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Abstract

In 1927 L.E.J. Brouwer wrote an article called “Uber Definitionsbereiche von Funktionen” (“On
the domains of definition of functions”). In this article he proves that, intuitionistically, every
total function on the closed interval [0, 1] is uniformly continuous. He then wonders if we can
find a notion of a pseudofull domain (a pseudofull subset of [0,1]) so that functions defined on
a pseudofull domain are not necessarily (uniformly) continuous. A pseudofull domain will have
to be very much ‘alike’ [0, 1] and will have to be almost full in the measure theoretic sense. A
classical mathematician would not see a difference between such a pseudofull domain and [0, 1].
In the fifth paragraph of his article he gives seven examples for possible pseudofull domains. In
this thesis we investigated these examples and verify most of the properties Brouwer claims for
them. For some it seems that Brouwer makes a mistake.
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Introduction

In this chapter we will give an introduction to this thesis. The goal of this thesis is to discuss
the results of the fifth paragraph of L.E.J. Brouwer’s 1927 article “Uber Definitionsbereiche von
Funktionen” [4]. We will first give a historical introduction about this article. Then we will
outline what we will discuss in this thesis. We will also introduce some notation that we will use
and then discuss some intuitionistic background which will become very useful in this thesis.

A short historical introduction

In 1927 L.E.J. Brouwer wrote an article called “Uber Definitionsbereiche von Funktionen” (“On
the domains of definition of functions”) [4]. In this article he proves that, intuitionistically, every
total function on the closed interval [0, 1] is uniformly continuous (theorem 3). What is needed
for this proof are his famous bar theorem and fan theorem, which are both discussed in this
article. Both the bar theorem and the fan theorem are related with the way Brouwer treated
the continuum. For more background information about the bar theorem and the fan theorem,
see [9]. In paragraph 4 of the article he then wonders if we can find a notion of a pseudofull
domain (a pseudofull subset of [0,1]) so that functions defined on a pseudofull domain are not
necessarily (uniformly) continuous. A pseudofull domain will have to be very much ‘alike’ [0, 1]
and will have to be almost full in the measure theoretic sense. A classical mathematician would
not see a difference between such a pseudofull domain and [0, 1]. In the fifth paragraph of his
article he gives seven examples for possible pseudofull domains and discusses the properties of
these examples. In this thesis we will investigate these examples and their properties.

Outline

In the first chapter we will introduce real numbers and their properties. Also, we will introduce
the continuum and define a number of relations between subsets of the continuum, which have
been introduced by Brouwer.

In the next chapter we will discuss continuity, which will involve the important continuity
theorem and uniform continuity theorem. We will introduce the notion of a spread and the
continuity principle, which are needed to prove the continuity theorem. Also we will introduce
the notion of a fan, the notion of a bar, the fan theorem and the extended fan theorem, which
are needed to prove the uniform continuity theorem.

In chapter 3 we will discuss intuitionistic measure theory. We will define what an almost full
set is, when a function is measurable and when a set is measurable.

In the examples Brouwer gives in his article, he only discusses geometric types and in chapter 4
we will define what a geometric type is and discuss some intuitionistic mathematics on geometric
types. This will be useful in the discussion of the examples of Brouwer.

In the final chapter we examine Brouwers examples and verify most of the properties that
Brouwer claims for them. For some it seems that Brouwer makes a mistake.

Notation

We introduce a number of notations used in this thesis.

For every n € N, N is the set of all sequences of natural numbers of length n. So N" :=
{(ap...,an—1) | Vi < nla; € N]}.

N* is the set of all finite sequences of natural numbers. So N* = J>°  N"

NN is the set of all infinite sequences of natural numbers. So NN := {(a/(0), (1), a(2),...) |Vi €
Nla(i) € NJ}.



Suppose a € N* and the length of a is n. Then, for every ¢ < n, a: is the finite sequence
consisting of the first ¢ numbers of the sequence a. So, for every i < n, ai = (ag, a1,...,a;—1).
Suppose « € NN, Then, for every i € N, @i are the first i numbers of the sequence a. So, for
every i € N, ai = («(0), (1), ..., (i — 1)).

Let < > : N* — N be a fixed bijection between all finite sequences of natural numbers and the
natural numbers. So, when ag,a1,...,a, € N* then < ag,a1,...,a; > € N. Also < > is the
natural number corresponding to the empty sequence.

Let x : NxN — N be a function where for every n, m € N, nxm corresponds to the concatenation
of the sequences corresponding to n and m via the bijection < >.

Intuitionist background

We will now introduce some intuitionistic background, needed to understand this thesis. First
we will introduce the natural numbers, the integers and the rational numbers. The real numbers
will be introduced in chapter 1. Then we will introduce some intuitionistic logic.

The natural numbers, the integers and the rational numbers

In his dissertation “On the Foundations of Mathematics” [1] Brouwer first starts with a chapter
called "The construction of mathematics’. Here he first introduces the arithmetic of natural
numbers, then he introduces the integers and the rational numbers.

Brouwer introduces the natural numbers as something very fundamental. The construction of
the natural numbers is based on an observation of a move in time. Suppose we start now, we
experience a past and a present. We give this past the number 1 and this present the number
2. But as soon as we number the past and the present, the present already becomes a new past
and creates a new present. This new present will be the number 3 and continuing this way we
create the natural numbers.

All kinds of rules for calculating with natural numbers, such as the commutative property,
follow from the fundamental theorem of arithmetic as stated in [1]. This says that any fixed set
of signs will give us the same natural number when we count it, independently of the order in
which we count it. So, when we count a fixed set of signs we make a one-to-one correspondence
with a sequence of natural numbers. And no matter in which order we count the signs, the
sequence of natural numbers will stop at the same number.

From this follows, for example, 2 +3 = 3 + 2. By 2 + 3 Brouwer means to first count to
2, but when counting on we let the elements after 2 have a one-to-one correspondence with
the sequence 1,2,3. So we get 1,2,3,4,5 where 3,4,5 corresponds to 1,2,3. When we do a
permutation we get 3,4,5,1,2 but 3,4,5 still corresponds to 1,2,3 and 1,2 to 1,2, which is
34 2. So the sequence 1,2, 3,4,5 obtained by 2+ 3 can be counted in a different order and then
corresponds one-to-one to what we get from 3 + 2.

If we continue the sequence of natural numbers to the left we obtain —1,—2,—3,.... Addition
of integers is naturally defined by counting in two directions.

By a rational number we mean a pair of ordinal numbers (a,b) written in the form £. We define

- = =5 to make sure the denominator is always positive. We order the rational numbers by:
1. $ =g ifand only if a x d = b X ¢, and
2. $ < gifand only if @ x d < b x ¢, and
3. 3> Gifandonlyifaxd>bxec

We define 7 + § = “dl:lbc and 7 x § = 79. Now commutativity, associativity and distributivity
are clear.



Intuitionistic logic

We will now introduce some intuitionistic logic, but we will not prove any of it. See [6] for more
background. First we will discuss some propositional logic and then some predicate logic.
Suppose p, q are propositions, then:

i) Fp = -
(ii

(iii

) Fp = ¢ = (~¢ = )
i) F=(p Vg = —p A g
(iv) F=p A ~¢ = =(p V q)

(V) F=p V ¢ = =(p Ng)

(vi) £ ==(p vV —p)

(vii) F==(p A q) = —p A g
(viii) F==p A =g = —=(p A g)
(ix) F==p V ==g = —=(p V q)

Note that the inverse implication of (i), (ii), (v) and (ix) do not hold.

Now suppose P is a predicate, then:

Note that the inverse implication of (i), (ii), (v), (vii) and (x) do not hold.






1 The continuum

In this chapter we will discuss the intuitionistic continuum. We will define the notion of a real
number (1.1) and discuss some relations between real numbers (1.2). Then we will define a
special real number (1.3), which will be very useful in the next chapters. Furthermore we will
discuss how real numbers can relate to sets and how sets of real numbers can relate to each
other.

1.1 Real numbers

In this section we will define real numbers. To define real numbers we need a fixed bijection
A: N — Q x Q. Also we need two functions Py : Q x Q — Q and P; : Q x Q — Q with
Py(q0,q1) = qo and Pi(qo,q1) = q1. We introduce the following abbreviations for all n € N:
n' = Py(A(n)) and n” = Py(A(n)).

Furthermore, S = {n € N | n’ <n” }. So S is the set of (code numbers of) rational segments.
For all n,m € N we define n C m if and only if m’ < n’ < n” < m” or n C m if and only if

m' <n’ <n” <m”. Lastly we define [ : N — Q, a length function for rational segments: for

each n, l(n) =n" —n/.

We will now define a real number as a function from N to N.
Definition 1.1.1. A real number x is a function x : N — N such that:

(i) Vn € N [z(n) € S] (each x(n) is a rational segment), and

(i1) Yn € N [z(n+ 1) C x(n)] (each rational segment contains the next rational segment), and
(i7i) ¥Ym € Nan € N [[(z(n)) < 27™] (the rational segments get arbitrarily small).
We now introduce R ¢ NV, the set of all real numbers. For readability we define, for all real
numbers x and for all n € N, 2/(n) = (z(n))" and 2" (n) = (z(n))".
We define a sequence of sets of ‘canonical intervals’, as follows
Definition 1.1.2. For every m > 1 € N we define:

Ani={neS|[1n)2™" =1 A n'2™c7Z}

Definition 1.1.3. A real numbers x is a regular real number if and only if for all n € N,
z(n) € A\, where A = U, ey An-

We define addition and multiplication on the real numbers.
Definition 1.1.4. Suppose x and y are real numbers.
(i) For each n, (z +y)(n) :=x(n) +sy(n) = (2'(n) +y'(n), 2" (n) + y"(n))

(i) For each n, define M, := {z'(n)y'(n),2'(n)y" (n), 2" (n)y' (n), 2" (n)y"(n)}.
Define (zy)(n) :=x(n) -g y(n) := (min(M, ), max(M,))

It is easy to see that x +y and xy are real numbers.

Definition 1.1.5. For every real number x we define a real number —z. For each n, —xz(n) :=
(=2'(n), =2"(n)) := (=(2"(n)), —('(n)).

Also, we define the distance between real numbers. Note that the distance between real numbers
does not have to exist.



Definition 1.1.6. Suppose x and y are real numbers. The distance between x and y is |x —y| =
max(x — y,y — ).

The following lemma will be useful.

Lemma 1.1.7. Suppose x,y and z are real numbers and suppose |z — y| < % and |y — z| < %,
then |[v —z| <1 4 L.

Proof. Suppose z,y and z are real numbers and suppose |z — y| < % and |y — z| < % Then
z—y<ity-z<ly-z2<Llandz-y<l Sor—z2<z—-(y—2)<Li+l Also
z—x<z—(y—i) <L+l Somax(z—=zz—2)<i+ Ll O

In the next section we define a number of relations on real numbers.

1.2 Relations between real numbers

First we define the relations < and <.

Definition 1.2.1. Suppose z and y are real numbers. We define:
(i) © <y if and only if In € N[z (n) < y'(n)]
(i) <y if and only if Yn € N[2'(n) < y"(n)]

Next we define a number of (in)equality relations on real numbers. These notions are all
introduced in [3] (1),

Definition 1.2.2. Suppose z and y are real numbers. We define:

(i) x coincides with y (notation: x = y) if and only if Yn € NIm € Nlz(n) J y(m)] and
Vn € Nam € N[y(n) J z(m)]. (Brouwer: Zusammenfallung)

(i1) x is apart from y (notation: x # y) if and only if In € Nam € N[z'(n) > y"(m) V
2" (n) < y'(m)]. (Brouwer: Entfernung)

(i1i) = deviates from y (notation: = # y) if and only if =[x = y]. (Brouwer: Abweichung)
There exist equivalent notions of apart and coincidence.
Lemma 1.2.3. For all real numbers x,y,
(i) © # y if and only if Ik € N[2'(k) > y"(k) Vv 2"(k) <y (k)], and
(ii) x =y if and only if Yn € N [2'(n) <y"(n) A y'(n) < 2"(n)].
Proof.

(i) Suppose z and y real numbers and In € NIm € N[z'(n) > y"(m) Vv 2’(
Note that for all real numbers y: Vn € NVm € N [m > n = (y/(n)
y"(m) < y"(n))]. Find n,m € N such that 2/(n) > y”’(m) VvV 2z(n) < y/'(m) and define
k = max(n,m). Now z/(k) > y"(k) or 2" (k) < y'(k).

(ii) Suppose z and y are real numbers and = = y. We first note that for all real numbers y:
Vn € NVm € N [y/(m) < y”(n)]. Pick any n € N. Find m € N such that z(n) J y(m).
Then z'(n) < y'(m) <y’(n). Also y/'(n) <y”(m) < a”(n). Now suppose Vn € N [2/(n) <
y"(n) A y'(n) <2”(n)] Pick any n € N. We distinguish two cases:

(W There is an English translation of Brouwer’s original article, see [8]. The terms used in this translation differ
from the terms we use.



The cases y'(n) < 2'(n) < 2’(n) <y”"(n) and 2'(n) < y'(n) < z”(n) <y”(n) are of course
equivalent, since z and y are arbitrarily chosen.

We first consider case 1. z(n) J y(n) so Im € N[z(n) J y(m)]. Thus we need to find
an m € N such that y(n) J x(m). Since y(n) C y(n + 1), there exists a ¢ > 0 € Q
such that y'(n +1) — y'(n) = ¢. Find m > n+ 1 € N such that {(z(m)) < ¢. Then
Y(n+1) < g/ (m) < a(m), 50 4/(n) < () — g < a'(m), thus y(n) 3 a(m).

Now we consider case 2. There exists a ¢ > 0 € Q such that y"(n) —y"(n+ 1) = ¢.
Find m > n+ 1 € N such that I[(z(m)) < ¢. Then 2/(m) < y"(m) < y"(n + 1) so
2’(m) < 2'(m) 4+ ¢ < y"(n) so y(n) 3 x(m). Also, there exists a p > 0 € Q such that
z(n+ 1) —2'(n) = p. Find m > n+1 € N such that I[(y(m)) < p. Then 2/(n +1) <
'(m) < y"(m), so 2'(n) <y"(m) —p <y'(m), thus z(n) 2 y(m).

U
The following lemma shows that the definitions 1.2.2 (i), (ii) and (iii) are enough.

Lemma 1.2.4. For all real numbers x,y,

(i) if —[x#ty] then x =y, and

(ii) if =[x = y| then © =y, and

(11i) if =—[z#y] then x # y.
Proof. Suppose x and y are real numbers.

(i) If =[z#y] then —=3n € NIm € N[z'(n) > ¢"(m)V 2"(n) < y'(m)], so Vn € NVm €
N[z'(n) < y"(m) A y'(m) < 2”(n)]. Thus ¥n € N[z/(n) < y"(n) A y/'(n) < 2”(n)] so, by
lemma 1.2.3, z = y.

(i1) If ==z = y] then, by lemma 1.2.3, ==Vn € N[2'(n) < y"(n) A y'(n) < z"(n)].
N==[z'(n) <y"(n) A y/(n) < 2"(n)], so ¥n € N[==(z'(n) < y"(n)) A —=(y'(n) < 2"(n))]
and thus Vn € N[z/(n) <y"(n) A ¢/ (n) < 2”(n)]. Again, by lemma 1.2.3, z =y

(iii) Suppose z#y. Find n,m € N such that z'(n) > y”(m) or 2”(n) < y'(m). Suppose = = y.
Assume z/(n) > y”(m) then Vk € N[z'(n) > y/(k)], which is a contradiction. Now assume
2" (n) < y'(m) then Vk € N[z (n) < y”(k)], which is also a contradiction. So if z#y then
-z = y] and thus if —=[z = y] then —[z#y]. So if —=[z#y] then ———[z = y] and so

O

Suppose = and y are real numbers. Let A — B be ‘A implies B’ and A <! Bbe‘Aand B
contradict each other’. In the diagram below the connections between the relations of definition
1.2.2 are shown.

