might help developers in this regard.

The challenges of variation between clinical sites also relate to the ‘technologies’ part of the
intervention. Descriptions should go beyond merely stating the analytics, and developers should
determine what technologies should be in place to enable use of their solution in the target
market of interest. This may include certain devices (e.g., monitors that register ventilation
interaction, remote monitoring devices) but also software (e.g., EHRs). Differences between sites
can be expected regarding the technologies already available in current care and what needs to
be purchased. These costs for future users should be considered when estimating results such
as the potential headroom for analytics. For instance, to use the analytics to improve patient
ventilator interaction evaluated in this dissertation, it is essential to have a monitor that collects
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data on ineffective efforts. However, the need to purchase this monitor reduces the price a
developer can ask for the analytics (Chapter 5).

These considerations will also likely influence whether the economic evaluation should focus
on the initially selected target market or whether a broader approach should be adopted.
Depending on the use case, it might be essential to consider a wider target market, including
other countries at an early stage. This is because the technology infrastructures will likely vary
considerably between countries. Where EHRs from one vendor available at site A enables users
to easily extract data, the EHR used at site B may not, because of different labels and siloed data.
Moreover, the results from validation could differ due to differences in patient populations. As
shown in Chapter 5, the prevalence of a disease may also vary, which could impact the cost-
effectiveness of the analytic. Therefore, developers should decide early on what other markets
they will aim to reach in the future.

WHEN AND HOW TO PERFORM ECONOMIC EVALUTIONS OF
HEALTHCARE ANALYTICS?

When initiating this dissertation, the aim was to conduct economic evaluations alongside
development for the use cases presented in the introduction. However, as discussed in Chapters
4 and 5, development was challenging for many of these use cases. In the next paragraphs, |
argue that economic evaluations should only be initiated after an assessment of the feasibility
of development, for instance given the data quality. Moreover, as discussed in Chapter 6, the
robustness of the data used in economic evaluations is decisive in the uncertainty surrounding
estimates. After generating an initial estimate of the potential impact of the analytics, the
evidence should be updated frequently using economic evaluations iteratively prior, during, and
after market access. Moreover, when collecting evidence on survival as input for an economic
evaluation, reducing the amount of censoring is crucial and both standard parametric and spline
models should be fitted when extrapolating long term survival.

Initiate an economic evaluation after assessing whether development is feasible
Many challenges can arise during development relating to the quality of the (‘big’) data sets used
for development. These challenges include, but are not limited to, small sample size [28,47],
shorter duration of follow-up [48], confounding bias [19,49], patient heterogeneity and selection
bias [28,35,48], and bias due to missing data [8,49,50]. In Chapter 4, some of the challenges that
arose when using EHR data to optimize treatment response for patients with type 2 diabetes
were presented. Moreover, | discussed how target trial emulation might increase awareness of
these challenges during development. Target trial emulation can be used to identify differences
between an ideal RCT, and the study actually performed, using observational data in a systematic
way [51]. This allows researchers and developers to identify and understand potential sources
of bias.

In the field of epidemiology, target trial emulation has been proposed to reduce the risk of bias
when analyzing observational data. The risk of bias can be an important problem for use and
development of novel analytics since observational data sources are often used. Bias could
lead to invalid conclusions, with the risk of realizing lower benefits than anticipated, and can
sometimes even cause harm to patients. Many examples of results from machine learning
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algorithms subject to for instance confounding bias exist [19] and there is increasing emphasis
that methods to address confounding in deep-learning models and others are needed [52].
Moreover, recent Food and Drug Administration (FDA) recommendations have emphasized that
developers should be aware of bias and adopt methods to identify it [53].

Target trial emulation might enable developers and clinicians to critically review the data
available, prior to starting projects to develop healthcare analytics using observational data.
As discussed in Chapter 4, heterogeneity in patients and treatment can limit the value of EHR
data, while the amount of missing data can limit the ability to adjust for confounders. Target trial
emulation might stimulate developers to anticipate sources of bias when analyzing observational
data. For instance, the variables needed to adjust for bias can be identified at an early stage to
avoid disappointment of developers. Moreover, it could be used to determine the plausibility
of their results during interpretation.

Challenges relating to the data used for development also resulted in the flowchart presented in
Chapter 5, which aims to stimulate efficient use of economic evaluations. This flowchart positions
the use of economic evaluations after verifying that development is likely to be feasible given
the data available. Ensuring feasibility of development before performing economic evaluations
facilitates efficient use of economic evaluations. This enables developers to allocate resources
for development and evaluation to those analytics most likely to succeed, thereby avoiding
wasted investment. The question of efficiency is essential for healthcare analytics because
development of multiple application domains is often anticipated with the data available (e.g.,
EHR data). Economic evaluations can help select those application domains with the highest
potential health and economic benefits and the ones that maximize profits. Analyses such as the
headroom method enable developers to determine the maximum price, they could ask for their
technology given a certain willingness to pay threshold. If such a price is deemed insufficient to
cover costs, development could of course be halted, and another application could be selected.
However, selection of a new application should begin with an assessment of feasibility and not
estimation of potential benefits and profits (Figure 1).

| have demonstrated that the variety in application domains of analytics could be a reason
for developers to fail fast for those analytics unlikely to succeed. This enables them to invest
resources in those applications most likely to succeed based on data quality, ease of access to
this data, and the expected impact of the application. For instance, we found that continuing
development was challenging for several application domains (e.g., diabetes, CLL). The application
of analytics to prevent catheter related bloodstream infection could potentially have a larger
impact than analytics to reduce the prevalence of ineffective effort events (Chapter 3 and 5).
However, there is also much uncertainty in the input parameters of the models that must be
reduced to select the analytics worthy of further development.