T = e—i—axié
=Y €] 4 @)

T#y

Figure 1: Relations between real numbers.

(1) is clear by the definition and for (2) see the proof of lemma 1.2.4 (7ii).



Lemma 1.2.5. Suppose z,y € R. Then x#y <= Im €N [|lz —y| > %]

Proof. Suppose z#y. Then 3n € N 3k € N [2/(n) > ¢ (k) Vv 2"(n) < y'(k)]

without loss of generality, 3n € N 3k € N such that 2/(n) > ¢”(k). Pick n,k € N such
that 2/(n) > 4”(k). This means there exists a m € N such that 2'(n) — y"(k) >

2~y > 2'(n) —y" (k) > .
Suppose 3m € N [|z —y| > +]. Find m € N such that |z —y| > L. [z —y| = max(z — y,y — z).
Suppose, without loss of generality, | — y| = x —y. This means x —y > % So, for some n € N
we have (z —y)'(n) = (¢ + (~=y))'(n) = 2'(n) + (=y)'(n) = 2'(n) + —(y"(n)) > ;; and thus
z'(n) > y"'(n). O

_ 1
Lemma 1.2.6. Suppose z,y €R. Thenzx =y <= VnecR |z —y| < .

Proof. This follows directly from lemma 1.2.5 and lemma 1.2.4. O

1.3 A special real number

In this section we define a special real number r that will become useful in this thesis.

Definition 1.3.1. Let dr : N — {0,...,9} be the decimal expansion of w, i.e. m =y di’é?.
We take k1 to be the least natural number n such that in the infinite sequence dr a block of
nine consecutive nines starts at position n. Note that we can not define k1 as the name of a
natural number, since we do not know if k1 exists. What we can define are the three following

predicates. For all n € N:

en<k <= Vm<n-ld:(m)=ds(m+1)=---=d(m+8) =09
en=k < (d:(n) =de(n+1) = =de(n+8) =9 A Vm < n =[dr(m) = dr(m+1) =
= de(m 4 8) =)
en>k <= Im<nld:(m)=d;(m+1)=---=d(m+8)=9]
We define the real number r to be the sequence 7(0),7(1),r(2),... of rational intervals with:
(((fl)kl z”: l (fl)k1L - z”: l) if n > ki and ky is even
' 2’ 2k1 ' 2 —
1=k1+2 1=k1+2
rin) = i 1 " ]- . -
() ((—1)}“12%1 + Z g,(—l)k1 Z 5) if n> k1 and k1 is odd
i=k1+2 i=k1+2

So, if =3n € Nin = kq|, then r =0, if In € N[2n = kq|, then r = 2,61% and if In e N2n+1 =
k1], then r = —2?1“.

We will discuss some properties of r. First of all, we can not prove that r is rational nor that
r is irrational. Anyone who says ‘r is rational’ claims 3¢ € Q [¢ = r]. For all ¢ € Q we know
g <0,qg=0o0rgqg>0. Suppose ¢ < 0 or ¢ > 0, then In € N[n = k;]. Suppose g = 0, then
—3n € N[n = ki]. However, we do not have a proof of In € N[n = k;] or of =3n € N[n = k;] so
we do not have a proof of ‘r is rational’ and we do not have a proof of ‘r is irrational’.
The following lemma shows that we can prove ——(r is rational), i.e. r is not irrational.

Lemma 1.3.2. =—(r is rational)

10



Proof. We distinguish two cases, namely: In € N [n = ki] and: -3In € N [n = ky]. If
dn € N [n = k1] then In € N[2n = k;] or In € N[2n + 1 = k;]. Suppose In € N[2n = k], then
r = ﬁ and thus r is rational. Suppose In € N[2n + 1 = k;], then r = 2@% and thus r is
rational. So if 3n € N [n = k;] then r is rational. If =3n € N[n = k;] then r = 0 and thus r is
rational.

This gives us: if (3n € N[n = k1] V =3n € N[n = k;]) then r is rational. So if r is irrational
then =(3n € N[n = k1] V =3n € N[n = k;1]) and thus if =—=(3In € N[n = k1] V =3In € N[n = k)
then ——(r is rational). Note that, for all propositions A: —=—=(AV —A). So =—(3In € N[n =
k1] vV —3n € N[n = k1]) so == (r is rational). O

We can not prove (by the same argument) that r is negative, positive or zero. Anyone who says
‘r is positive’, claims In € N[n = k1] and k; is even. Anyone who says ‘r is negative’, claims
dn € N[n = k;] and k; is odd and anyone who says ‘r is zero’, claims —3n € N[n = k;].

1.4 Relations between real numbers and sets

In this section we will discuss how real numbers relate to sets. These notions are all introduced
in [3].

Definition 1.4.1. Suppose x is a real number and Y is a set of real numbers. We define:

(i) x is a member of Y (notation: x €9 Y) if and only if Jy € Y[z = y]. (Brouwer:
Einhiillung)

(ii) x is apart from Y (notation: © # Y ) if and only if Vy € Y|z # y|. (Brouwer: Entfer-
nung)

(i7i) x is not a member of Y if and only if =[x €¢ Y]. (Brouwer: Abweichung)

(iv) x seems to be a member of Y if and only if =[x €y Y]. (Brouwer: Anschliefung)
(v) x is not apart from Y if and only if =[x # Y|. (Brouwer: Anlehnung)

(vi) = seems to be apart from Y if and only if ——[x # Y]. (Brouwer: Abtrennung)

Again we have a diagram, written below, which shows us the connections between the above

relations.
s
r €Y D —|—\[:B €0 Y] © —|[.%' €0 Y]
©
7
T#Y —=[z # Y] Sl # Y]

(3)
Figure 2: Relations between real numbers and sets.

Implications (1) and (3) and contradictions (2) and (4) are clear.

(5) Suppose z is a real number and Y a set such that =—[z €9 Y]. Then ——[3y € Y|z = y|],
so =Vy € Y[z # y]. Now suppose Vy € Y[z#y] then, by figure 1, Vy € Y[z # y], which is a
contradiction. So —[z#Y].

(6) Suppose x is a real number and Y a set such that x——[z # Y]. Then ——[Vy € Y[z#y]], so
—3Jy € Y-[z#y]. This gives, by lemma 1.2.4, =3y € Y[z = y] and thus —[z € Y].

11



1.5 Relations between sets

In this section we discuss relations between sets of real numbers. These notions are all introduced
in [3].

Definition 1.5.1. Suppose X and Y are sets of real numbers. We define:

(i) X coincides with Y (notation: X =Y ) if and only if Vo € X[z €9 Y] and Vy € Y]y €9
X]. (Brouwer: Zusammenfallung)

(i) X deviates from Y (notation: X ZY ) if and only if 3z € X[z €0 Y] or Jy € Y[y €
X]. (Brouwer: Abweichung)

(i) X is apart from Y (notation: X # Y ) if and only if 3z € X[z # Y] or Iy € Y[y # X].
(Brouwer: Entfernung)

(iv) X does not coincide with Y if and only if =[X =Y]. (Brouwer: Loswindung)
(v) X seems to coincide with Y if and only if -——[X =Y]. (Brouwer: Verflechtung)
(vi) X does not deviate from Y if and only if -[X # Y]. (Brouwer: Kongruenz)
(vii) X seems to deviate from Y if and only if -—[X # Y]. (Brouwer: Loslésung)
(viii) X is not apart from Y if and only if =[X # Y]. (Brouwer: Ubereinstimmung)
(izr) X seems to be apart from Y if and only if =—[X # Y]. (Brouwer: Absonderung)

Again we have a diagram, written below, which shows us the connections between the above
relations.

X#Y e X # Y] o X # Y]
[ (7) l (8) | (9)
X#Y e X 2] L o[X 2 Y]
\>&\
X=v X =Y] —f x =y

(5) (6)

Figure 3: Relations between sets.

The implications (1), (3) and (5) are clear, as are the contradiction (2), (4) and (6).

(7) Suppose X and Y are sets such that X#Y. Then Jx € X Vy e Y[z # y]or Iy €Y Vx €
Xy # x]. Assume Iz € XVy € Y|z # y]. Then, by figure 1, 3z € XVy € Y[z # y| and
thus 3z € X—3Jy € Y[z =y, so Iz € X[z €9 Y], so X #Y. The other case is similar.

(8) This implication follows directly from implication (7).

(9) Suppose X and Y are sets such that =[X # Y]. Now suppose X # Y, then by (1) and (8)
we have =—[X # Y], which is a contradiction. So —[X # Y.
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(10) Suppose X and Y are sets such that =—=[X # Y]|. Then ——[dz € X[z €p Y]V Iy €
Y-ly €0 X]], s0 =[-3z € X[z €0 Y] A =Ty € Y[y €9 X]], so =[Vx € X
neg—[z €9 Y] AVy € Y[y €9 X]]. Now suppose X =Y, then Vo € X[z €9 Y] A Vy €
Y[y €0 X], which is a contradiction. So -[X =Y.

(11) Suppose X and Y are sets such that =—[X = Y]. Now suppose X # Y, by (3) and (10),
this gives =[X = Y], which is a contradiction. So =[X # Y].
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2 Continuity

In this chapter we will state that every real-valued total function is continuous and that every
real-valued total function on [0, 1] is uniformly continuous. To discuss these statements we will
introduce two important notions, namely that of a spread (2.1) and of a fan (2.2). Also, the way
Brouwer thought about the continuum led to the continuity principle (2.1), the fan theorem
and the extended fan theorem (2.2) which are needed to prove the statements. We will not
prove any of the theorems in 2.2 but refer to [9] and [10] for the proofs of these theorems and
for further readings.

2.1 Spreads

In this section we will introduce spreads and the continuity principle. These two notions will
help us prove that every real-valued total function is continuous.
First we will define what a spread is.

Definition 2.1.1. A spread-law is a function o : N — {0,1} such that:
(i) o(<>) =0, and
(it) Vs € N[o(s) =0 < 3n € N[o(sx <n >) =0]].

You can think of a spread-law as an infinite tree with finite sequence at the nodes of the tree.
The root of this tree is the empty sequence. By (ii) we know every node a has children which
are the concatenation of a and a natural number n.

Definition 2.1.2. Suppose o € NN and o is a spread-law. We define o € o iff for everyn € N,
o(an) = 0. The set {oa € NN|a € 0} is called a spread. We will also use o to refer to this set.

So, a spread is a set of infinite sequences which are accepted by a spread-law or the infinite
sequences which are made by walking through the tree defined by the spread-law.
We now introduce some useful spreads.

Definition 2.1.3. We define the spread oyn; with oypi(n) = 0 for every n € N. oy is called
the universal spread and is obviously equal to NN,

Note that R is not a spread. But, the set of all regular real numbers is a spread.
Definition 2.1.4. We define the spread ooy as follows:
Q€0 <= YneNan) e XNan+1)C a(n)]

Oreg 15 called the regular spread.
For the regular spread we have an important lemma.
Lemma 2.1.5. For the spread o,y we have the following two properties:

(i) Bvery o € orey is a real number, and

(i1) for every real number x there exists o € oreq such that o = x.

Proof. First we will show (7). Suppose a € oyee. Then a(n) € A for every n € N. So there
exists an m € N such that a(n) € A, which means a(n) € S. Also for every n € N we have
a(n) C a(n+1) which implies a(n) C a(n+1). Now pick m € N, then a(m) € i for a k > m.
This is easily proven by induction. So I(a(m)) < 27F < 27™,

Now we will show (ii). Take any real number z € R. We will define o inductively by making
sure that for each n > 1:
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(i) a(n) € A, and
(ii) a(n) C a(n—1), and
(iii) there exists m € N such that z(m) C a(n)

Obviously, (i) and (ii) ensure a € oyeg. Furthermore we will show (iii) ensures a = .

Now we construct . First find m € N such that [(z(m)) < 7. We start with a(0) = (a,a + 1),
where 2a € Z and such that a < 2/(m) but a + 3 > w’(m) Then a+ 1> z"(m). Now suppose
a(0),a(1),...,a(n — 1) are defined in the previous steps such that (i), (ii) and (iii) hold. Find
k such that a(n — 1) € A\;. To assure (i) and (ii) for a(n) we would like a(n) € A, with p > k.
Find m € N such that z(m) C a(n—1). Then 2(m+1) C a(n—1). Decide 2’/(m+1) —2'(m) <
2'(m) —2"(m+1)or 2’(m) —2"(m+1) <2'(m+1) —2'(m).

« Suppose &’ (m+1)—1z'(m) < 2”(m)—z" (m+1). This meansx "(m+1)—2'(m) < 3l(z(m)) <
21%1- Find p € N such that 2'(m + 1) — 2'(m) > but z'(m + 1) — 2'(m) < 5L
Obviously p > k.

Now find m’ > m + 1 such that I(z(m’)) < 5. Find ¢ € Q such that ¢2°*! € Z,
g < a'(m'), but ¢+ 55 > 2/(m’). Then g+ 55 > 2 (m’) so a:( NVC(q,9+ %)
Furthermore ¢ > a/(m), since suppose ¢ < #’(m) then ¢ + 5 < 2/(m) + 5 < @/(m+
1) < 2’(m’), which is a contradiction. So ¢ > o/(n — 1).

217 2p—T op—2*

Also g+355 < 2”(m) since suppose g+55 > 2”(m) then 55 > I(z(m/))+ (2" (m)—2" (m~+1)).
This is a contradiction since 2”(m) — a”(m + 1) > o/(m + 1) — 2/(m) > 5= > 5.
Define o/(n) = g and o”/(n) = o/(n) + 5. Then a(n) € Apy1, a(n) C a(n — 1), z(m') C
a(n).

« Suppose z’(m) — 2" (m+1) < a’'(m+1) —2'(m). We can do something similar by finding
p € N such that 2’ (m) — 2" (m + 1) > "(m) —a"(m+1) < 5.

We claim « = z. By (iii), for every n € N there exists m € N such that z(m) C «(n). Now pick
n € N. Define [, = I(z(n)). Find m such that I[(a(m)) <, and find k such that z(k) C a(m).
Then I(x(k)) < I, so x(k) C x(n). There are three cases:

« a(m) C x(n), then we are done.

o 2'(n) < o'(m) < 2'(k) < 2"(k) < 2"(n) < o”(m). Now, for every p > m we have
o/ (p) < a”(k). Since, suppose o/(p) > 2 (k) then there can not exists b € N such that
x(b) C a(p). Now find p > m such that l[(a(p)) < 2 (n) — 2" (k). Then o’ (p) < 2" (n) and

since o/(m) < o/(p) and 2'(n) < o/(m )alsoa:()<a(p)soa(p)§x(n).

« o/(m) <2'(n) <2'(k) <2"(k) < a’(m) <2”(n). This is similar as the previous case.

The above procedure defines a function Freg : R — 1. So for every x € R we find Freg()
with the above procedure. O

We define one more spread.

Definition 2.1.6. Fiz an enumeration {qo,q1,q2,...} of Q. We define the spread o as
follows:

Q€ Oy <= a €y AVn € Nlg, <d'(n) Vg, >a"(n)]

o 18 called the spread of the positively irrational numbers.
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With the definition of a spread we can introduce the continuity principle, which we will introduce
as an axiom. We will need the continuity principle to prove that every real-valued total function
f R — R is continuous.

Axiom 2.1.7. (Continuity principle). Suppose o is a spread and A C o x N.
IfVa € 03n € N[A(a,n)] then Yo € o3n,m € NV( € o[A(a,n) Aa(m) = B(m) = A(B,n)]

We now define what a real-valued total function is and when a real-valued total function is
continuous.

Definition 2.1.8. A real-valued function f (f : R — R) is a method such that, for every
x € R we can construct f(x) € R and such that for every z,z’ € R, if x = 2’ then f(z) = f(2').