A variety of use cases is examined in this dissertation and further research into the relevance
of the flowchart for different clinical scenarios is needed. For instance, the expectations are
that Al based on imaging (e.g., radiology, dermatology) is the field that will make the most
progress in the coming years [18]. Studies that validate the flowchart for use alongside analytics
development, for instance for applications using imaging data, would be highly relevant. These
studies should adopt a multidisciplinary approach including clinical experts that have access
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to data and the developers with the technical know-how. Examples of such projects are those
funded by for instance the European Union in the H2020 framework programme. However, such
collaborations could also simply be initiated by a developer that is exploring the setting and
research questions for which to develop analytics.

Challenges relating to data quality might differ across countries. Issues relating to sample size
might be less prevalent in larger countries (US) and countries with a developed infrastructure
for data sharing and secondary use of data (e.g., Estonia). Initiatives such as the Clinical Practice
Research Datalink [54], the National Patient-Centered Clinical Research Network (PCORNET)
[55], and organizations such as Kaiser Permanente [56], enable access to databases that
contain millions of individuals. This greatly broadens the potential number of questions that
can be answered and perhaps makes some challenges such as a small sample size less relevant.
However, for these databases other issues (i.e., lack of ethnic variation, limited information on
patient characteristics and treatment response) could be very relevant and should therefore
be addressed in the first steps of the flowchart. For instance, ethnic variation in datasets used
for training is limited, which can result in discrimination based on race, sex, and socioeconomic
status [19].

Carefully considering the data available and narrowing down the scope (patient, intervention, the
comparator, and the outcome) at an early stage in development could perhaps make development
and validation considerably easier (Chapter 5). Patient heterogeneity could result in the need
for costly, site-specific validation and customization and limit the sample size considerably. For
instance, we saw considerable variation in the treatment of diabetes and CLL patients, limiting
development of analytics but also making it essential that analytics developed in one location
are validated in another site (Chapter 4 and 5). Here prior treatments can differ from those
used in patients at the development site, potentially influencing the accuracy of novel analytics.
The availability (or rather absence) of large, representative data sets is a major challenge for
development and validation [43]. Narrowly defining the scope and carefully considering the data
available for development and validation might identify these potential risks early on, avoiding
downstream disappointment.

Use evidence from robust clinical studies that inform iterative forms of evaluation
In Chapter 6, the possibility to estimate long-term survival of patients while varying duration
of follow-up was explored. | assessed how the accuracy of extrapolations varied across
different data cut offs. Variations in the length of follow-up coincided with variations in the
percentage censored and the absolute number of events that occurred. The accuracy was
measured using the absolute error between the extrapolated restricted mean survival time
(RMST) and empirical RMST. | found that the error was large when the follow-up was short and
thus the percentage censored was high. The reduction in RMST error was especially high when
increasing the maximum follow-up from three to six years where all percentages censored were
<60%. Moreover, there was no clear benefit of using for instance spline models over standard
parametric models. However, two of the standard parametric models (Weibull and Gamma)
seemed to perform slightly better (i.e., < RMST error and good visual fit) when the follow-up
was short and the percentage censored was high.
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The results from Chapter 6 underline the relevance of clinical studies with long term follow-
up to evaluate analytics. There is a trend towards a more flexible approach of evaluation
by governmental bodies such as the FDA and European Drug Association (EMA) to speed
up evaluation and better align with these technologies [18]. Moreover, Hendrix et al. also
emphasized that the experience of health economists provides them with opportunities to model
the clinical impact from the limited evidence available [57]. As | have previously emphasized, |
agree that there is a role for health economic modelling to enable developers to translate their
technical accuracy into clinically relevant outcomes. Even good data has its limits (e.g., follow-
up duration), so good modelling techniques are needed to make valid estimates of long-term
health and economic outcomes. However, the results in Chapter 4 and 6 clearly demonstrate
the essence of using data with large sample sizes and low percentages censored which often
requires long-term follow up.

In Chapter 5, | recommend a flexible and iterative approach to economic evaluations alongside
the development of novel healthcare analytics. Development of analytics is an iterative process
[18,28]. A prototype of a technology is developed, tested, and then adjusted accordingly. This
process is repeated until the technology is considered to function well enough for it to be of
value for end-users. Hereafter, site-specific training and/or validation is often required prior
to implementation of analytics [19]. After their initial release, they are frequently updated and
improved when novel data become available [18,19]. As Stevens emphasized: “...data-driven
technologies need constant adaptation to the healthcare practices in which they are used and vice
versa” [58]. Whereas methods for evaluating and granting market access for novel healthcare
technologies are often somewhat static, evaluation of analytics would benefit from a more
flexible approach that aligns with the iterative nature of development. Such an approach where
updates of the technology coincide with updates in results from evaluation would perhaps allow
amore efficient use of resources for evaluating analytics and is therefore highly recommended.

An iterative approach to evaluation is in fact distinctive of early economic evaluations, since they
are used iteratively to inform development and assist investment decisions [59-61]. For other
healthcare technologies, the use of iterative economic evaluations during development has been
recommended for many years [36,59-61]. However, contrary to other technologies, analytics are
also likely to change after implementation. For instance, dataset shift implied that after adopting
a new technology in clinical practice, the population in clinical practice may change [19].

Future research should explore whether the efficient use of resources for evaluation can
be stimulated not only through use of the flowchart but also by automating the process of
evaluation. A flexible approach to evaluation allows developers to update results based on site-
specific performance depending on the most recent, validated version of an algorithm. Better
yet, adaptive algorithms automatically update input over time, leading to changes in accuracy
and therefore outcomes. If continuous collection of data is anticipated after implementation,
developers could explore whether they can automate the process of (economic) evaluation after
implementation. Such an automated process could enhance the efficiency of performing these
evaluations by reducing future costs of evaluation.

Using early economic evaluations aligns with recommendations by other authors. He et al.
emphasized that national and international recommendations promote the use of an iterative
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form of evaluation for analytics [18]. Moreover, the relevance of early assessment of technologies
such as discussed in this dissertation has also been demonstrated by the development of the
Medtech Early Technical Assessment (META) tool by NICE [62]. The META tool tries to increase
the understanding of developers of the consequences of any limitations in the evidence that
they have and allows them to better understand their potential customers. It also offers research
recommendations concerning the evidence still required to gain insights into the potential
benefits of the product. For instance, the META tool can assist developers to develop value claims
needed for a health technology assessment for NICE or another organization. Moreover, the
need for iterative evaluation has also been emphasized in recommendations from governmental
institutes such as the FDA [53]. The FDA have also acknowledged the need to revise the review
processes for market entry of analytics since the current review processes are not suitable for
the iterative development of analytics [18]. Here, developers that adhere to certain standards
of excellence can apply for precertification and faster review [18].

To conclude, the use of RCTs and robust methods of evaluation are needed to assess the potential
benefits of analytics. The use of RCTs to evaluate Al for instance is gradually increasing [63].
However, it has been emphasized that the external validity is an issue because RCTs of analytics
are often performed in a similar geographic region as the one where they have been developed
[63]. Policymakers and developers should jointly develop strategies and guidelines that can
ensure that the quality of evidence is robust while assessments for market access keep up with
development of analytics. Authors have previously recommended the use of dynamic modelling
to assess the health economic impact of Al [26,57]. However, these complex models will also
require robust evidence to estimate parameters. We can increase model complexity, but the
quality of the evidence used to populate the model will need to improve.

CHALLENGES FOR DEVELOPING AND ADOPTING HEALTHCARE
ANALYTICS

Despite the potential of healthcare analytics, many studies have reported challenges that
need to be addressed for big data analytics and Al to revolutionize healthcare as promised
[8,9,19,34,35,42,47,48]. As | have demonstrated in this discussion, economic evaluations can
assist developers in identifying and addressing some of these challenges (Challenge 1-3 Table
1), whereas other challenges should be considered when performing economic evaluations
(Challenge 4-5 Table 1). For instance, a timely estimation of the potential cost-effectiveness
enables developers to better understand whether there is sufficient headroom for development
despite the high costs of analytics or supporting technologies (Challenge 2). However, there are
also other challenges (e.g., Challenge 4 & 5), which should be considered by those conducting
an economic evaluation since | think they will influence when and how to perform an economic
evaluation. For instance, an economic evaluation should be initiated after the feasibility of
development with the data available has been critically assessed. Moreover, depending on
these challenges, sometimes uncertainty analyses should be more detailed (e.g., Challenge 3-5).
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Table 1: Several challenges relating to development and/or implementation of analytics that economic
evaluations can address, and which should be considered when conducting an economic evaluation.

How can economic evaluations assist developers of analytics?

Challenge

How can economic evaluations Relevant
address this challenge? chapter
in this

dissertation

Present evidence
relevant to users
and buyers

Challenge 1: Few studies
report clinically relevant
outcomes

In an economic evaluation multiple 3
outcomes relevant to end users
can be identified using the PICO
method. Hereafter, the potential
impact of the analytics on these
outcomes can be estimated and
presented to users, buyers, and
investors.

Analyze whether
the benefits of
analytics justify
their potentially
high costs

Challenge 2: The costs of
analytics and supporting
technologies are high

In an economic evaluation, the 3,5

intervention and current care are
defined using the PICO method.
Hereafter, analyses in economic
evaluations can explore the
potential ROl while varying costs of
analytics. In uncertainty analyses,
a variety of cost components can
be included and excluded, and
unit costs can be decreased and
increased to estimate the impact
on benefits.

Identify variation in
technologies used
in current care

Challenge 3: There s
considerable variation in
technologies® used between
prospective users

In an economic evaluation, current 3,5

care is defined using the PICO
method. This should be done in
sufficient detail and any anticipated
variation between sites and/or
target markets can be modelled and
its impact on outcomes estimated.
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Table 1: Continued.

When and how to perform economic evaluations of healthcare analytics?

Challenge How should this challenge be Relevant
considered when conducting chapter
economic evaluations of in this
analytics? dissertation

Initiate an Challenge 4: Feasibility The quality and quantity ® of the 4,5
economic of development can be data available for development
evaluation after threatened for instance due can eventually limit the feasibility
assessing whether to poor data quality and of development. An economic
development is quantity evaluation should only be initiated
feasible. after an assessment of the

feasibility for development given
the data available. Here, a good
definition of the PICO might enable
a better assessment of the data

quality.
Use evidence from Challenge 5: Lack of robust Few robust clinical trials report 6
robust clinical trials the long-term impact of analytics.
studies that inform Uncertainty surrounding outcomes
iterative forms of can have a profound impact on
evaluation. extrapolated long-term survival

estimates. Here, model parameters
need to be varied in uncertainty
analyses and should be updated
once new evidence is available.

PICO= Patient Intervention Comparator Outcome, ROI= Return on Investment, ®Includes differences in the way data is
stored, terminology, types of tests performed etc.,”Can include issues such as confounding, small sample size, missing
data, lack of follow-up.

Health Technology Assessment: diversity in challenges and thus diversity in
assessment

Although table 1 provides a list of critical challenges, | do not offer an exhaustive list of the
different types of challenges that can arise during analytics development and adoption in this
dissertation. Challenges relating to explainability of results [19,35,48], privacy, ethical and legal
concerns [8, 35], but also the lack of policy and regulation frameworks for many countries [19]
are important concerns for which conducting an economic evaluation may or may not offer some
assistance. Moreover, some of these challenges might need to be considered when performing
an economic evaluation.

There are many factors that may influence whether a technology reaches the market and could
influence decision-makers when developing their technology. Health technology assessment
(HTA) adopts a much wider scope than just an assessment of health economic benefits by
including for instance, organizational and legal aspects, ethical considerations, and patient
preferences [64]. Economic evaluations should be considered as a single step, when performing
an early Health Technology Assessment thus widening the number of challenges addressed
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when assessing the technology. The order in which these steps are addressed will probably
depend on the technology. However, one can imagine that for all steps, the processes are
likely to be iterative. The feasibility assessment presented in the flowchart in Chapter 5 in this
dissertation could be supplemented with issues relating to these other HTA components, such
as privacy, safety, organization, and ethics, since they can lead to termination of (or changes
in) development. Eventually, the true benefit of the flowchart will really depend on whether
developers critically address challenges and barriers relating to all these elements in the early
phases of development, prior to performing an economic evaluation.