When we say f: R — R is a function we mean f is a real-valued total function.

Definition 2.1.9. Suppose f : R — R, then f is continuous if Vx € RVn € Ndm € NVy €
R [lz -yl < g = [f(2) = FW)| < 5]

Definition 2.1.10. Suppose f : R — R, then f is discontinuous if 3x € RIn € NVm €
NIy eR [lo—yl < 5= A |f(2) = fW)] > 5]

We will now prove that every function f: R — R is continuous.

Theorem 2.1.11. (Continuity theorem). Suppose f : R — R is function. Then f is
continuous.

Proof. Suppose f: R — R is a function. We will define a special function f” : Oreg — Oreg Such
that for every a € oyeq, f(a) = f'(a). For every a € oyeg, define f'(a) = Freg(f(a)).

Using f’' we will prove that f is continuous. Suppose z € R and m € N. We want to find n € N
such that for every y € R if [z — y| < L then |f(z) — f(y)| < L.

Find o € 0. such that o = x. Notice that for every a € o there exists k € N such that
f'(a)(m+ 1) = k. Thus, by the continuity principle, we can find a p € N such that for every
B € oreg if Bp = ap then f'(B)(m + 1) = f'(a)(m + 1). We have a(p) T a(p — 1). Define
§ := min(ca/(p) — /(p — 1),0”(p — 1) — a’(p)) and find n € N such that + < §. We claim
this n is such that for every y € R if |z — y| < % then |f(z) — f(y)| < % Suppose y € R and
lz—y| < % Find 8 € 0yeg such that § = y and Bp = ap. This gives f/(8)(m+1) = f'(a)(m+1).
Since f'(a) € o)reg we have I(f'(a)(m + 1) < 2771, which is easily shown with induction.
Also f'(a)'(m +1) < f/(@) < f'(a)’(m+1) and f'(a)'(m+1) < f'(8) < f/(@)"(m + 1) and
f'(@) = f(x) and f'(B8) = f(y) so |f(x) = f(y)] < - O

We now prove three more lemmas related to continuous functions which will become useful
during this thesis.

Lemma 2.1.12. Suppose f : R — R is a continuous function and suppose x,y € R. If

f(x)#f(y) then xty.

Proof. Suppose f : R — R is a continuous function and suppose z,y € R and f(z)#f(y). Then,
by lemma 1.2.5, there exists an m € N such that |f(x) — f(y)| > Z. By the continuity of f we
know, at z, Vk e NGn e Ny e R [ |z —y| < £ — | f(z) — f(v)] Sg] Find n € N such that for
all y € Rif |x —y| < L then |f(z) — f(y)| < 2. This gives us [z —y| > L and thus a#y. O

The following lemma is an adapted version of the classical intermediate value theorem.
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Lemma 2.1.13. (Approximate intermediate value theorem) Suppose f : [a,b] — R is
continuous and f(a) =d, f(b) =e and |a — b < 1. Ifd < e then for every c € [d,e] and every
n € N there exists ¢, € [a,b] such that |f(cn) — ¢| < 5. Ife < d then for every c € le,d] and
every n € N there exists ¢y, € [a,b] such that |f(cn) — c| <

Proof. Suppose d < e. Pick ¢ € [d,e] and n € N. We will define sequences aq,as, ..., by, ba, ...
and c1,co,.... First define a1 :=a, by := b and ¢; := GTH’. Now suppose k € N and ag, by and
¢k are defined. Since ¢ — 5z < ¢+ 5z we know, either f(cg) > ¢ — gz or f(cp) < ¢+ g

b
Suppose f(cx) > ¢ — Qn% then define agyq := ag,brr1 := ¢ and cpyq = a’““i;r’““ Suppose

ak+1, b1 and cgyq have not been defined yet, then f(cx) < ¢+ 2?1% Define agy1 := ¢, bpy1 ==

apt1+bri1
2

b and cp41 = . We now have the following:

(i) For every k € N, f(ar) < c+ Qn%

(ii) For every k € N, f(bg) > ¢ — 2,1%

(iii) For every k € N, ¢ — a, < o and by — ¢ < 5
We will prove (i), (ii) and (iii).

(i) fla1) = f(a) =d < c+ 2n1+2 Now suppose k 6 N and suppose we have proven f(a;) <
c+ 2n1+2 for every | < k. Suppose f(cx) > c— 2n+2, then agy1 = ag so flaks1) = flag) <
c+ 2n+2, by the 1nduct10n hypothesis. Now suppose f(ci) < ¢+ 2n+2, then agy1 = ci, so
f(ak+1) f(ck) <c+ 2n+2

(ii) f(b1) = f(b) = e >c— 2n+2 Now suppose k < m and suppose we have proven f(b;) >
c— 2,1% for every I < k. Suppose f(cx) > ¢ — 2n+2, then by11 = ¢ so f(b+1) = f(c )
c— ﬁ Now suppose f(ck) < ¢+ ﬁ, then bgy1 = by so f(brt1) = f(bg) > ¢ — 572
by the induction hypothesis.

H

(iii) This is easily shown with induction.

We define a real number x such that lim,, o @y, = lim,—00 by, = iMoo ¢, = 2. First define
x(0) = (ap — 1,bp + 1). Now suppose z(0),x(1),...,x(n — 1) are defined. Suppose a,, = ap_1,
then define 2/(n) = 2’(n — 1) 4+ 3{(2/(n — 1), an—1) and z”(n) = b,_1. Suppose a, > a,_1, then

define 2/(n) = a,—1 and 2 (n) = ”(n 1) —21(by—1,2"(n—1)). It is easily shown with induction
that a, — 2/(n) = 3 and 2”(n) — . We now show z € R. Obviously, for every n € N,
xz(n) € S and z(n) C z(n+1). Plck m e N Find k € N such that 23k < o= and find n > k such

that b, — a, < 2% Then l(z(n)) = (z"(n) — bp) + (bn — an) + (an — 2'(n)) < 5 2 < 5. Now, for
every n € N, k > n 2/(n) <z < 2”(n) and 2/(n) < ap < by < 2'(n). So, for every n eN,k>n
, |z = ax| < 1(2(n)). Now, pick m € mathbbN and find | € N such that {(z(l)) < 5. Then, for
every k > I, ]m —ag| < 1 . So, for every m € N there exists [ € N such that for every k > [,
|z — ag| < 5. With a sunllar argument, we prove for every m € N there exists [ € N such that
for every k > I, |z —bi| < and for every m € N there exists [ € N such that for every k > [,
\x — Ck‘ <

FlndeNsuchthat for allye[a b if |z — y| < 5= then |f(z) — f(y)| < 2n+2 Find n € N,
k>nsuchthat|x ag| < 7 andlEN p>lsuchthat|x b|< and t € N, q>tsuchthat
|z —cql < 5 Then |f(z) = flar)| < 2n+2a |f(z) = f(byl § 2n+2 and |f(z) = (Cq)| < 2n+2 This
means () — s < f(2) < Flay) + ez and () — 5 < f(2) < S(by) + gz, Combining
this with (i) and (i) we get ¢ — gy < f(bp) — 5oz < f(2) < f(ak) 2n+2 < ¢+ zapr and thus
|f(z) — | < 54 So, with lemma 1.1.7, we have |f(cq) — ¢| < 5t + 3z < 5
The case where e < d is similar. d

2'm
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An important consequence of the continuity theorem is that the continuum is indecomposable
(Brouwer: unzerlegbar).

Lemma 2.1.14. Suppose A, B C R are such that R=AUB and ANB =1(. Then R = A or
R = B.

Proof. Suppose A, B C R are such that R = AU B and AN B = (). This means, for every
x€Rjx e AV x € B|. Define f: R— Rwith f(zr) =0ifz € Aand f(z) =1if 2z € B.
Since for every x € Rlz € A V z € B] and for every x € R=[x € A A 2z € B] this is a well
defined total function. So, by the continuity theorem f is continuous. Now pick z; € R and
decide x1 € A or x1 € b Suppose, without loss of generality, 1 € A. We will then prove R = A.
Suppose we find x9 € B such that x1 # 2. Also suppose, without loss of generality, x1 < xo.
We now have f[z1,2z2] — R continuous and f(z1) = 0 and f(x2) = 1. By the approximate
intermediate value theorem, there exists = € [z1,z] such that |f(z) — 3| < ;. But for every
x € [x1,m2], f(x) =0 or f(x) =1, so this is a contradiction. So —z2 € B which means z2 € A.
Thus for every x € R, x € A, so A =R. O

An interesting consequence of this lemma is that we can prove =Vx € Rz € QV z ¢ Q]. See
section 2 of [5].

2.2 Fans

In this section we will introduce fans, the fan theorem and the extended fan theorem. Also, we
will state that every real-valued total function on [0, 1] is uniformly continuous.
First we will define what a fan is.

Definition 2.2.1. A fan-law is a function 7 : N — {0, 1} such that:
(i) T is a spread-law, and
(i) Vs € N[7(s) =0 = Im e NVn e N[r(sx <n>)=0 = n < m]

Definition 2.2.2. Suppose 3 € NY. Define B € 7 iff for every n € N, 7(Bn) = 0. The set
{8 € NN|B € 7} is called a fan. We will also use T to refer to this set.

Every fan 7 is thus a spread for which there are only finitely many choices for each next step in
the creation of any 8 € 7. This means the nodes in the tree defined by the fan-law have finitely
many children.

Note that every closed interval of R coincides with a fan.

There are two more important theorems, namely the Fan theorem and the Extended fan theo-
rem. Brouwer used the extended Fan theorem to prove that every function on a closed interval
is uniformly continuous. To give the Fan theorem we need one more definition.

Definition 2.2.3. Suppose B C N and X C NN. B is a bar in X if and only if for every
o € X there exists n € N such that an € B.

Theorem 2.2.4. (Fan theorem). Suppose T is a fan and B C N is a bar in T then there
exists a finite C C B which is a bar in 7.

Using the Fan theorem and the continuity principle we can prove the Extended fan theorem.

Theorem 2.2.5. (Extended fan theorem). Suppose T is a fan and A C 7 X N such that
VB € rIn € N[(B,n) € A]. Then we can find M € N such that V5 € 73n € Njn < M A (B,n) €
Al.
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With the Extended fan theorem we can prove that every real-valued total function on [0, 1] is
uniformly continuous. When we say f : [0,1] — R we mean f is a real-valued total function on
[0,1]. First we will define what it means for a function to be uniformly continuous.

Definition 2.2.6. Suppose f : R — R, then f is uniformly continuous if Vn € Ndm €
Nz, y €R [lo—y| < gw = [f(2) = fW)] < 5]

Theorem 2.2.7. (Uniform Continuity Theorem). Suppose f : [0,1] — R is a function.
Then f is uniformly continuous.

The indecomposability of R is also true for [0, 1].

Lemma 2.2.8. Suppose A, B C [0, 1] are such that [0,1] = AUB and ANB = (), then [0,1] = A
or [0,1] = B.

Proof. This will be similar to the proof of lemma 2.1.14. O

We will now prove one more lemma related to uniformly continuous functions. It proves that
every uniformly continuous function is monotone. This lemma will become useful in this thesis.
For this we need one more definition.

Definition 2.2.9. Suppose f : R — R is a function. We call f an injection if for every x,y € R
if x # y then f(z) # f(y).

Lemma 2.2.10. Suppose f : [0,1] — [0,1] s a continuous injection such that f~' is also
continuous. Then, for all x,y € [0,1] if z < y then f(x) < f(y) or for all z,y € [0,1] if x <y
then f(z) > f(y).

Proof. Suppose f : [0,1] — [0,1] is a continuous injection and suppose f~! is also continuous.
Consider 0 and 1. Since f is an injection and since 0 # 1 we know f(0) # f(1). This means
f(0) < f(1) or f(1) < f(0). If f(0) < f(1), then for all z,y € [0,1] if x < y then f(x) < f(y).
And if f(1) < f(0) then for all z,y € [0,1] if x < y then f(y) < f(x). Now suppose f(0) < f(1).
The other case is similar.

First we will prove, for every x € [0,1] if 0 < x then f(0) < f(z). Since 0 < z we have
f(0) # f(z),s0 f(0) < f(x) or f(x) < f(0). We will prove =(f(x) < f(0)) so f(0) < f(x). For
this, suppose f(z) < f(0). This means f(z) < f(0) < f(y). Now look at f | [z,y] : [z,y] — R.
By the approximate intermediate value theorem, for every n € N there exists ¢, such that
| f(cn) — F(0)] < L. Also, since f~! is continuous, for every m € N there exists n € N such that
if |a —b] < L then |f(a) — f(b)] < L. Thus, for every m € N there exists n € N such that
len, — 0] < % This means lim,_,~ ¢, = 0, so 0 € [z,y], which is a contradiction.

Similarly we can show, for every y € [0,1] if y < 1 then f(y) < f(1).

Now we will prove, for every z,y € [0,1] if z < y then f(x) < f(y). Pick x,y € [0,1] such
that < y. Then, since f is an injection and z#y, f(x)#f(y). This means either f(z) < f(y)
or f(y) < f(x). Also, we can prove —=(f(y) < f(x)) so we must have f(z) < f(y). We will
now prove —(f(y) < f(z)). Suppose f(y) < f(x). Then consider f [ [0,z] : [0,2] — R. Since
f(0) < f(y) < f(x), by the intermediate value theorem, for every n € N there exists ¢, such
that [f(cn) — f(y)| < . Again, for every m € N there exists n € N such that if [a — b| < -
then | f~1(a) — f~1(b)| < 5. Thus, for every m € N there exists n € N such that |, —y| < 7.
This means lim,,_,~ ¢, = ¥y, thus y € [0, z], which is a contradiction. a
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3 Measure theory

In this chapter we will introduce intuitionistic measure theory. In the first section we will define
some notions needed to define almost full sets and measurable functions and sets. In the second
section we will define almost full sets and in the third section we will define measurable functions
and sets.

3.1 Intervals, rectangles and regions

We will need to define a couple of things before we are able to discuss almost full sets, measurable
functions and measurable sets. Let length : N — N be a function, where length(n) is the length
of the sequence of natural numbers corresponding to n via the bijection < > introduced in the
introduction. Also, for every n € N and every i < length(n) : n;—1 is the i-th number of the
sequence of natural numbers corresponding to n via < >.

Definition 3.1.1. Suppose v € S, where S is the set of (code numbers of) rational segments
introduced in chapter 1. Suppose © € R.

(i) x €0 v if and only if Vn € N [2/(n) <" AV < a’(n)]
(i) © e1 v if and only if In € N [v/ < 2'(n) < 2”(n) < v”]

Then {z € R | © €9 v} is the closed interval defined by v and {x € R | x 1 v} is the open
interval defined by v.

We also define an intersection of two intervals in S.

Definition 3.1.2. For s,t € S we define s and t touch if and only if max(s’,t') < min(s”,t")
and s and t miss if and only if max(s’,t") > min(s",t").

Also, we define:

.y {(max(s’,t’), min(s”, t")) if s and t touch
S =

else

We now define partial functions, since the definition of a measurable function is for partial
functions.

Definition 3.1.3. f : [0,1] — R is a partial function if there exists X C [0,1] such that
for every x € X we can construct f(x) € R and such that for every x,x’ € X, if x = a’ then

fz) = fa).
We define dom(f) := {x € [0,1] | Jy € R [(z,y) € f]} to be the domain of f.

So f:[0,1] — R is a partial function if it is function on a subset of [0, 1].

Definition 3.1.4. A rational rectangle is a natural number v € N such that length(v) > 2
and such that vg € S and v1 € S. We define R = {v € N | v is a rational rectangle}.