The use of early HTA might further stimulate the success of analytics. Here, challenges which are
mentioned in the literature but were not addressed in this dissertation such as interpretability
and usability could be addressed. Trocin et al. reported criteria for ‘responsible’ Al, defined
as the field that ensures design, implementation and use of Al technologies that are ethical,
transparent, and accountable to reduce the potential risk associated with use of Al [65]. Social
factors, such as the way Al is explained to users, are considered essential [65]. Acceptance of
users has also been mentioned by the NHS as an important outcome to be assessed [38], to
which explainability greatly contributes, while the FDA emphasizes the necessity of explainable
Al to facilitate trust of users and enhance adoption [53]. A wide variety of elicitation methods
are available that could be of use here, including interviews but also methods that quantify
preferences such as discrete choice experiments. Hendrix et al for instance elicited preferences
of patients and providers regarding explainable Al [66].

CONCLUDING REMARKS

In this dissertation, | argue that early economic evaluations could assist developers of healthcare
analytics in their decision-making during development. Thus far, evidence from economic
evaluations is scarce. National guidelines and recommendations on assessing analytics are not
yet widely available, which increases uncertainty for developers as to which outcomes would
be relevant to prospective purchasers. The lack of clarity about relevant outcomes means that
developers will not know which outcomes to analyze and optimize and efficiency in development
could be enhanced by clarifying assessment criteria of purchasers and users.

Moreover, good-quality data is essential for developing and evaluating analytics. The flowchart
presented in my dissertation can hopefully increase the efficiency of development by selecting
those application domains of healthcare analytics with limited barriers to implementation and
the highest impact. However, it is essential to perform a feasibility check before estimating the
potential benefits and profits. Moreover, more research is needed as to the way analytics need
to be evaluated and the evidence required.

The lack of insights into total costs of adopting analytics for the prospective customers of these
developers and the lack of purchasing guidance makes it difficult for developers to realize
widespread adoption of their analytics. | have emphasized that further research is needed
to estimate the costs of analytics and to further validate the flowchart in other settings and
countries.
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Chapter 7

The potential benefits of healthcare analytics have often been mentioned and it is this faith
in their ability to improve care that has resulted in billions of Euros and USD being invested
in their development. However, as a society we should also be cautious to ensure that scarce
resources are invested wisely. Early economic evaluations can assist development by initiating
the discussion of their potential in the early phases of development. However, they are also
merely one piece of a very complex puzzle which will take more than just the availability of
computing power, neural networks and EHRs to solve any time soon.
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Appendices

SUMMARY

Healthcare systems are under increasing pressure to reduce costs while maintaining the quality
of care. The use of healthcare analytics has been suggested as one of the possible solutions to
realize this ambitious aim. In the past ten years, many have emphasized the potential of (big)
data analytics and artificial intelligence to improve health and reduce healthcare costs. However,
when initiating the research for my dissertation, it was unclear if, and how, economic evaluations
were used by developers to corroborate these claims.

In this dissertation, | explored how economic evaluations may assist decision making of
developers of healthcare analytics during the process of development aiming to increase the
likelihood of success. | first reviewed how economic evaluations are currently used to evaluate
analytics. Hereafter, | explored how the use of economic evaluations might assist developers to
increase the likelihood of feasible development and adoption. In the final chapters | provided
recommendations for those conducting economic evaluations since several challenges could
influence the timing and methods adopted for economic evaluations.

HOW ARE ECONOMIC EVALUATIONS USED TO EVALUATE HEALTHCARE ANALYTICS?
In Chapter 2, | present results from a scoping review in which | assessed whether economic
evaluations of big data analytics were available, whether these studies adhered to best practice
guidelines and if they informed decision-making during development or during the market access
phase after development. Most of the studies that reported an economic analysis, did not
compare alternative strategies, or excluded consequences and/or costs. | found few full economic
evaluations (N=22) and roughly half of the studies were performed alongside development. Cost
calculations were often incomplete and only 20% included the costs of the technology whereas
effects were often reported in terms of model performance. Only 7 studies reported cost savings
and better outcomes and could be classified as ‘big’ data analytics. Economic evaluations that
evaluate (big) data analytics that adhere to best practice guidelines are lacking but the analyses
performed are often performed alongside development.

HOW CAN ECONOMIC EVALUATIONS ASSIST DEVELOPERS OF ANALYTICS?

In this dissertation, | demonstrate that economic evaluations can be used to assist decision-
making of developers alongside development. Economic evaluations can assist developers by
estimating clinically relevant benefits, identify cost components that impact cost-effectiveness,
and enable developers to identify variation in between practices in current care.

In Chapter 3, | performed an economic evaluation to estimate the potential impact of analytics
that aim to improve the interaction between patients and their mechanical ventilator. The analysis
was performed during the early stages of development. In this early phase of development, the
technology demonstrated the potential to lead to benefits (i.e., + 0.21 quality adjusted life
years (QALY) and -€264 on average per patient). However, the effectiveness of intervening was
highly uncertain, and the costs of the technology and the monitor that measured suboptimal
interaction strongly influenced results.
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In Chapter 5, | estimated the potential benefits of identifying catheter related bloodstream
infection. Although initial results demonstrated that the average savings per patient could be
high (0.06 QALYs, €886), results fluctuated depending on the prevalence of the disease. The
prevalence of catheter related bloodstream infection was relatively high in the hospital involved
in development. Further research is needed to determine if the prevalence in other settings is
sufficiently high for further development to be a worthwhile investment. In this chapter, | also
assessed the potential impact on QALYs and costs of better stratification of newly diagnosed
chronic lymphocytic leukemia patients. Results demonstrated that better stratification and
subsequent treatment of those with a poor prognosis resulted in high incremental costs and a
slight improvement in QALYs (ICER of €166,879). The high costs of treatment were the main cause
of the high ICER making it unlikely that further development would be worthwhile.

In my economic evaluations for the intensive care unit (ICU) (Chapter 3 & 5), | demonstrate that
the costs are an important parameter influencing incremental costs but that there seems to be
sufficient headroom for development. In these estimates, | also considered the costs of validation
and implementation in the price of the analytics. From a developer’s perspective, these future
high costs might be acceptable if the benefits for potential clients are also high, enabling them
to ask a steep price ensuring a positive return on investment. However, further research into
the costs of developing, validating, and implementing analytics and the willingness to pay of
purchasers is needed.

In Chapter 5, | also demonstrate how the first step in an economic evaluation in which the scope
of the problem is clarified could assist developers in identifying challenges that can be expected
when implementing the technology. The patient, intervention, comparator, and outcome method
could stimulate developers to take some of the future challenges (e.g., lack of interoperability)
into account at an early stage in development. For instance, the infrastructures in place could
vary across sites making it excessively difficult to gain access to the data required as input for
the analytics. A good understanding of current care at an early stage of technology development
enables developers to estimate whether additional investments are worthwhile. Only then can
developers include the costs of technologies that enable use of analytics by addressing poor
interoperability when estimating their potential benefits for future customers.

WHEN AND HOW TO PERFORM ECONOMIC EVALUATIONS OF HEALTHCARE ANALYTICS?
In this dissertation | offer several recommendations. | argue that an assessment of feasibility
should precede any economic evaluation and that any further assessments and evaluations
should be conducted iteratively. Moreover, when gathering clinical evidence to estimate long-
term survival benefits of the intervention, developers and researchers should take care to reduce
the percentages censored to increase the likelihood that long-term benefits can be estimated
accurately.

First, | discuss that economic evaluations should only be conducted after an initial assessment
of the feasibility of development. Feasibility issues can relate for instance to the quality of the
data (e.g., the sample size, missing data, length of follow-up), variation in treatments prescribed
and data collected, and the risk of bias. In Chapter 4, | present some of the challenges that arose
when using electronic health record (EHR) data to optimize treatment response for patients with
type 2 diabetes. Heterogeneity in patients and treatments limited the value of the EHR data,
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whereas the amount of missing data limited the ability to adjust for confounders. | discussed
how target trial emulation could increase awareness of these challenges during development.
Target trial emulation enables stakeholders involved in development to identify potential sources
of bias by comparing an ideal randomized controlled trial (RCT) with the study performed. The
method might enable developers and clinicians to critically review the data available, prior to
engaging in projects that aim to develop data analytics using observational data.

These challenges relating to the data used for development, also resulted in the flowchart
presented in Chapter 5. This flowchart positions the use of economic evaluations after verifying
that development is likely to be feasible given the data available. Prior to selecting analytics based
on potential benefits, a selection based on feasibility given the data available is recommended.
Moreover, in this flowchart | also explicitly emphasize the first step of any economic evaluation
in which the scope is clearly defined. As demonstrated for several use cases in Chapter 5, a clear
definition of the scope including the population, the intervention, a description of current care
and the outcomes desired, could help developers identify critical barriers that they could face
during future development and implementation.

| also stress the use of an iterative approach to evaluating analytics where results are
continuously updated until eventually robust clinical studies are available for evaluation. In
Chapter 5, | recommend a flexible and iterative approach to economic evaluations alongside the
development of novel healthcare analytics. Whereas methods for evaluating and granting market
access for novel healthcare technologies are often somewhat static, evaluation of analytics would
benefit from a more flexible approach that aligns with the iterative nature of development. Such
an approach where updates of the technology coincide with updates in results from evaluation
would perhaps allow a more efficient use of resources for evaluating analytics.

For the evidence used in these economic evaluations, developers and researchers should
take care to reduce the percentages censored in survival data to increase the likelihood that
long-term benefits can be estimated accurately. In Chapter 6, the possibility to estimate long-
term survival of patients while varying duration of follow-up was explored. | assessed how
the accuracy of extrapolations varied across different data cut offs. Variations in the length of
follow-up coincided with variations in the percentage censored and the absolute number of
events that occurred. In the results | found that the error was large when the follow-up was short
and thus the percentage censored was high. The reduction in RMST error was especially high
when increasing the maximum follow-up from three to six years where all percentages censored
were <60%. However, two of the standard parametric (Weibull and Gamma) models seemed to
perform slightly better (i.e., < RMST error and better fit) when the follow-up was short and the
percentage censored was high.

In this dissertation, | argue that economic evaluations alongside development could assist
developers of healthcare analytics in their decision-making during development. The flowchart
presented in my dissertation can hopefully increase the efficiency of development by selecting
those application domains of healthcare analytics with limited barriers to implementation and
the highest impact. However, it is essential to perform a feasibility check before estimating the
potential benefits and profits. Moreover, more research is needed as to the way analytics need
to be evaluated and the evidence required.
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The lack of insights into total costs of adopting analytics for the prospective customers of these
developers and the lack of purchasing guidance makes it difficult for developers to realize
widespread adoption of their analytics. | have emphasized that further research is needed to
estimate these costs of analytics and to further validate the flowchart in other settings and
countries.

The potential benefits of healthcare analytics have often been mentioned and it is this faith
in their ability to improve care that has resulted in billions of Euros and USD being invested
in their development. However, as a society we should also be cautious to ensure that scarce
resources are invested wisely. Early economic evaluations can assist development by initiating
the discussion of their potential in the early phases of development. However, they are also
merely one piece of a very complex puzzle which will take more than just the availability of
computing power, neural networks and EHRs to solve any time soon.