Definition 3.1.5. Suppose v € R. We define Ar(v) := (v — vy)(v] —v}) to be the area of v.
Definition 3.1.6. An elementary set of rectangles is a natural number v € N such that:
(i) for every i < length(v) [v; € R], and

(ii) the sequence (v0)o, - - -, (Viength(v)—1)o 8 a partition of [0,1], that is:
(v0)o = 0, (v0)g = (v1)o, (v1)g = (v2)p; - -+ (Viength(v)—1)5 = 1-
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We now define when an elementary set of rectangles captures a partial function. For an intuitive
notion see figure 4.

Definition 3.1.7. Suppose f : [0,1] — R is a partial function and v is an elementary set of
rectangles. We say v captures f if and only if for all x € dom(f) and for all i < length(v) if

x g9 (vi)o then f(x) eo (vi)1.

Figure 4: The set of elementary rectangles capture f.

Definition 3.1.8. Suppose v is an elementary set of rectangles. We define:
length(v)—1
(i) The area of v as Ar*(v) = Ar(v;).
i=0
length(v)—1
(i) L) =Y ()5 — (va)p) (v
i=0
length(v)—1
(i) T(v) = Y ((v)g — (vi)p) (v)f
i=0
Definition 3.1.9. Suppose a,m € N such that length(a) = m and ¥i < m [a; € S]. We
define p(a) to be the total length of the rational segments ag,ay,. .., am—1 where ‘double covered
intervals are not counted twice’. That is, if ag,a1,...,am—1 do not intersect pairwise then
w(a) =1l(ag) +l(ar) + -+ + l(am—1), else:

m—1 k—1
pla) = plar\ | @)
k=0 =0

We now define the intuitionistic notion of an open set. We call this a region.

Definition 3.1.10. Suppose o = «(0), (1), (2),... is an infinite sequence of code numbers
of rational segments, that is, for every n € N : a(n) € S. We call R(a) := {x € R | 3Im €
N [z €1 a(m)]} the region defined by «.
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Definition 3.1.11. We define X is a measurable region if and only if there exists an infinite
sequence o = a(0), (1), a(2),... of code numbers of rational segments such that X = R(«a)
and such that the sequence p(al), u(a2),... converges. If X is a measurable region we call
w(X) = nh_)rgo wu(an) the measure of X .

The following lemma shows that this definition makes sense.

Lemma 3.1.12. Suppose a = a(0), (1), (2), ... is an infinite sequences of code numbers of ra-

tional segments such that p(al), u(a2),... converges. Suppose also, 5 = 3(0),5(1),5(2),... is

an infinite sequence of code numbers of rational segments and R(a) = R(B). Then u(B1), u(52), ...

converges and lim p(an) = lim p(fn)
n—oo n—oo

Proof. We know « is such that p(al),u(a2),... converges to u(R(a)). We want to show:
w(BL), u(B2), ... converges to u(R(«)). It suffices to prove:

(i) For every n € N there exists k € N such that u(8k) > p(R(a)) — 5, and
(ii) for every m,l € N, p(Bl) — 5 < p(R(a)).
We will now prove (i) and (ii).
(i) We first prove, for every I,m € N there exists k € N such that u(B8k) > u(al) — 5. Pick
1 1
[,m € N and find n € N such that 2l < 5. Consider U[ (i) + gn @ a(i)’ — Qn] Since
i<l
1 1
R(a) = R(B) we know, for every x € U ) + on a(i)’ — 2n] there exists p € N such
i<l
1
that x € B(p). Since U ) + 271’ a(i)” — 271] is a finite union of closed intervals, by the
1<l
1 1
fan theorem, there exists £ € N such that for every x € U ) + on a(i)’ — 27] there
7,<l
exists p < k such that a: E B(p). This means |J,,[a(i) + 5 2,” a(i)” — 5=] € R(Bk) and thus
p(al) — 5 < plal) — 2 << (U la(i) + o, a(i)! — k) < M(Bk) Thus there exists
k € N such that p(al) — 5= < u(Bk).

Since p(al), u(a2),... converges to (R («)), for every n € N there exists [ € N such that
p(al) > p(R()) — 5. Note: for every n € N there exists [, € N such that p(al) — = >
11(R(cr) — 3. Now, pick n € N and find I,m € N such that p(al) — 5 > p(R(A) — 5.
Now find k € N such that p(B8k) > p(ad) — o, then u(Bk) > pu(R(A) — 5

27.
(ii) Suppose m and [ are given. We have N(U[ﬂ (1) + l27m’5//( i) — mim]) > w(Bl) - 2% Also,
i<l
. / 1/ 1 / ! 1
obwouslygw i)+ g 8"(0) ~ 1] © R(B) = R(a) 50 u(g[ﬁ )+ - 8”()— 332]) <

1(R(e)). This means p(Bl) — 50 < pu(R(e))

Lemma 3.1.13. Suppose X and Y are measurable regions and v € S. Then:
(i) X Nv is a measurable region

(i) X UY is a measurable region
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Proof.

(i) X is a measurable region, so there exists an infinite sequence o = a(0), (1), a(2),... of
code numbers of rational segments such that p(al), u(@2),... converges and such that
R(a) = X.

(i)

Define, for all i € N, 3(i) = a(i) Nv and 8 = B(0),3(1),3(2),.... Then R(B) = X Nwv.
We will show that p(51), u(82), ... converges and thus that X Nv is a measurable region.

Since j(a1),1(a2). ... converges we know:

Vn € N3m € N [k;nu(a(k) \ L:JO a(i)) < %], thus

Vn € N3m e N [gj u((alk)\ IDOIa(i)) nv) < %}, so

Wn € N3m e N [kfj u((ak) no) \ (IU:oz(i)) o) < 7], 50
¥n € NIm € N [k:i u((atk) o) \k:: (i) Nv)) < %].

X is a measurable region, so there exists an infinite sequence o = «(0), (1), a(2),...
of code numbers of rational segments such that p(al),u(@2),... converges and such
that R(a) = X. Y is a measurable region, so there exists an infinite sequence f =
B(0), B(1),8(2),... of code numbers of rational segments such that u(31), u(32),... con-
verges and such that R(5) =Y.

Define, for all i € N, v(2i) = a(i) and v(2i + 1) = (i) and v = v(0),v(1),7(2),.... Then
R(y) = X UY. We will show that u(31), u(52),... converges and thus that X UY is a

measurable region.
j—1

p(al), p(a2), ... converges, so Vn € NIm € N [Z ,u(a(j) \ U a(i)) < %]
j=m =0
o) 7j—1
w(B1), 1(B2), ... converges, so Vn € NIk € N [Zu(ﬁ(j) \ U B(z)) < %]
j=k =0
00 j—1
Now pick n € N and find m,k € N such that [Zu(a(y) \ Ua(z)) < 2i] and
. i 1 j=m 1=0 "
(> n(B\UJB@) < 5] Then
- = Jj—1 o0 Jj—1 1
[ Y m(e\Ue@)+ X u(B)\NUBEG) <] o
j=max{m,k} li(i j:max{m,k:]}_1 =0
LY (e \Ua) + (86 \Us0) < .50
j=max{m,k} =0 1=0
o0 Jj—1 Jj—1 Jj—1 J
LY (e UemuUsm) +u(s60\ U s uJaw) <1
j=max{m,k} =0 i=0 =0 =0
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3.2 Almost full sets

Definition 3.2.1. Let X C [0,1]. The set X is almost full if and only if there exists a
sequence Xo, X1, Xo, ... of measurable regions such that:

(i) for everyn € N, p(X,) < 5, and

(ii) for everyn € N, every x € [0,1] if x ¢ X,, then x € X.
The following lemma proves that for every measurable region of measure smaller then 1 we can
find an element in the complement. With that we can show that for every set which is almost

full we can find an element in the set.

Lemma 3.2.2. Suppose X is a measurable region and p(X) < 1, then there ezists an x € [0, 1]
such that v ¢ X.

Proof. X is a measurable region, so there exists an infinite sequence o« = «(0), (1), @(2), ... of
code numbers of rational segments such that pu(al), u(a2),... converges and such that R(a) =
X. We will define a real number z as a sequence x(0),z(1),x(2),... of (code numbers of)

rational segments such that ¢ R(«). We will define z such that it has the following properties:
(i) Vn e N[0 < 2'(n) <2/(n+1) <2"(n+1) <2”(n) <1], and
(i) Vn € N[l(z(n + 1)) = Ll(z(n))], and

(iif) Wn € N[AEEma0) < g — L),
Ensuring (i) and (ii) we know that z is a real number and that = € [0,1]. We will show that
(iii) ensures ¢ R(«a). Suppose z € R(«). Find m,n € N such that o/(n) < 2/(m) < 2”(m) <
a”(n). This means z(m) C a(n), so pu(x(m) Na(n)) = p(R(x(m) Na)) = p(x(m)) and thus
%ﬁm = 1, which is a contradiction with (iii). So = ¢ R(«).

We will define  with induction. Define x(0) to be the code number of the rational segment
(0,1). Suppose we have defined x(0),z(1),...,z(n). Split (n) in two rational segments, x(n)g
and z(n)1, where z(n)j = 2'(n),z(n)j = z(n)] = 2/(n) + 3l(z(n)) and z(n)] = 2”(n). Thus
x(n)o is the first half of z(n) and z(n); is the second half of z(n). Find m € N such that
p(@m) > (1 — o) u(R(a)). Find i € {0,1} such that p(z(n); Nam) < p(z(n)i1—; Nam). If
i = 0 then define z(n + 1) = (z(n)) + = l(x(n)), z(n)§ + gz=l(z(n))). If i =1 then define

z(n+1) = (z(n)] — =l(z(n)), 2(n)] — gmrl(z(n))). We have:

wz(m)nam) _ p(R(z(n)Na)) e
L w(z(n)) < w(z(n)) <1 onT1s and

p(z(n)1—;Nam) we have p(z(n); Nam) < $u(x(n)Nam) and thus
w(z(n) Nam) + gml(z(n)). Also

2. smceu( (n);Nam)
plzn+1)Na )

3. p(R(z(n+1)Na) < plz(n+1) Nam) + somu(R(a)), and lastly

M\»—t|/\

4. pla(n+1)) = bu(z(n) = Y(z(n) = g

For the x defined above, properties (i) and (ii) are obvious. The properties 1,2,3 and 4 proof
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property (iii) as follows:

z(n)) H(R())

p(R(z(n+1)Na) _ tp(z(n)nam) 2o F2 oAnF4 an <
e r D) S amrD) T anrD) | aemr) Y3
WR(x(n+1)Na)  plx(n)Nam) lg(”;(ﬁ)z) Méﬁ(ﬁ;)) ©
WEer ) S G g g Y
R(z(n+1)Na 1 2"+ (z(n 2" (R«
. ;fu((ni 1); D1 o T+ T oy 1,0
R(z(n+1 a 1 1 1 .
1 u(( x((ni 1));7 ) < 1= S + gt + gars (sinee R(a) 1), so
w(R(zx(n+1)Na) “1_ 1
MECES) BT

O]

Corollary 3.2.3. Suppose X is an almost full subset of [0,1], then there exists an x € [0, 1]
such that x € X.

Proof. Suppose X is an almost full subset of [0, 1], then there exists a sequence X, X1, Xo, ...
of measurable regions which meet the requirements (i) and (%) of definition 3.2.1. Pick X; from
this sequence, then u(X1) < 3 < 1. For every z € [0,1] if 2 ¢ X; then z € X. By lemma 3.2.2
we can construct an z € [0, 1] such that x ¢ X;. O

3.3 Measurable functions and sets

We are now able to define when a function is measurable.

Definition 3.3.1. A partial bounded function f : [0,1] — R is measurable if and only if
there exists an infinite sequence Xo, X1, Xo,... of measurable regions and an infinite sequence
vy, V1,02, ... of elementary sets of rectangles such that:

() for every € N, u(X2) < 3 and Ar"(0) <, and
(ii) for every n € N, every x € [0,1], whenever x ¢ X, then x € dom(f) and v, captures f.

We define [ f(z)dz = ILm I(v,) = li\m I(vy,) to be the integral of f.

Note that the domain of a measurable function is almost full. The following lemma shows that
the above definition makes sense.

Lemma 3.3.2. Suppose f :[0,1] — R is a partial bounded function, Xo, X1, Xa,... is an infi-

nite sequence of measurable regions and vy, v1,ve, ... s an infinite sequence of elementary sets

of rectangles such that conditions (i) and (ii) of definition 3.3.1 are met. Then lim I(vy,) and
n—oo

lim I(v,) exist, are equal and do not depend on the choice of the infinite sequence vg, vy, v, . . .
n—oo

and the measurable regions Xo, X1, Xo, ...
Proof. We claim the following:

(i) li_>m I(vy,) and li_>m I(vy,) exist. That is, for all & € N there exists an N € N such that for
n—oo n—oo
all myn > N, |L(v,) — L(vp)]| < % and |I(vy) — I(vp)] < %

(i) lim I(v,) = lim I(v,)

n—oo n—oo
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(iii) For every infinite sequence Yy, Y7, Ys, ... of measurable regions and every infinite sequence
ug, U1, U2, . .. of elementary sets of rectangles such that conditions (i) and (%i) of definition
3.3.1 are met we have: lim I(v,) = lim I(wy)

n—oo n—oo

This shows that the integral of definition 3.3.1 makes sense. We will now prove (i), (ii) and (iii).

(i) f is a bounded function, thus find M € N such that —M < f(x) < M for all z € [0, 1].
Pick k € N and find N € N such that 23! < 1. Pick n,m > N.
We have the measurable regions X,, and X,,, and the elementary sets of rectangles v,, and
Um. For readability we define v := vy, u := vy, I, := length(v,) and [, := length(vy,).
Also, we define two new measurable regions X and Y. For this, find p,q € N such that
u(Xn)—i—% < v and /L(Xm)—i—% < 5. Now define X := X, U{((v;)— %, (vi)p+
}D) |0<i<lIy}U ((vln_l)g — %, (vr,,—1)¢ + %) and Y := X,, U {((ul)é — %, (ui)y+ %) |0 <
i < L U (g, —1)6— %, (ug,,—1)0+ %) Thus, X is the union of X,, and small open intervals
around the boundaries of v and Y is the union of X, and small open intervals around the
boundaries of u. Clearly, X and Y are measurable regions. Note: we now have, for all
€ [0,1], if z ¢ X UY then there exists 0 < i <, and 0 < j < I, such that z ¢ (v;)o
and = go (uj)o.
Next, we will consider the elementary sets of rectangles. The idea is to show that almost
every rectangle of v “touches” a rectangle of u. See figure 5. For this, we define wy,,y; :=
(vi)o N (uj)o and W := {w;,,+; | 0 < i < 1,,0 < j <lp, and wy,,+; # L}, which clearly is
a partition of [0, 1]. We will separate W into two subsets, W and W, where W is the
set of rectangles that “touch” and W is the set of rectangles that do not “touch”. So we
define W := {wit,,+j | Wit,,+5 € W | (vi)1 N (vj)1 # L} and W = {wip,, 45 | wir,,4+5 €
W | (vi)1 N (v;)1 = L}. Now, for all z € [0,1], whenever ¢ X UY there exist 0 < i <,
and 0 < j < [, such that z g wy;,,+; and, by clause (i7) of definition 3.3.1, wy,,+; € Wr.
This means, if wy,,+; € W then for all x eow;,,,+;, * € XUY. Thus W, € X UY. This

gives:
1 1 1 1
n( U w) Sp(X0Y) <u(X) + (V) < o+ on < o < owe
weW
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Now we can prove the claim:

[L(vn) = L(vm)| = |L(v) — L(u))|
ln—1 lm—1
= | Z ((Uz)g - (UZ)B) (vi)1 — Z ((uz 0
i=0 i=0
=1 Y (W = whe) (v
Wity +; €W
< Y (Wi — i) ()] -
m+J€W
< D (@~ wih ) (0 -
Wity +;€WT
Z (Wit g — Wi, +5) | ((0)1 —
wzlm+JEWL
< D (Wi — Wi ()]
Wity +5 EWT
Z (w%nf‘l‘j - w7//Z7n+]>2M
Wil +5 EWL
1 1 2M 2M +1 1
Som Pt S v S
And similarly we get:
[L(vn) = I(vm)| = [1(v) = I(u)]
ln—l lm—1

< Z (wgngrj - w;lm+j) | ((Ui)lll -
wll7rL+]eWT
Z (wg;erj - wglerj) | ((Ui)'f
wllm+JeWi
< > (W = wh ) ()]
Wity 4+ EWT
Z (w;;m-i-j - w§5m+j>2M
Wil 4+ EWL
1 1 2M 2M + 1 1
S27771—’_271 9N—-1 = 9N-1 SE

28

1=
= | Z (Wit4j = Witgrg) ((03)1 =

< Z (w2;m+j - wglerj)‘((Ui)/l/ -
wllm+J€W

(ui))]|

(uj)y)] +

(;))]

= (vi)1) + ()7 = (u)1)] +

(uj)7)]

(u)1)| +

= (u)1)]

= (vi)h) + ()7 = (u)1)] +



(i)

(iii)

Let, for all n € N, [,, = length(v,) — 1.