211




Appendices

SAMENVATTING

Zorgstelsels staan onder toenemende druk om zorg te leveren van dezelfde of betere kwaliteit
voor minder geld. In de afgelopen tien jaar hebben velen benadrukt dat nieuwe technologieén
die gebruik maken van data in de zorg zoals (big) data-analytics en kunstmatige intelligentie
kunnen bijdragen aan het realiseren van dit ambitieuze doel. De potentiéle kosten en effecten
van deze nieuwe technieken kunnen worden berekend en vergeleken met de huidige zorg in
economische evaluaties. Ten tijde van de start van het onderzoek voor dit proefschrift, was het
echter onduidelijk of, en hoe, economische evaluaties werden gebruikt door ontwikkelaars om de
beweringen ten aanzien van betere zorg en kostenbesparingen te onderbouwen en te realiseren.

In dit proefschrift heb ik onderzocht hoe economische evaluaties kunnen helpen bij het nemen
van beslissingen van ontwikkelaars van analytics in de zorg tijdens het ontwikkelingsproces,
met als doel de kans op succes te vergroten. Ik ben eerst nagegaan hoe economische evaluaties
momenteel worden gebruikt om analytics in de zorg te evalueren. Hierna heb ik onderzocht
hoe het gebruik van economische evaluaties ontwikkelaars zou kunnen helpen om de kans op
haalbare ontwikkeling en adoptie te vergroten. In de laatste hoofdstukken geef ik aanbevelingen
voor hen die economische evaluaties uitvoeren, aangezien verschillende uitdagingen de timing
en methoden voor economische evaluaties van analytics in de zorg kunnen beinvioeden.

HOE WORDEN ECONOMISCHE EVALUATIES GEBRUIKT OM ANALYTICS IN DE ZORG
TE EVALUEREN?

In Hoofdstuk 2 presenteer ik de resultaten van een scoping review waarin ik heb onderzocht of
economische evaluaties werden gebruikt om big data-analytics te evalueren, of deze studies
conform de richtlijnen werden uitgevoerd en of ze de besluitvorming informeerden tijdens
ontwikkeling of tijdens de fase waarin toegang wordt verkregen tot markt, na ontwikkeling.
De meerderheid van de economische analyses, vergeleken geen alternatieve strategieén of
hadden consequenties en/of kosten niet geincludeerd. Het aantal volledige economische
evaluaties was beperkt (N=22) en ongeveer de helft van de onderzoeken werd uitgevoerd
naast ontwikkeling. Kostenberekeningen waren vaak onvolledig en slechts 20% includeerde
de kosten van de technologie, terwijl effecten vaak werden gerapporteerd in termen van de
technische eigenschappen van de analytics. Slechts 7 studies rapporteerden kostenbesparingen
en betere resultaten en konden worden geclassificeerd als ‘big’ data-analytics. Dus, economische
evaluaties van (big) data-analytics die zijn uitgevoerd in overeenstemming met de richtlijnen zijn
schaars, maar de uitgevoerde analyses worden vaak naast ontwikkeling uitgevoerd.

HOE KUNNEN ECONOMISCHE EVALUATIES ONTWIKKELAARS VAN ANALYTICS IN DE
ZORG ASSISTEREN?

In dit proefschrift laat ik zien dat economische evaluaties gedurende ontwikkeling kunnen
worden gebruikt om de besluitvorming van ontwikkelaars te ondersteunen. Economische
evaluaties kunnen ontwikkelaars helpen door het effect van hun technologie op klinisch
relevante uitkomsten en kosten te onderzoeken, kostencomponenten te identificeren die van
invloed zijn op de kosteneffectiviteit, en hen in staat te stellen variatie tussen praktijken in de
huidige zorg te identificeren.
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In Hoofdstuk 3 heb ik een economische evaluatie uitgevoerd om de potentiéle impact te
onderzoeken van analytics in de zorg die gericht zijn op het verbeteren van de interactie tussen
patiénten en hun mechanische ventilator. De analyse werd uitgevoerd tijdens de vroege stadia
van ontwikkeling. In deze vroege ontwikkelingsfase blijkt dat de technologie mogelijk in betere
zorg en lagere kosten kan resulteren (d.w.z. + 0,21 voor kwaliteit gecorrigeerde levensjaren
(QALY) en gemiddeld -€ 264 per patiént). Het effect van tijdig ingrijpen met behulp van deze
analytics was echter zeer onzeker, en de kosten van de analytics en de monitor waarmee
suboptimale interactie tussen de patiént en de ventilator werd gemeten, waren bepalend voor
de resultaten.

In Hoofdstuk 5 is het effect van analytics voor de vroegtijdige detectie van katheter gerelateerde
bloedbaan-infecties onderzocht. Hoewel de eerste resultaten aantoonden dat de gemiddelde
besparing per patiént hoog kunnen zijn (0,06 QALY’s, € 886), fluctueerden de resultaten
afhankelijk van de prevalentie van de ziekte. De prevalentie van katheter gerelateerde bloedbaan-
infecties was relatief hoog in het ziekenhuis dat bij de ontwikkeling betrokken was. Verder
onderzoek is nodig om te bepalen of de prevalentie in andere landen en ziekenhuizen voldoende
hoog is om verdere ontwikkeling een waardevolle investering te maken. In dit hoofdstuk heb
ik ook de mogelijke impact op QALY’s en kosten onderzocht van een betere stratificatie van
net gediagnosticeerde patiénten met chronische lymfatische leukemie. Resultaten toonden
aan dat een betere stratificatie en daaropvolgende behandeling van degenen met een slechte
prognose resulteerde in hoge incrementele kosten en een kleine verbetering van QALY’s (ICER
van € 166.879). De hoge kosten van behandeling waren de belangrijkste oorzaak van de hoge
ICER, waardoor het onwaarschijnlijk was dat verdere ontwikkeling de moeite waard zou zijn.