1
Vn € N [Ar(v,) < 27} —

ln
" " / i

¥ € N[ (((on)0)g — ((wn)1)o) (((wa)0)] = ((va)i)) < 5] =

=
Ve N [g ()5 = (@) ()] - lzo ()05 = (@) (0)oh < 53] =
VneN[:O ()0 = (@) (@)} < l:O ()5 = (@) (@) )y + 5] =
Jim lno (@) = (@n))o) (wn)o)}) <

Jm ( :"0 ()05 = (@) (@) + 55) =

Jim (é} ()05 = (@) ((@n)i)s) + lim 5 =

i (D0 (@0 = (@) (o))

So lim I(v,) > lim I(v,). Also:

n—oo n—oo

Vn € N[(v5)i); < (vn)i)]] =
L In

¥n € N (((n)i)g — ((v0))0) ((0n)) < D (((wa)e)g = ((a)i)0) (va)i)i] =

=0 =0
In ln

Tim (D7 (@) = (@6 (wa)i)h) < Tim (7 ((@a)i)f = (@n)a)o) (w0
=0 =0

So lim I(v,) < Lim I(vy,).
n—oo n—o0

It is sufficient to prove, for every k € N there exists N € N such that for all n,m > N,
[T(vy) — I(um)| < % Again, f is a bounded function, thus find M € N such that —M <
f(z) < M for all z € [0,1]. Pick k € N and find N € N such that 2548 < ;. Pick
n,m > N. This proof is very similar to the proof in (i).

We have the measurable regions X,, and Y,, and the elementary sets of rectangles v,, and
Um. For readability we define v := vy, u := uy,, I, := length(v,) and 1, := length(u,,).
Also, we define two new measurable regions X and Y. For this, find p,q € N such that
M(Xn)*‘% < 3= and (1(Yy) + 2mt) 5. Now define X = X,, U{((v;)f— %, (v:))+

q D
210 < <1} U((v,-1)5— 35 (0, -1)5+3) and Y = Y U{((wi)y— ¢, (wi)p+4) 10 <i <
L} U (1) — %, (ug,,—1)0 + é) Thus, X is the union of X,, and small open intervals

around the boundaries of v and Y is the union of Y;, and small open intervals around the
boundaries of u. Clearly, X and Y are measurable regions. Note: we now have, for all

€ [0,1], if z ¢ X UY then there exists 0 < i < [,, and 0 < j < I, such that z g9 (v;)o
and x €0 (Uj)o.
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Next, we will consider the elementary sets of rectangles. Again, we will see that almost
every rectangle of v “touches” a rectangle of w. For this, we again define wy,, ; =
(vi)o N (uz)o and W = {wj,,+5 | 0 < i < 1,,0 < j <y, and wy,,+; # L}, which again is a
partition of [0,1]. We will again separate W into two subsets, W := {wy,,+; | wir,.+; €
W (vi)1N(vj) # L} and Wi = {wq,,+j | wit,,+5 € W | (vi)1 N (vj)1 = L}. Now, for all
x € [0,1], whenever x ¢ X UY there exist 0 <14 <[, and 0 < j < l,,, such that x g wy,, +;
and, by clause (i) of definition 3.3.1, wj,,+; € W. This means, if wj,,4; € W then for
all x eqwjy,,+5, v € XUY. Thus W, C XUY. So:

1 < 1 < 1
9m = omin(n,m)—1 — 9QN—1

p( U w) <uX0Y) <pX)+upy) < Zin+
weW .

This gives us:

() = I(um)| = [I(v) = I(u)]

ln—1 lyn—1

= 1> (W) = i)o) (W) = > ((ua)g — (wa)p) (wa)7]
i=0 i=0

= | Z (wgm—i—j - w;lm-&-j) ((Ui)/f - (Uj)/f)\
wilerjEW

< (Wit,ts = Wit 45) [ ((01)1 = (w))Y)]

’LuilerjGW
< > (W — Wi ) ()T = (u))] +

Wil +5 EWT

Z (wg;erj - wgzm+j)|((vi),1/ - (Uj)/f)\

Wil +j eWy

> (Wi — Wi ) (W7 = 1) + ()] = (uy)h)] +

Wity 4+ €EWT
" /
D (Wi = wh,)2M
Wity +5EWL

1 1 2M _2M+1
Som T TN = N

IN

1
< Z
~k

. @:&j\\:&*
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Figure 5: Most elementary rectangles “touch”.

We will now prove some important lemmas and theorems about measurable function which will
become useful in chapter 5 of this thesis.

Lemma 3.3.3. Suppose f : [0,1] — R is a bounded and measurable function and suppose
g:10,1] — R is a bounded function and f(x) = g(x) almost everywhere (that is, there exists an
almost full set Y C [0,1] such that Vy € Y[f(y) = g(y)]) then g is measurable and [ f(z)dx =

[ g(z)dx.

Proof. Since f is a measurable function we know there exists a sequence Xg, X1, Xs,... of
measurable regions and a sequence vy, v1, V2, . .. of elementary sets of rectangles which meet the
requirements (i) and (7i) of definition 3.3.1.

Also, since there exists an almost full set Y C [0, 1] such that Vy € Y[f(y) = g(y)] we know
there exists a sequence Yy, Y1, Ya, ... of measurable regions which meet the requirements (i) and
(ii) of definition 3.2.1.

To prove that g is measurable we take the sequence Zy = XgUYp, Z1 = X1UY7, Z5 = XoUYs, ...
of measurable regions and the sequence vg, v1,v9,... of elementary sets of rectangles. Now we
have:

(i) For every n € N [Ar(v,) < 5] and pu(Zy) < (X)) + u(Yy) < it and

(ii) For every n € N and every = € [0,1] whenever x ¢ Z,,) then = ¢ X,, and = ¢ Y,,. This
means ¢ € Y and = € dom(f) and so x € dom(g). This also means f(z) = g(x) and thus
Vi < length(v,) when x €9 ((v,)i)o then f(x) eg ((vn)i)1, so g(x) eo ((vp)i)1-

It immediately follows that [ f(z)dz = [ g(x)dz. O

Theorem 3.3.4. Suppose f : [0,1] — R is a partial function such that dom(f) is almost full
and such that f is bounded, then f is measurable.

To prove this theorem we need three lemmas.

Lemma 3.3.5. Suppose a = «(0), (1), (2),... is an infinite sequence of code numbers of

rational segments such that the sequence u(al), u(a2),... converges. Suppose a € S. Then

there exists n € N such that % > % or there exists n € N such that for all m € N,

u(@mna) 1
play . < 1o
Proof. Suppose o = «(0), (1), (2),... is an infinite sequence of code numbers of rational

segments such that the sequence u(al),p(a2),... converges. Suppose a € S. Find k € N

such that p(a) — p(ak) < Ju(a). Suppose % > 1

u(@(kf;a)
wla
suppose p(a@m N a) = p(a). This means m > k and more then half of a gets covered by

(am—=1)U---Ua(k)) \ (a(k —1)U---Ua(0)). But ,u((a(m— DU Ualk)) \ (a(k—1)U

then we are done. So suppose not

> I then, since these are rational numbers, p(ak Na) < 3u(a). Pick m € N and

m—1 n—1
. _ _ _ 1 I
U a(O))) = Z pa(n) \ U a(i)) = plam) — plak) < pla) — plak) < i,u(a), which is a
n=k =0
contradiction. So, for every m € N, u(am Na) < p(a). O
Lemma 3.3.6. Suppose o = «(0),a(1),a(2),... is an infinite sequence of code numbers of
rational segments such that the sequence p(al), u(a2),... converges. Suppose a € S and there
exists n € N such that for all m € N, % <1- 2% Now define ag = (d, a'-ga") and
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a; = (M, a"). Then there exists n € N such that for allm € N, tomnan) -1 _ L o there

n(ao)
exists n € N such that for allm € N, % <1-

L
27’L

Proof. Suppose a = «(0),a(1),a(2),... is an infinite sequence of code numbers of rational

segments such that the sequence p(a@l), u(@2),... converges. Suppose a € S and there exists

n € N such that for all m € N, ”(Zr(zr;a) — % Find this n € N and find ¥ € N such

that p(a) — p(ak) < shp(a). Find i € {0,1} such that p(a; N ak) < p(ai—; N ak). Then
_ _ ;Nak L p(anak .

(a; N ak) < Fu(an ak). Then “(z(;o)‘ ) < QE(Z(GO; ) 1 - 5. Also, pick m € N and suppose

This means m > k and more then Tﬂlu(ai) of a; gets covered by

w(a;Nam) 1
iy 21w

(a(m—=1)U---Ua(k)) \ (« (k—l) - Ua(0)). Butu((a(m—l)u---Ua(k:))\(a(k—l)U---U

a(0))) = 3 o)\ U am) — p(@k) < ula) — plak) < sinle) = g ue),

n=~k
(a;Nam)

which is a contradlctlon. So, for every m € N, £ i@ < 1— 5 . O

Lemma 3.3.7. Suppose X C [0,1] and X is almost full. Then for every n € N we can find
a measurable region Y and a fan T such that pu(Y) < 2%, 7 C X and for every x € [0,1] if
—(x€Y) thenz €.

Proof. X is almost full, so find a measurable region X,, such that u(X,) < ﬁ and for every
x €[0,1] if ~(x € X,,) then z € X. Since X, is a measurable region we have an infinite sequence

a(0), (1), «(2),... of code numbers of rational segments such that p(al), u(@2) converges and
R(a) = X,.
We define, for every n € N a set of rational segments S, := {(0, 3), ... (5 =1,1)}. Also, for

every n € N we define a R, C S, such that:

(i) Ro={(0,1)}
(ii) For every n € N and a € R, we can find a b € R,,+1 such that b C a

(iii) For every n € N and a € 5y, if a € R,, then there exists £ € N such that for all m € N,

#(Sfar)]a) <1l- 2? and if a ¢ R,, then we can find b € S such that a T b and N(b(g;!) > 1

We can always make R,, by lemma 3.3.6 and 3.3.5. We now define a sequence § = £5(0), 8(1),...
of rational intervals. This sequence is created by first numbering the rational intervals of S;\ Ry,
then of {a € S2|3b € Ri[a C b]} \ Re, then of {a € S3|3b € Rala T b]} \ Rs, etc. We claim
that the set Y/ = R(f) is a measurable region. Thus we have to show that the sequence
w(B1), u(B2), ... converges. Suppose n € mathbbN. Find N € N such that p(a)—p(aN) < 5.
Find M € N such that p({a € Sy|a is covered by aN} > u(aN) — 5+;. Now find L € N such
that {a € Sp|a is covered by aN} C {5(0),...,5(L —1)}. Then we have, for every k > L,
w(BL) < u(Bk) < w(BL) + ﬁ + ﬁ = u(BL) + 2% Where the last inequality holds since
w(BL) > p({a € Sla is covered by aN}) > p(aN) — o7 > (@) — 527 — 34. This means
B(L),B(L+1),... can cover only % of «v extra. Since 3 consists of intervals which are not in
R, this means these segments are covered for more then half by a. Thus the measure of Y’ can
only grow 22n4 For the same reasoning, u(Y”') < 2u(a).

Now define 7 as follows:

aeT < VneNa(n) € Mpr1 Aa(n+1) C a(n) Aa(n) € Ry

Obviously, 7 is a spread.
Furthermore we can show for every x € [0, 1] if =(z € Y') and for every ¢ € Q, g#x then there
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exists v € 7 such that v = . Pick = € [0,1] and suppose =(z € Y”) and for every ¢ € Q,
q#x. We define v = v(0),v(1),7(2),... with induction. Define v(0) = [0,1]. Now suppose
7(0),...,v(n) are defined in such a way that for all k < n[y(k) € Agr1 Ay(k) Cy(k—1)Avy(k) €
RpAIm € Njz(m) C y(k)] and suppose y(n) = [5&, 2] with 0 < a < 2". Since giﬂ € Q we can
find k € N such that 245 > 2" (k) or 24 < 2/(k). If 225 > 2" (k) define y(n+1) = [52%r, 224 ]
else define y(n + 1) = [%%1'11, 3‘;112] Now obviously, v(n + 1) € Ap42, v(n+ 1) T y(n). Also,
find m € N such that x(m) C ~y(n). This means y(n)" < 2/(m) and z”(m) < v(n)”. Define
I = max(k,m). Suppose y(n + 1) = [52%, 2241] then y(n + 1)’ = y(n) < 2/(m) < 2/(l)
and y(n +1)” > 2”(m) > 2"(I) so z(I) T y(n+ 1). Suppose y(n + 1) = [24 202] then
v(n+1) < 2'(k) < /(1) and v(n 4+ 1)" = v(n)" > 2"(k) > 2"(l) so z(I) C y(n + 1). Lastly,
suppose y(n+1) ¢ Ry,41 then there exists m € N such that y(n+1) = S(m). But, since x ¢ Y,
# (B(m) < 2'(1) < 2"(1) < B(m)") so # (y(n+ 1) < /() < 2"(l) < v(n + 1)") which is a
contradiction. Thus y(n + 1) € Ry41.

Furthermore, the set B = {z € [0,1]|Vq € Q[q#=x]} is almost full, so we can find a measurable
region Y such that p(Y) < 2u(Y”’) and such that for all z € [0,1] if z € Y/ then z € Y and if
x ¢ Y then z € B. So, for all x € [0,1] if x ¢ Y then there exists v € 7 such that v = x. O

We can now prove theorem 3.3.4.

Proof of Theorem 3.5.4. Suppose f : [0,1] — R is a partial function such that dom(f) is almost
full and such that f is bounded. Find M € N such that for all z € [0,1], —M < f(x) < M.
Pick n € N. We want to find a measurable region X,, and an elementary set of rectangles v,
such that:

(i) u(X,) < 2% and Ar(vy,) < 2%

(ii) for every x € [0,1] if = ¢ X,, then x € dom(f) and v,, captures f.

By lemma 3.3.7, we can find a measurable region X,, and a fan 7 C dom( f) such that u(X,) < %

and for all x € [0,1] if z ¢ Y then x € 7. Find k € N such that 2% + 2Mk < 3. By the continuity
theorem f is continuous. Also 7 C dom(f), so for every v € 7 there exists y € [0,1] such
that f(v) = y. This means, for every v € 7 there exists m € N such that for all € [0, 1] if
|z — | < 55 then |f(z) — f(7)| < 2% This means, for every v € 7 there exists v € R such that
length(vg) < 55, length(vy) < 2%, v €0 vo and for all x € [0, 1] if x € vo then f(x) € vi. Since
7 is a fan we can use the fan theorem and find N € N such that for every v € 7 there exists
v € R with v < N such that length(vg) < 5k, length(vy) < 2%, v €0 vo and for all z € [0,1] if

x g0 vo then f(x) €p v1. This means we can construct a set of rectangles v with Ar(v) < 2% such

that v captures f | 7. We define v, = v U {a € R]ap is not covered by v and a; = [-M, M]}.
Then Ar(v,) < 2% + QMk < 3~ and for every z € [0,1] if z ¢ Y then 2 € 7 so = € dom(f) and v,
captures f. O

We will now define when a set X is measurable. For this we need the definition of a characteristic
function.