In de economische evaluaties voor de intensive care (IC) (Hoofdstuk 3 & 5) zijn de kosten een
belangrijke parameter die de incrementele kosten beinvloeden. Er blijkt echter voldoende
financiéle ruimte lijkt te zijn voor ontwikkeling, zelfs indien rekening wordt gehouden met de
hoge kosten van validatie en implementatie in de prijs van de analytics. Vanuit het perspectief
van een ontwikkelaar kunnen deze toekomstige hoge kosten acceptabel zijn als de voordelen
voor potentiéle klanten ook hoog zijn, waardoor ze een hoge prijs kunnen vragen die een positief
rendement op de investering garandeert. Er is echter meer onderzoek nodig naar de kosten van
het ontwikkelen, valideren en implementeren van analytics in de zorg en de betalingsbereidheid
van toekomstige klanten.

In Hoofdstuk 5, laat ik ook zien hoe de eerste stap in een economische evaluatie, ontwikkelaars
kan helpen bij het identificeren van uitdagingen die kunnen worden verwacht bij het
implementeren van de technologie. De patiént-, interventie-, comparator- en uitkomstmethode
in deze eerste stap zou ontwikkelaars kunnen stimuleren om in een vroeg stadium van
ontwikkeling rekening te houden met enkele van de toekomstige uitdagingen (bijv. gebrek aan
interoperabiliteit). De aanwezige technologische infrastructuren kunnen bijvoorbeeld per locatie
verschillen, waardoor het buitengewoon moeilijk wordt om toegang te krijgen tot de data die
nodig zijn als input voor de analyses. Een goed begrip van de huidige zorg in een vroeg stadium
van technologieontwikkeling stelt ontwikkelaars in staat om in te schatten of extra investeringen
de moeite waard zijn. Alleen dan kunnen ontwikkelaars de kosten van technologieén die het
gebruik van de analytics mogelijk maken, meenemen bij het inschatten van de potentiéle waarde
van hun technologie voor toekomstige klanten.
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WANNEER EN HOE MOETEN ECONOMISCHE EVALUATIES VAN ANALYTICS IN DE
ZORG WORDEN UITGEVOERD?

In dit proefschrift doe ik tevens een aantal aanbevelingen. Ik pleit ervoor dat een beoordeling van
de haalbaarheid van ontwikkeling voorafgaat aan elke economische evaluatie en dat eventuele
verdere beoordelingen en evaluaties iteratief moeten worden uitgevoerd. Bovendien moeten
ontwikkelaars en onderzoekers bij het verzamelen van klinisch bewijs, ervoor zorgen dat het
percentage gecensureerde patiénten wordt verlaagd om de kans te vergroten dat lange termijn
overleving nauwkeurig kan worden geschat.

Allereerst dienen economische evaluaties pas worden uitgevoerd na een eerste beoordeling
van de haalbaarheid van ontwikkeling. Uitdagingen met betrekking tot de haalbaarheid van
ontwikkeling zijn bijvoorbeeld gerelateerd aan de kwaliteit van de data beschikbaar voor
ontwikkeling (bijvoorbeeld de omvang van de dataset, ontbrekende gegevens, duur van de
follow-up), variatie in voorgeschreven behandelingen en de variabelen verzameld, en het risico op
bias. In Hoofdstuk 4, presenteer ik enkele van de uitdagingen die zich voordeden bij het gebruik
van elektronische patiéntendossier (EPD)-gegevens om de behandelrespons voor patiénten
met type 2-diabetes te optimaliseren. Heterogeniteit in patiénten en behandelingen beperkte
de bruikbaarheid van de EPD-gegevens, terwijl de hoeveelheid ontbrekende gegevens de
mogelijkheid om voor confounders aan te passen beperkte. Het gebruik van target trial-emulatie
zou het bewustzijn van onderzoekers en ontwikkelaars kunnen vergroten met betrekking tot
het risico dat deze uitdagingen kunnen voorkomen tijdens ontwikkeling. Target trial-emulatie
stelt belanghebbenden die betrokken zijn bij de ontwikkeling in staat om mogelijke bronnen
van bias te identificeren door een ideale RCT te vergelijken met de toegepaste methode. Target
trial-emulatie kan ontwikkelaars en clinici in staat stellen om de beschikbare gegevens kritisch
te beoordelen, voordat ze zich bezighouden met projecten die gericht zijn op het ontwikkelen
van analytics met behulp van observationele data.

Deze uitdagingen met betrekking tot de gegevens die voor ontwikkeling worden gebruikt, hebben
ook geleid tot het ontwikkelen van het stroomdiagram in Hoofdstuk 5. Deze stroomdiagram
positioneert het gebruik van economische evaluaties nadat is geverifieerd dat ontwikkeling
waarschijnlijk haalbaar is gezien de beschikbare data. Voorafgaande aan het selecteren van
analytics op basis van hun potentiéle impact of gezondheid en kosten, wordt aanbevolen een
selectie te maken op basis van haalbaarheid gegeven de beschikbare data. Bovendien wordt
in deze stroomdiagram ook expliciet benadrukt dat in de eerste stap van elke economische
evaluatie de scope moet worden gedefinieerd. Zoals aangetoond voor verschillende casussen in
Hoofdstuk 5, zou een duidelijke definitie van de scope, inclusief de populatie, de interventie, een
beschrijving van de huidige zorg en de gewenste uitkomsten, ontwikkelaars kunnen helpen bij
het identificeren van kritieke barriéres waarmee ze te maken kunnen krijgen tijdens toekomstige
ontwikkeling en implementatie van analytics in de zorg.

De essentie van een iteratieve benadering voor het evalueren van analytics wordt in dit hoofdstuk
eveneens benaderd. Hier worden de resultaten continu bijgewerkt indien nieuwe informatie
(bijvoorbeeld afkomstig uit klinische onderzoeken) beschikbaar is. In Hoofdstuk 5 beveel ik een
flexibele en iteratieve benadering van economische evaluaties aan naast de ontwikkeling van
nieuwe analytics in de zorg. Terwijl methoden voor het evalueren en verlenen van toegang
tot de markt voor nieuwe zorgtechnologieén vaak enigszins statisch zijn, zou de evaluatie van
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analytics gebaat zijn bij een flexibelere aanpak die aansluit bij de iteratieve aard van ontwikkeling.
Een dergelijke benadering waarbij updates van de technologie samenvallen met updates in de
resultaten van evaluatie, zou het evalueren van analytics aanzienlijker efficiénter maken.