Definition 3.3.8. The characteristic function of a set X is defined as follows:

(z) = 1 ifreX
XX =V0 0 ifs@ex)

Definition 3.3.9. Suppose X C [0,1]. X is measurable if and only if its characteristic function
xx is. Assume X C [0,1] is measurable, then the measure of X is pu(X) := [ xx(z)dz.
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Lemma 3.3.10. Suppose X is a measurable set, then X U (]0,1]\ X) is almost full.

Proof. Since X is a measurable set, its characteristic function yx is measurable. As already
noted after 3.3.1, the domain of a measurable function is almost full. We have dom(xx) =
X U (]0,1] \ X). Since xx is measurable, there exists a sequence Xg, X1, Xo,... of measurable
regions and a sequence vy, v1, V2, ... of elementary sets of rectangles such that they meet the
requirements (i) and (ii) of definition 3.3.1. This means for every n € N and every = € [0, 1] if
x ¢ X, then x € dom(xx) = X U ([0,1] \ X). O

We can prove an even stronger lemma then corollary 3.2.3. We will not prove it here but refer
to [6] for a proof.

Lemma 3.3.11. Suppose X is a measurable set and p(X) > 0 then there exists x € X such
that = # (]0,1] \ X).

We will now prove a number of lemmas about measurable sets.

Lemma 3.3.12. Suppose X is a measurable set and X = X' U X" such that X' N X" = (.
Then X' and X" are measurable.

Proof. Suppose X is a measurable set and X = X’ U X” such that X’ N X” = (). Since X
is measurable we know, by lemma 3.3.10, X U ([0,1] \ X) is almost full. This means X’ U
X"U([0,1]\ (X" U X")) is almost full. But, since X N X" = ) we know X" C ([0,1] \ X’) so
X'UX"U([0,1]\ (X'UX")) € X"U([0,1]\ X’) which means X" U ([0, 1]\ X”’) is almost full. By
theorem 3.3.4 this means y yx is measurable thus X’ is measurable. In a similar way we prove
X" is measurable. O

Lemma 3.3.13. Suppose X is a measurable set. Suppose a € [0,1] and a =0 or a # 0. Then
Xa:={ze€l0,1] | x =ya| y € X} is measurable and pu(Xa) = ap(X). Also if there exists
a region v = (V',0") and a region w = (w',w") such that v < 0 < V" and W' <1 < w" such
that for each x € v we know x ¢ X and for each v € W we know x ¢ X then X +a :=
{z]|x=y+aly € X} is measurable for all a € R if and only if X +a C [0,1]. We then have
w(X +a) = p(X).

Proof. Suppose X is measurable, then there exists an infinite sequence of measurable regions
Xp, X1, Xo,... and in infinite sequence of elementary sets of rectangles vy, v1, vs,... such that
the requirements (i) and (i) of definition 3.3.1 are met. Pick any a € [0,1], then we can
prove Xa is measurable with aXg,aX1,aXo,... and avg, avy,avs,.... Here for every n € N,
aX, = R(B(0), (1), B(2), ... with B(n) = (aa(n), aa(n)") when X, = R(a(0), a(1),a(2),...).
Also if @ = 0 then for every n € N and every i < length(v,) if i < length(v,) — 1 then
((avp)i)o = (0,0), if i = length(v,) — 1 then ((avy)i)o = (0,1) and ((avy)i)1 = ((vn)i)1- ffa # 0
then for every i < length(vy,), ((avy)i)o = (a((vn)i)g, a((vn)i)gy) and ((avy)i)1 = ((vn)i)1. Now
it is easy to show u(aX) = au(X).

Suppose X is such that there exists a region v = (v/,v”) and a region w = (w’,w") such that
v/ <0< v and w’ <1 < w” such that for each € v we know x ¢ X and for each z € W we
know x ¢ X. Pick any a € [0, 1] such that X +a C [0, 1] then we can prove X + a is measurable
with a+ Xo,a+X1,a+Xs, ... and a+vg, a+v1,a+ve,.... Here a+X,, = R(5(0),5(1),B(2),...
with 8(n) = (a + a(n)’,;a + a(n)”) when X,, = R(a(0), a(1),a(2),...) and:

(i) ((@a+wvn)o)o = (0,a+ ((vn)o)p) and ((a+ wvn)o)1 = (0,0)

(ii) for all 0 < @ < length(vy,), ((a + vn)i)o = (a + ((vn)i—1)sa + ((vn)i—1)g) if and only if
a+((vn)i-1)p, a+((vn)i-1)g < 1. I a+((vn)i-1)g > 1 then ((a+vn)i)o = (a+((vn)i-1)p, 1)
?ﬂd ;fa—i—((vn)i_l)f),a—i—((vn)i_l)’o’ > 1 then ((a+wvn)i)o = (a+((vn)i-1)o, a+((vn)i-1)g) =

1,1).
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(iii) for all 0 < i < length(vy,), ((@ + vn)i)1 = ((vn)i)1

Now it is easy to show u(a 4+ X) = u(X). O

Lemma 3.3.14. Suppose X and Y are measurable sets, then (X \'Y) > pu(X) — pu(Y).

Proof. Suppose X and Y are measurable sets. Then yx is measurable so we have an infinite
sequence X1, X9, X3,... of measurable regions and an infinite sequence vy, vo, v3, ... of elemen-
tary sets of rectangles such that the condition of definition 3.3.1 hold. Also, xy is measurable
so we have an infinite sequence Y7,Ys,Y3,... of measurable regions and an infinite sequence
u1,u2,us, ... of elementary sets of rectangles such that the condition of definition 3.3.1 hold.
Now consider Z; = X7 UY7, XoUY2, X3UYs,.... Pick n € N and suppose x ¢ Z,, then x ¢ X,
and x ¢ Y, sox € XU ([0,1]\ X)) and x € Y U ([0,1] \ Y). Suppose z € X and = € Y then
€ ([0, 1]\ (X \Y)). Suppose z € X and = € [0,1]\Y then z € (X \Y). Suppose z € ([0,1]\ X)
then z € ([0,1]\ (X \Y)). Soifx ¢ Z, then x € (X \Y)U ([0,1] \ (X \Y)) = dom(xx\v)-
Also u(Z,) < £
We define an elementary set of rectangles w, for every n € N. Pick n € N and define
ln, = length(v,) and k, = length(u,). Define, for every i < I, and j < kpn, ((Wn)ik,+j)0 =
(wij)o = ((vn)i)o N ((un);)o and consider W = {(w; j)ol0 < i < 1,,0 < j < ky and (w; j)o # L}
Define (wiy)1 = (((vn)a)h (1 = ((un); ), ((wn)a)¥ (1 = ((un);)1)) for every (wig)o € W. Also:

Art(wn) = Y ((wig)] = (wig))) ((wiy)g — (wi)p)

(wi,j)o€W
= D> (@)1= (@a))]) = (W) (1= ((wa)i)1)) ((wi ) = (wi))
(wi,j)0€W
= Y ()] = (wn))h) ((wiy)g — (wis)o)
(wi,j)o€W
+ Z (((Un)l)l((un)j),ll — ((vn) )1(“n)1)1((w2,3)0 (wm)z))
(wi,j)0EW
= > ()] = ((a))1) ((va)a)g = ((vn)i)0)
0<i<ln
+ Z (((Un)l)l((un)])/ll ((vn) )1(“71)])/1(((“71)])3 (( n)3)6)
0<j<kn
1] 1
=uTh
Here the last inequality holds since ((v5):)] < ((vp)i)] and 0 < ((up);)] < ((un);)] < 1.
Now pick z € [0,1] and n € N and suppose = ¢ Z,, then z € (X \Y) or z € ([0,1] \ (X \ Y)).
First suppose z € (X \Y) then if x 9 (w;;)o then = o ((vn)i)o and = o ((upn)j)o. So
xx(x) =1 e ((vn)i)o and xy(x) = 0 &g ((Un)])o- This means ((v,);)] < 1 = ((vn)i)] and
() = 0 < ((wn)){ < 1so ((wiy)y < ((n))y < 1and ((wig)y = ((wa)i)] = 1. So
(wig) < xxor =1 < ((wi;){. Now suppose @ € ([0,1]\ (X \ ¥)) then if @ = (w;)o then
z g0 ((vn)i)o and = g9 ((un)j)o- So xx(z) = 1 €9 ((vn)i)o and xy(z) = 1 €¢ ((un)j)o or
Xx(z) = 0 g ((vn)i)o- This means ((vn)i)] < 1 = ((va)i)7 and ((un);)1 < 1 = ((un);)7 so
((wiy)y =0 and ((wi;)f < L So ((wi;); < xxuy =0 < ((wiy)]- Or ((vn)i)) =0 < ((vn)i)]
so ((wi;)] = 0 and ((w;;)] < 1. So ((wij)] < xxuy = 0 < ((wi;)]. This means X \ 'Y is
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measurable. Also:

pNY) = lim (30 (i) = (wig)§) (010 = ()

n—o0

0<i<ln
0<j<kn
= 1im (3 (i)~ (i) @) = D0 (wig)f = (wig)) i) ()}
0<i<ly 0<i<ly
0<j<kn 0<j<kn
= lim ( > ((wiy)g — (wig)g) (v@-)’{) — lim ( > ((wig)g - (wi,j)g)(w)'{(uj)'1>
0<i<ly 0<i<ly
0<j<kn 0<j<kn
> p(X) = p(Y)

d

Theorem 3.3.15. If a set X is measurable and u(X) = k, then the complement of X, [0,1]\ X
is measurable and p([0,1]\ X) =1 —k.

Proof. The proof will consist of two parts. In part 1 we will prove that [0,1] \ X is measurable
and in part 2 we will prove p([0,1]\ X) =1 — k.

1. We know X is measurable, so the characteristic function x x is. This means there exists a
sequence Xg, X1, X2, ... of measurable regions and a sequence vg, v1, Vs, ... of elementary
sets of rectangles such that the requirements (i) and (ii) of definition 3.3.1 are met.

To prove that x[o 1)\ x is measurable we take the same sequence Xo, X1, Xo,... of mea-
surable regions. Furthermore we define a sequence wg, w1, ws,... of elementary sets of
rectangles as follows. For all n € N and for all i < length(v,,) define ((wy):)o = ((vn)i)o,
(wn))s = 1 = ((wn)i){ and ((wa)i){ = 1 — ((vn)i),. We have Ar(wn) = Ar(v,) < 5.
Now suppose = ¢ X, then z € dom(xx) = dom(x[o1\x). This means either z € X or
z € [0,1]\ X.

First suppose # € X, then xx(x) = 1 and xjo1\x(7) = 0. Suppose = o ((wn)i)o,
then = 9 ((vyp)i)o and thus 1 g9 ((vy)i)1. This gives us ((vy):)] < 1 < ((vn)i)f, so
—((vn)i)] < =1 < —((vpn)i)}j which means ((wy);)] <0 < ((wy):)] and thus 0 e ((wy)i)1-
Now suppose x € [0,1] \ X, then xx(x) = 0 and xjo1\x(z) = 1. Suppose = o ((wn)i)o,
then x €9 ((vn)i)o and thus 0 g9 ((vn)i)1. This gives us ((v)i)] < 0 < ((vn)i)Y, so
—((vn)i)] <0 < —((vy):)] which means ((wy)i)] <1 < ((wy);)] and thus 1 g ((wy)i)1-
S0, X[0,1\x is a measurable function.

2. Consider the function g : [0,1] — R with g(z) = xx(=) + Xjo1)\x(z). For every x €
dom(g) we have g(z) = 1. We will prove that this function is measurable and that
[ xx(z)dz + fX01\X( )dz = [ g(z)dz = 1. This will show fX[O,l]\X(fE) dz =1-k.
To prove that g is measurable we again take the sequence Xy, X1, Xo,... of measurable
regions and we define a sequence ug,u1,us,... of elementary sets of rectangles as fol-
lows. For all n € N and for all ¢ < length(v,) define ((un)i)o = ((vn)i)o, ((un)i)j =
max(((0a)s)h, (wa)i)}) and (wn):)} = max(((va)s)!, (wn);)}). Now we have Ar(un) =
Ar(vp) < 5.

Furthermore, suppose = ¢ X,, then z € dom(xx) = dom(g). This means either z € X or
ze0,1]\ X.

First suppose » € X, then xx(z) = 1 and xjo1)\x(z) = 0. Suppose = o ((un)i)o,
then x 9 ((vn)i)o and thus 1 g9 ((vy,);)1 and 0 ¢ ((w n)z)l This gives us ((vp,)i)] <1<
((vn)i)] and ((wn)i)y < 0 < ((wn)i)7 s0 ((un)i)y = ((vn)i)y and ((un)i)] = ((vn))7 thus
9(x) €0 ((un)i)1-
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Suppose x € [0,1] \ X, then xx(z) = 0 and x[o,1)\x(z) = 1. Suppose = g9 ((un)i)o, then
z €0 ((vn)i)o and thus 0 g9 ((vn);)1 and 1 €g ((wy,);)1 This gives us ((vy)i)] <0 < ((vn)i)
and ((wn)i)y < 1 < ((wn)i)] so ((un)i)i = ((wn)i)y and ((un)i){ = ((wn)i)] thus
9(x) o ((wn)i)1-

What is left for us to prove is [ xx(z)dz + fX[o,l]\X(l’) dz = [g(z)dz = 1. We have:

[ xx(z) de = limy o0 I(v,) and [ xjo1p\ x (2) dz = nlLrgol(wn), so:

length(vy,)—1

/Xx(l’) dﬂ?+/><[o,u\x(93) de=lim (Y () — ((va)i)5) ((va)i)7) +

n—00 4
=1

length(vy,)—1
Tim (> () — (wa)a)o)(L = (va)i))
=1
length(vy,)—1
=1lm (> (((va))g — ((va)i)))
=1

n—oo
K2

Also:
B k
[ ota)do = Jim Tw) = T (S ((@:)5 ~ (@2)5) ()i}
i=1
k
= lim (D (((n)i)§ = ((vn)i)o) max(((vn)i)], ((wn))]))
i=1
k
= lim (3 ()~ (0n)0))
i=1

Define f : [0,1] — R with f(z) =1 for all z € [0,1]. By lemma 3.3.10 dom(g) is almost full so
f(z) = g(z) almost everywhere, thus by lemma 3.3.3 [g(z)dz = [ f(z)dz = 1. O
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4 Geometric types

The examples of possible pseudofull subsets that Brouwer gives to define discontinuous functions
fall into certain equivalence classes that Brouwer calls geometric types. In this chapter we define
what a geometric type is and discuss some intuitionistic mathematics on geometric types.

Definition 4.1. Two sets V,W C [0,1] are of the same geometric type if there exists a
uniformly continuous bijection f :[0,1] — [0, 1] such that f(V) = W and such that its inverse
f~1 is uniformly continuous as well. Notation: V ~ W.

We now show that the properties of sets defined in definition 1.5 may be considered as properties
of geometric types.

Lemma 4.2. Suppose V,W C [0,1] and suppose V ~ W. Then:
(i) If V =1[0,1] then W = [0, 1]
(it) If V #[0,1] then W % [0, 1]
(iii) If V#[0,1] then W#[0,1]
(iv) If <[V = [0,1]] then ~[W = [0, 1]
(v) If ==V = [0,1]] then =—[W = [0, 1]
(vi) If [V % [0,1]] then —[W # [0,1]
(vii) If ~—[V £ [0,1]] then —=[W % [0, 1]]
(viii) If <[V #[0,1]] then ~[W#0, 1]
(i) If ~=[V#[0,1]] then ~=[W#0,1]]

Proof. We will prove (i), (i4) and (i7i). The others will then follow directly. Suppose V,W C
[0,1] and suppose V' ~ W. Then there exists an uniformly continuous function bijection f :
V — W such that f(V) = W and such that it’s inverse f~! is also uniformly continuous.

(i) We have to show Vz € [0,1]F3w € W [w = z] and Yw € W3z € [0,1] [z = w]. Since
W C [0,1] obviously Vw € W3z € [0,1] [x = w]. Now, pick € [0,1]. Consider f(x).
V =10,1], so find v € V such that f(z) = v. Define w = f~(v) € W. Since f(z) = v

and since f~! is a function we know = = w.

(i) We have to show 3z € [0,1] =[Fw € W [z = w]] or Jw € W [Tz € [0,1] [z = w]].
Since W C [0,1], obviously 3w € W —[3z € [0,1] [# = w]] can not be true. Now suppose
[V = [0,1]] then, also since V' C [0,1], we must have Jy € [0,1] [=[Fv € V [y = v]].
Find this y and consider x = f(y). Now suppose Jw € W s.t. x = w. Then, since
f~1is a function, we have y = f~!(w). Since f~!(w) € V, this is a contradiction, so
—[Fw e W st z = w).

(17i) We have to show 3z € [0, 1]Vw € W[z#w] or FJw € WVz € [0, 1][z#w]. Since W C [0, 1],
obviously Jw € WVz € [0, 1][x#w] can not be true. Now suppose [V#][0, 1]] then, also
since V' C [0, 1], we must have Jy € [0, 1]Vv € V[y#v]. Find this y and consider z = f(y).
Now pick any w € W. We know, since f~'(w) € V, y#f~'(w) and so f~(x)#f 1 (w).
By lemma 2.1.12 we have x#w.

d
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The following lemma follows from the fact that the composition of two continuous functions is
continuous.

Lemma 4.3. Suppose V,W C [0,1] and suppose V.~ W. If every function h : V. — R is
continuous then every function f: W — R is continuous.

Proof. Suppose f: W — R is a function. Pick x € W and m € N. We want to find n € N such
that for all y € W if [z —y| < L then |f(z) — f(y)| < L. Find a uniformly continuous bijection
g :[0,1] — [0, 1] such that g(V') = W and such that its inverse g~! is also uniformly continuous.
Consider h : V' — R with h(v) = f(g(v)) for all v € V. This function is continuous, since
every function from V to R is, so for every z € V there exists k € N such that for all w € V' if
|z — w| < 7 then |h(z) — h(w)| < L. Find n € N such that for all z,y € [0,1] if [z —y| < 2
then |g~(z) — g~ (y)| < +. We claim this is the n we are looking for. Pick any y € W and find
z,w € V such that g(z) = z and g(w) = y. Find k € N such that for all w € V if [z—w| < 1 then
(2) — hw)] < . Suppose |z —y] < & then (=) — g(w)] < L 509~ (9() — g~ (g(w)] < }
50 |2 —w| < & 50 Jh(=) — hw)| < L and thus |f(g(=)) — Flg(w))| < & s0 [f(z) - f(y)] < £. O

Corollary 4.4. Suppose V,W C [0, 1] and suppose V.~ W . If there exists a function f : V — R
such that f is discontinuous then there exists a function h : W — R such that h is discontinuous.

Proof. Find f : V — R such that f is discontinuous Find x € V and n € N such that for
every m € N exists y € V with |z — y| < 5% but |f(z) — f(y)| > 2% Also, find a uniformly
continuous bijection g : [0, 1] — [0, 1] such that g(W) =V and such that its inverse g~! is also
uniformly continuous. We define h : W — R with h(v) = f(g(v)) for all v € W. We will prove
h is discontinuous. For this, consider z:=g Yz) € W and n. Pick any m € N. Find k € N
such that for ally e Rif [z —y| < Qk then g7 (z) — g7 (y)| < 5. Now, find y € V such that
|l —y| < o5 but |f(z ) fW)] > 5=. We claim w := g~(y) € W is such that |z — w| < 5=
but |h(z ) h(w)| > 3=. Since |z —y| < 2% we have [g71(z) — g7 (y)] < 55 s0 |z —w| < 2.
Also [£(2) = Fw)] > 2 50 |F(a(g™ @) — F(a(g™ @))| < 2 50 [A(2) — h(w)| > 2. So h is

discontinuous. O

For the next lemma we need a couple of definitions.

Definition 4.5. X is a totally bounded (Brouwer: katalogisiert) set if for all m € N there
exists po,Pi, -, Pn—1 € X such that for all ¢ € X there exists 1 < n with |q — p;| < %

Definition 4.6. A point x € [0,1] is a closure point of X if for every n € N there exists a
y € X such that |x —y| < 27".

Definition 4.7. The closure of X is X := {x | # € [0,1] | = is a closurepoint of X}, the set
of closure points of X.

Definition 4.8. A set X is closed if X = X.

Definition 4.9. X is a perfect set if it is closed and if for all x € X and every n € N there
evists y € X such that 0 < |z —y| < 1

Lemma 4.10. Suppose V,W C [0,1] and suppose V.~ W. Also suppose there exists a totally
bounded perfect set X such that for each x € X we can not prove x € V. Then there exists a
totally bounded perfect set' Y such that for each y € Y we can not prove y € W.
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Proof. Since we have V ~ W, there exists an uniformly continuous function bijection f:V —
W such that f(V) = W and such that its inverse f~! is also uniformly continuous. Define
Y = f(X). First we will prove that Y is totally bounded, then we will prove that Y is closed,
then that Y is perfect and lastly we will prove that for each y € Y we can not prove y € W.
To prove that Y is totally bounded pick any m € N. Find k € N such that for all z,y € [0, 1] if
|z —y| < % then |f(x) — f(y)] < % For this k, find pg, p1,...,pn—1 € X such that for all x € X
there exists ¢ < n with |¢ — p;| < % Consider the sequence p{, = f(po),p} = f(p1),...,P},_1 =
f(pn_1). Pick any y € Y and define 2 = f~!(y). Then 2 € X so find i < n such that |z—p;| < %
But this means |y — p}| < L.

To show that Y is closed pick any y € [0, 1] which is a closure point of Y. This means for all
n € N there exists y, € Y such that |y, —y| < 27™. Since f~! is uniformly continuous we know
for all m € N there exists k € N such that if |y — 2| < £ then |f~}(y) — f~(z)| < L. Fix m
and find k such that [y — 2| < ¢ then |f~!(y) — f~!(2)| < 1. Pick n such that 27" < } and
find y, such that |y, —y| < 27 < 2. Then [~ (yn) — f'(y)| < L. So f~(y) is a closure
point of X and thus f~'(z) € X,soy €Y.

Now we will show that Y is perfect. Pick any y € Y and n € N. Now find m € N such that for
all z,y € [0,1] if [z — y| < L then |f(z) — f(y)| < L. Define 2 = f~!(y), then z € X and thus
there exists 2’ such that 0 < [z —2'| < =. Now 0 < |y — f(2/)| < L and f(2/) € Y.

Lastly we will show that for each y € Y we can not prove y € W. Suppose y € Y and suppose
y € W. Consider f~(y). f~'(y) € X, but since y € W, f~(y) € V, which we can not
prove. U

Lemma 4.11. Suppose V,W C [0, 1] and suppose V- ~ W . If there exists a sequence vy, va, Vs, - - -
[0,1] such that:

(i) For every i # j, v; # vj, and
(ii) for every i € N we can not prove v; € V
then there exists a sequence wy,wa, ws,--- € [0,1] such that (i) and (ii) hold for W.

Proof. Find a uniformly continuous bijection f : [0,1] — [0, 1] such that f(V') = W and such
that its inverse f~! is also uniformly continuous. Suppose there exists a sequence vy, vo, v3, - - - €
[0,1] such that (i) and (ii) hold. Consider wy = f(vi), w2 = f(v2),ws = f(v3). Suppose
i # j € N, then v; # vj so f(v;) # f(v;) since f is a bijection. Also, suppose we can find i € N
such that we can prove w; € W. Then f~!(w;) = f~1(f(v;)) = v; € V, which is a contradiction.
So for every i € N we can not prove w; € W. O

Lemma 4.12. Suppose V,W C [0,1] and suppose V.~ W . Suppose there exists a set X C [0,1]
which is dense in [0,1] and such that for all x € X we can not prove x € V' and such that for
all x,y € X we have x =y or x#y. Then there exists a set Y C [0,1] which is dense in [0,1]
and such that for oll y € Y we can not prove y € W and such that for oll x,y € Y we have

T =1y or xHy.

Proof. Find a uniformly continuous bijection f : [0,1] — [0,1] such that f(V) = W and such
that its inverse f~! is also uniformly continuous. Suppose X C [0, 1] is dense in [0, 1] and such
that for all x € X we can not prove x € V and such that for all x,y € X we have x = y or
x#ty. Define Y := f(X). Suppose y € Y and suppose we can prove y € W then f~!(y) € X
and f~!(y) € V, which is a contradiction. Thus we can not prove y € W. Suppose z,y € Y.
Then f~(z), f~'(y) € X thus f~'(z) = f~'(y) or f~'(x)#f " (y). Suppose f~(z) = f~(y)
then x = y. Suppose f~(z)#f (y), then since f~! is continuous z#y. Also, since f and
f~! are continuous and bijections, by lemma 2.2.10 f and f~! are monotone. Pick x,y € [0, 1]
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such that = < y, then f~!(x) < f~!(y). Since X is dense in [0, 1] there exists z € X such that
=) <z< f~Hy). Thus = < f(2) <y and f(2) €Y, so Y is dense in [0, 1]. O
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5 Examples

In this chapter we will take a look at the examples Brouwer gives.

5.1 Example 1

Brouwer defines A to be the geometric type of all the sets to which a real number belongs if and
only if the law of the excluded middle is true. It is unclear here what Brouwer really means.
There are two possible interpretations for this geometric type, namely:

(i) A is the geometric type of H with H = {x | z € [0,1] | V propositions P [PV —P]|}

(ii) Every proposition P defines a geometric type Ap. Suppose P is a proposition, then Ap is
the geometric type of Hp = {x | z € [0,1] | PV =P}

We will consider these two options a bit more closely.

Suppose we would use option (i). For all z € [0,1] we have ~x € H, since, by lemma 2.2.8,
we know —Vx € [0,1] [(z = 0) V =(x = 0)]. This gives us H = (). We can also consider the
complement of H. We then get [0,1]\ H = {x | « € [0,1] | =V propositions P [PV —P]} = [0, 1].
This shows us that Brouwer did not mean option (i), since he claims that the complement of
the set that he proposes can not contain any real number.

So we will assume he means option (ii) and work with this option from now on. Suppose for
P we take the proposition that 7 contains a block of nine consecutive nines in its decimal
expansion. So P = 3n € N[n = k] as in definition 1.3.1. This means there are propositions
P for which we can not prove dx € Hp. Again, for every proposition P we can consider the
complement of Hp:

0,1]\Hp={z |z €[0,1] | =(PV -P)}
={z|ze€l0,1] | -PA—-—P)}
= 0.

Again, take P = In € N[n = ky]. Now suppose Hp is measurable, then find & € N such
that u(Hp) = k. This means also [0,1] \ Hp is measurable and p([0,1] \ Hp) = 1 — k. But
[0,1]\ Hp =0, s0 1 — k= 0. Thus k = 1, which means Hp is almost full. By lemma 3.2.2 this
means there exists x € Hp, but we can not prove this. Thus there does not exists a measure of
Hp. So, there are propositions P for which we can not prove that Hp has a measure.

Lemma 5.1.1. For every proposition P, every representative of Ap seems to coincide with

[0,1].

Proof. Suppose P is a proposition. By lemma 4.2 it is sufficient to prove ﬂ—|[H p = |0, 1]]
Suppose PV =P then Hp = [0,1], so Hp = [0,1]. So if =[Hp = [0,1]] then =(P V —P). Thus
if =—=(P V —P) then =——[Hp = [0, 1]]. And since for every proposition @, =—(Q V =Q), we have
—=(P V =P) so Hp seems to coincide with [0, 1]. O
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5.2 Example 2
We define B; to be the geometric type of I; 2 and By to be the geometric type of I, 3):

[e.9]

L={z|xze€l0,1]|x= ;—Z|Vk€N3m>k,n1>m,n2>m[am:an1:1,an2:0]}
n=1
. a
={z|ze€l0,1]|z= 2—:|Vm€N3n6N[n>m/\am7ﬁan]}
n=1

L={z|xz€[0,1] |VgeQImeN |z —¢q| >1/m}
={z]zel0,1][VqeQlq # =]}

Lemma521 L={z|ze€[0,1]|VgeQ ImeN |z —q| >1/m} where
={qeQ|3ImeNjg=3"", 2 with a, € {0,1}] Vg =1}.

Proof. Suppose x € I;. Then z = >, 52 s.t. Vm € N 3n € N with n > m and a,, # ay.

Pick any ¢ € Q. This means ¢ = > ", g—’; for some m € N and with b, € {0,1}. Consider

!/ m a
€T _Zn:l 272

« Suppose z’' > g, then ﬁnd k € N such that |2/ — ¢| > % > 2% Since z > 2’ we have
lv —q| > |2’ —q] > ¢ >

« Suppose ' = q. Since for all m € N there exists n € N such that n > m and a,, # a, we
can find k > m € N such that ay = 1. This means |z — ¢q| > Qk—lﬂ

« Suppose z' < ¢. Weknow > ¢ . gn <y 3w = 5, since we can find k > m such

thatak:() So |z —a'| =300 m+1‘212§(1 —2k1+1) Also we know |2/ — x| + |z — q| >
2" —ql > g So we get |z — gl > (5w — Xnlii1 5%) > o — (g — 3ig7) = 297

Now suppose z € [0, 1] and Vg € Q'Im € N|z — q| > L. Because Vg € Q3m € Njz —¢| > L
can find a sequence (a,)5° ; such that x = ZZO 152 We have to prove Vm € Ndp € N with p >

m an

m and a,, # a,. Suppose m € N. Define 2/ =3 " | g

« Suppose a,, = 0. 2’ € Q', so find &k € N such that |2/ — 2 =377 5% > Qk > 0. So
there exists p > m € N such that a, = 1.

« Suppose a,, = 1. Define " = 2’ + Zzozm+1 Qin

If there exists n < m such that a, = 0, define | = max{n < m|a, = 0}. So a, =1
for all n > [, which means :c” = 25;11 Sn + 211, so 2” € Q. So find k € N such that
|z —a"| = |3 — Y02, %] > ¢ > 0. So there exists p > I such that a, = 0. But since [ was
the biggest such that [ < m and such that a¢; = 0 we know p > m.

If ap, = 1 for all n < m, then 2 =1, so 2” € Q. Find k € N such |1 — z| > % > 0. So
there exists p € N such that a, = 0. But since a,, = 1 for all n < m we know p > m.

O]

Even though Brouwer seems to suggest that B; and Bs are of a different geometric type, we
claim they are the same geometric type. The following two lemmas prove this.

) This is G1 from example 2 of Brouwers article.
Gn example 2 of Brouwers article this is called “der Spezies der positiv-irrationalen”.
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Lemma 5.2.2. Suppose (¢,)22 and (dy,)?2, are countable sequences with:
« Vn € N[ey,, d, € [0,1]]
o VYn #m € N[ep#em A dpftdn)
o The sequences ()5, and (dn)2, are dense in [0, 1].
e Inym,k,l €N[c, =d,=0Acy, =d =1

Also suppose g : (cn)oy — (dn)22, is an isomorphism, that is g is bijection and for alln,m € N
if cn < e then g(cn) < g(em). Then g is uniformly continuous.