Voor het bewijs dat in deze economische evaluaties wordt gebruikt, moeten ontwikkelaars en
onderzoekers ervoor zorgen dat de percentages patiénten wiens overleving is gecensureerd
worden beperkt. Hogere percentages censoring maakt het lastig voor onderzoekers om
de lange termijn overleving te modelleren welke noodzakelijk voor het berekenen van de
kosteneffectiviteit op basis van deze korte(re) termijn patiéntgegevens. In Hoofdstuk 6 werd de
mogelijkheid onderzocht om de overleving van patiénten op lange termijn te schatten terwijl
de duur van de follow-up varieerde. De nauwkeurigheid van extrapolaties varieerde aanzienlijk
aan de hand van de verschillende data cut-offs. Variaties in de duur van de follow-up vielen
samen met variaties in het percentage gecensureerd en het absolute aantal gebeurtenissen dat
plaatsvond. In de resultaten vond ik dat de discrepantie tussen gemodelleerde en daadwerkelijke
gemiddelde overleving groot was indien de follow-up kort was en dus het gecensureerde
percentage hoog was. De vermindering van deze discrepantie in gemiddelde overleving was
vooral hoog bij het verhogen van de maximale follow-up van drie naar zes jaar, waarbij alle
gecensureerde percentages <60% waren. Twee van de standaard parametrische modellen
(Weibull en Gamma) leken echter iets beter te presteren (d.w.z. < discrepantie in gemiddelde
overleving en betere fit) wanneer de follow-up kort was en het percentage gecensureerd hoog
was.

In dit proefschrift beargumenteer ik dat economische evaluaties naast ontwikkeling
ontwikkelaars van analytics in de zorg kunnen helpen bij hun besluitvorming gedurende
ontwikkeling. Het stroomdiagram dat in mijn proefschrift wordt gepresenteerd, kan hopelijk
de efficiéntie van ontwikkeling vergroten door die applicaties van analytics te selecteren met
beperkte barrieres voor implementatie en de grootste impact. Het is echter essentieel om de
haalbaarheid van ontwikkeling te onderzoeken voorafgaande aan het schatten van de potentiéle
gezondheidseffecten en kostenbesparingen. Bovendien is er meer onderzoek nodig naar de
manier waarop analytics moeten worden geévalueerd en het benodigde bewijs.

Het gebrek aan inzicht in de totale kosten van het adopteren van analytics voor de potentiéle
klanten van deze ontwikkelaars en het gebrek aan richtlijnen voor toekomstige kopers
maakt het voor ontwikkelaars moeilijk om brede acceptatie van hun analytics te realiseren.
Verder onderzoek is dan ook nodig om de kosten van analytics in kaart te brengen en om het
stroomdiagram in andere instellingen en landen verder te valideren.

De potentiéle voordelen van analytics in de zorg zijn vaak genoemd en het is dit vertrouwen in
hun vermogen om de zorg te verbeteren dat ertoe heeft geleid dat miljarden euro’s en dollars zijn
geinvesteerd in hun ontwikkeling. Als samenleving moeten wij er echter ook op toezien dat de
schaarse middelen beschikbaar optimaal worden geinvesteerd. Vroege economische evaluaties
kunnen de ontwikkeling van analytics in de zorg ondersteunen door vroegtijdig een inschatting
te maken van hun potentieel tijdens ontwikkeling. Ze zijn echter ook slechts een stukje van een
zeer complexe puzzel waarvoor meer nodig is dan de beschikbaarheid van computing power,
neurale netwerken en EPD’s om hem op te lossen.

215




Appendices

LIST OF ABBREVIATIONS

abs.=absolute

Al=Artificial Intelligence

AIC= Akaike Information Criterion

AUC= Area under the curve

BDA =Big data analytics

BIC= Bayesian Information Criterion

Bort= Bortezomib

Cl= Confidence Interval

CLL= Chronic lymphocytic leukemia

CPRD= Clinical Practice Research Datalink
CRBSI= Catheter related bloodstream infection
DAG-= Directed Acyclic Graph

DCO= data cut off

DPP4= dipeptidyl-peptidase 4 inhibitor
eGFR= glomerular filtration rate

EHR= Electronic health record

EMA= European Medicines Agency

GLPs= glucagon-like peptide-1 agonists
HbA1C= Hemoglobin A1C

HOVON= Dutch Haemato-oncology Foundation for Adults in the Netherlands
ICER= Incremental Cost Effectiveness Ratio
ICU= Intensive care unit

IEEVs= Ineffective effort events

IPD= individual patient data

IPW= Inverse probability weighting

IQR= interquartile range

KM= Kaplan-Meier

LClI=Lower Confidence Interval

LOS= Length of Stay

LYG= life years gained

META= Medtech Early Technical Assessment
MIl= Multiple Imputation

MM= Multiple Myeloma

MMSE= Mini-Mental State Examination

MP = Melphalan + Prednisone

MRI= Magnetic Resonance Images

MV = Mechanical Ventilation

NCR= Netherlands Cancer Registry

NGS= Next generation sequencing
NHS=National Health Service

NKR+= Dutch National Cancer Registry
OAD-= Oral antidiabetic drug

PCORNET = National Patient-Centered Clinical Research Network
PHAROS= Population based HAematological Registry for Observational Studies
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PICO= Patient Intervention Comparator Outcome
PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension
for Scoping Reviews

PSA= Probabilistic sensitivity analysis

QALYs= Quality-adjusted life years
RCT=Randomized Controlled Trial

RMST= Restricted Mean Survival Time

ROI= Return on Investment

sd= standard deviation

SES= social economic status

SGLTs= sodium glucose transporter-2 inhibitors
Thal= Thalidomide

UCI= Upper Confidence Interval

UK=United Kingdom

US= United States

W&W= Watch and wait
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