Proof. Pick m € N. Split the interval [0, 1] in smaller intervals [dy,, dn, ], [dn, s dnz] S ldn, s dny)
with d,,, = 0,d,, =1, n; # n; for all 4,5 < k and such that for all i < k, |d, m+1‘ <2 m-L

This is possible since (d,)%°; is dense in [0,1]. Now consider g=!(dy,), ..., 97 (dn,). Since g
is order preserving we must have g~!(d,,) = 0 and g~!(d,,) = 1. Define § := min{|g* (dn;) —
g Hdn,, )| }z < k} and find n € N such that 27" < §. We claim: for all p,¢q € Nif |¢,—c,| <277
then |g(cp) — g(cq)| < 27™. Now pick ¢,p € N and suppose |¢, — ¢4| < 27". Then there exists
i < k — 1 such that g_l(dni) < cpreg < g‘l(dni+2). This gives, since g is order preserving,
dn; < 9(Cp), 9(Cq) < dnyyy 50 19(cp) — glcg)| <2771 427 =27, O

Lemma 5.2.3. Suppose ¢ = (¢p)02, and d = (d,)52, are countable sequences with:
« VYn € N[e,, d, € [0, 1]]
o VYn #m € N[ep#em A dpftdy)
o The sequences (cp)32; and (dp)5e; are dense in [0, 1]
e Inym,k,l €N[c,=dp=0Acp,, =d; =1

Define I, ={ x|z € [0,1] |Vn e N[z # ]} and [g={ x|z € [0,1] | Vn € N [z # d,]}.
Then I, ~ I and also I. U {c;|i € N} ~ I; U {d;|i € N}.

Proof. We use the back-and-forth method to find an isomorphism g : (¢;,)5%; — (dp)52,. With
this isomorphism we will define a bijection f : [0,1] — [0, 1], such that f(I.) = I;. Suppose z €
[0,1]. Consider z(0),z(1),x(2),.... We will define f(x) = (f(2))(0), (f(2))(1), (f(x))(2),...
with induction. First we define (f(x))'(0) and (f(x))"(0). Suppose 2'(0) < 0. Define cy(g) =
2/(0) and (f(z))'(0) = 2/(0). Suppose z'(0) > 0, then find n € N such that ¢, < 2/(0). Define
car(0) = cn and (f(2))'(0) = g(cp(0)). Now suppose z”(0) > 1 then define cyr(g) = 2"(0)
and (f(z))”(0) = 2”(0). Suppose z”(0) < 1 then find m € N such that 2”(0) < ¢,,. Define
cpr(0) = cm and (f(2))"(0) = g(cpn (o)) Now suppose (f(2))(0), (f(x))(1),...,(f(x))(n) are
defined. Again, suppose 2'(n + 1) < 0 then define cyr(p11y := 2'(n + 1) and (f(z))'(n +1) =
2'(n+1). Suppose z'(n 4+ 1) > 0 then find s € N such that 2/(n) < ¢ < 2/(n 4 1). Define
Cx'(n+1) = cS and (f(z))'(n + 1) = g(cp/(nt1)). Also, suppose 2”(n + 1) > 1 then define

Carmny1) = @' (n 4 1) and (f(z))"(n 4+ 1) = 2"(n 4 1). Suppose 2 (n + 1) < 1 then find t € N
such that 2" (n+1) < ¢; < 2”(n). Define cpr(ny1) := ¢ and (f ()" (n+1) = g(cgr(n41))- Proving
that (f(2))(0), (f(x))(1),(f(x))(2),... is a real number is very straightforward. Furthermore
we have to show the following:

(i) For every z#y € [0,1] we have f(z)#f(y).

(ii) For every y € [0, 1] there exists = € [0, 1] such that f(x) = y.
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(iii) f(le) = Ia
We will now prove properties (i), (ii) and (iii).

(i) Pick x#y € [0,1], then there exists n,m € N such that 2'(n) > y”
y'(m). Suppose z'(n) > y”(m). The other case is similar. z’(n) >
so (f(x))'(n) = glcamy). Also y”(m) < 1 since 2'(n) < 1 so (f(y))" Y
Furthermore cg(n 41y > 2'(n) > y"(m) > cym1yr 50 g(Camery) > glc y(m+1)ll) and thus

(f(@)(n+1)" > (f(y)(m+1)".

(ii) Suppose y € [0,1], then y = d, where dy, := (dy (o), dy(0)); (dy (1), dyr (1)), - - -- Now con-
sider z := 2(0),2(1),2(2),... where, for every i € N, 2/(i) = dy; if dy; < 0 and
2'(i) = g~ Hdy ) else, and 2" (i) = dy) if dyryy > 1 and g (dy(s)) else. Then f(z) =y

(iii) Suppose = € I, then for every n € N, x # ¢,. Pick n € N. We want to show there
exists k,p € N such that (f(x)) (p) > d (k) or (f(z))"(p) < d,(k). Since x # g~1(d,) for
every n € N we have there exists m € N such that 2/(m) > g~1(d,) or 2”(m) < g~(d,).
Find this m, k and suppose z(m)’ > g~1(d,). The other case is similar. Since z(m) >
g '(dn) we have z'(m) > 0 so (f(x))(m) = g(cym)). We have g~ (dy) < xz(m) <
Came1y < z(m+ 1) < z(m+1)" < cympryr < x(m)” and thus dn, < g(cym+1)y) 50
&< (f())(m + 1Y So du#tf(z), thus f(z) € I

This proves I, ~ I;. To prove I. U {c¢|i € N} ~ I; U {d;|i € N} we have to show f({c;|i €

N}) = {dili € N}. Suppose z € {¢li € N} and z = z(0),z(1),2(2),.... Then z = ¢,
where ¢, = (¢u(0); C2(0)), (Car(1)s Carr(1)), - - - - S0, for every n € N we have cyr(n) < T < cprp)
and thus for every n € N we have g(cyn)) < g(z) < g(cpr(ny) so f(z) = g(z) and thus
f(z) € {d;]i € N}. O

From now on, we will call B the geometric type of I; and Is.

Lemma 5.2.4. Every representative of B is of the form I, := {z|x € [0,1]|Vn € N[z # ¢,] }
for some countable sequence ¢ = (c,)5, with:

(i) Vn € Nep, € [0,1]]

(ii) ¥n # m € Nlcp#cm]
(iii) (en)3ey is dense in [0,1]
(iv) In,m € N[ep = 0 A ¢ = 1]

Proof. Suppose B’ is a representative of B, then I ~ B’. This means there exists a uni-
formly continuous bijection f : [0,1] — [0,1] such that f(I3) = B’. Now find an enumeration

90,41, 92, - .. of Q and consider ¢y := f(qo),c1 := f(q1),c2 := f(g2),.... This sequence is a
sequence such that conditions (i) — (iv) are satisfied and such that B’ = I.. We will now prove
this:

(i) Obviously, for all n € N we have ¢, € [0, 1].

(71) Since for all n,m € N we have ¢,#q¢,, and f is a bijection we have f(g,)#f(¢mn) and thus

CnFCm.

(i4i) f is a continuous bijection thus, by lemma 2.2.10, f is monotone. Now suppose y1 < y2 €
[0,1] then there exists 1 < x9 € [0, 1] such that f(x1) = y1 and f(z2) = y2. Also, there
exists ¢, € Q such that z; < g, < x2, and thus y; < ¢, < ya.
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(iv) Since, by lemma 2.2.10, f is monotone we must have f(0) =0 and f(1) =1 or f(0) =
and f(1) =

Now we will show f(I3) = I., which proves B’ = I.. Suppose x € I then for all n € N, g, #x.
This means, since f is a bijection, for all n € N, f(g,)#f(z) and thus f(x) € I.. So f(I2) C I..
Now suppose x € I, then for all n € N, ¢,#x. This means, since f is bijection, for all n € N,
fYen)#f~H(x). Thus f~1(x) € I and thus = € f(I3). So I. C f(I2). O

Lemma 5.2.5. Fvery representative of B has measure 1.

Proof. Suppose B’ is a representative of B. By lemma 5.2.4 we know it is of the form I, :=
{z|z € [0,1]|Vn € N[z # c,] } for some countable sequence ¢ = (c,)>2, satisfying condltlon
(i), (i), (797) and (iv) of 5.2.4. Pick any n € N. Define X,, to be the measurable region
R(an(0), an(l), an(2)) where, for all i € N, a,(i) = (¢; — ﬁ,ci + ﬁ) Then u(X,) <

oo

1 1
Z oniiTi < — o Define v, to be the elementary set of rectangles defined by (v, )o, - .-, (Vn)n,
i=1

where Vi < n ((vp)i)o = (nil’ 71:5-11) and ((vn)i)1 = (1 — 2n, 1). Then Ar*(v,) = 2"?:41-1) = 2%
Pick any z € [0,1]. Suppose = ¢ X,,, then:
=3m € N3k € N[a,(m) < 2/ (k) < 2"(k) < ap(m)'] =
Vm € N=3k € N[a,(m)' < 2'(k) < 2" (k) < an(m)"] =
Vm € NVk € Nla,(m) > 2/(k) vV 2" (k) > ap(m)’] =
1 1

We have to show:

(i) « € dom(xy,). For this we show = € I.

(ii) For all i < length(vy,) [z €0 ((vn)i)o = x1.(z) €0 ((vn)i)1]-

First we will prove (i). For this we pick any ¢;. We have to show z#c;, so we need to find a
b € N such that 2'(b) > ¢; or 2”(b) < ¢;. Take a b € N such that I(z(b)) < W' By the above,
we know 2/ (b) < ¢; — gors or 2”(b) > ¢ —i— gz First suppose #/(b) < ¢; — grfzrr, this means
2" (b) < ¢;. Now suppose 2 (b) > ¢; + za77, that means a/(b) > ¢;.
Now we will prove (ii). For this we pick any i < length(v,). We know, by the above, z € I..
Thus x7.(x) = 1. Furthermore 1 <1 and 1 — % < 1 and thus x7.(x) 0 ((vn)i)1-

length(vy,)—1 nal

n—+1

So I.. is measurable and the measure of I, is lim I(v,) = lim Z (

)= 1. O

Lemma 5.2.6. Every representative of B is apart from [0, 1].

Proof. By lemma 4.2 it is enough to show I1#]0, 1] to prove our claim. But this is trivial, since
for example %#I 1- O

Lemma 5.2.7. For every representative B’ of B we have that functions, f : B’ — R are
continuous, but not necessarily uniformly continuous.

To prove the above lemma we will remember the spread oy, from definition 2.1.6.
Lemma 5.2.8. We have the following properties for o;.:

(i) For every real number x € Iy there exists an o € oy such that o = x, and
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(ii) for every o € o, a € I.

Proof. First we will show (ii). Suppose « € oy, then « € o, so « is a real number. Furthermore,
pick n € N, then (¢, < &/(n) V ¢, > a’(n)). Suppose, without loss of generality, (g, < o/(n).
Then |a — gn| > o/(n) — g > 0.

Now we will show (i). Take any real number = € Iy. Since z is real number and by lemma
2.1.5 we find B € oy such that § = x. We will then find our needed o by deleting some
rational segments of 5. We know, since x € Is, for every n € N there exist m,k € N such
that 2'(k) — ¢, > L or g, — 2”(k) > L. Since for every k € N there exists [ € N such that
B(l) E z(k) we know for every n € N there exists an k € N such that ¢, < (k) V g, > " (k).
Now define a(0) to be the first S(m) € N such that g9 < 5'(m) V g9 > B”(m). Suppose we
defined (0), (1), .., a(n —1) then define a(n) to be the first S(m) such that 5(m) C a(n—1)
and such that ¢, < 8'(m) V g, > 8”(m). Now also o« = z and « € oy;. O

Now we will prove lemma 5.2.7

Proof. By lemma 4.3 it is enough to show this for I5. Thus, we will show that functions
f : Iy — R are continuous. We will do this in a similar way as in the proof of theorem 2.1.11.
So suppose f : I — R is a function. We define a function f’ : o3 — 0yeg such that for every
a € oir, f(a) = f'(«). For every a € oy, define f'(a) := Freg(f(a)). With f” we will prove that
f is continuous. Suppose x € Iy and m € N. We want to find n € N such that for every y € I
if [ —y| < 5 then |f(z) — f(y)| < -

Find a € oy, such that a« = x. Notice that for every a € oy there exists £k € N such that
f'()(m+1) = k. Thus we can find a p € N such that for every 3 € oy, if Bp = ap then f'(3)(m+
1) = f'(a)(m+1). We have a(p) C a(p—1). Define § := min(c/(p) —/(p—1),a” (p—1)—a" (p))
and find n € N such that % < 0. We claim this is the n we are looking for. Suppose y € I> and
|lz—y| < 1. Find B € oy such that 3 = y and Bp = ap. This gives f/(8)(m+1) = f'(a)(m+1).
Since f/(a) € oreg We have I(f'(a)(m + 1) < 27™~1  which is easily shown with induction.
Also f(a)(m +1) < f/(a) < f/()'(m+ 1) and f/(@)(m+1) < (8) < f'()"(m +1) and
f/(a) = f(z) and f'(B) = f(y) so |f(z)— f(y)| < L. To show that not every function f : I, — R
is uniformly continuous we consider the following counterexample: f(z) = 1/x. O

5.3 Examples 3 and 4

Brouwer defines the geometric type of J; () and the geometric type of J] ®) as two different
types, where:

Ji=LUuQ

J =LUuQ

Since, by lemma 5.2.3, they are actually of the same geometric type we define C; the be the
geometric type of Ji. Furthermore, we define Cy to be the geometric type of Jo ), Cs to be
the geometric type of J3 (7 and Cy to be of the geometric type of Jy (8, where:

Jo =1 U([0,1]\ I2)

) This is T ;1 from example 4 of Brouwers article.
() This is H; from example 3 of Brouwers article.
) This is Ha from example 3 of Brouwers article.
(D This is 15 from example 4 of Brouwers article.
(®)This is I3 from example 4 of Brouwers article.
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Js=Qu ([0,1]\ Q)
=QU{z|z€[0,1] | ~(z€Q)}

Jy = ([07 1]\@)U([O7 ”\([07 1]\@))
={z[z€0,1] | ~(zcQ}tUfz|zc[0,1]|-(zecQ)}

In a sense, these examples all come from Q. Brouwer also studies similar examples constructed
with @', but by lemma 5.2.3 this is not necessary.

Lemma 5.3.1. J; C Jo, but we can not prove Jo C Ji.

Proof. J; C Js is obvious. To show that we can not prove Jo C J; we will use the real number
r. We can not prove that this number is rational nor that it is irrational but, by lemma 1.3.2,
we know ——(r is rational). Thus we can not prove that % +r is rational nor that it is irrational,
but —m(% + r is rational). This means we can not prove % + r € I, and we can not prove
3 +r € Q. Also, for every x € [0, 1], if z is rational then —(z € I5). So if =—(z is rational) then
—==(z € I5) so =(z € I,) thus z € ([0,1] \ ). So 3 +7 € ([0,1]\ 1) thus 5 +r € J5. O

Recall, for every ¢ = (¢,)0%, I = {z |z € [0, 1]| Vn € N[z #c,]}.

Lemma 5.3.2. Every representative of Cy is of the form I. U {cy|n € N} for some countable
sequence ¢ = (cp)o2q with:

(i) ¥n € Nle, € [0,1]]

(i) ¥ # m € Nen # cm)
(iii) (cn)>y is dense in [0, 1]
(iv) 3n,m € N[cp = 0 A e = 1]

Proof. Suppose C’ is a representative of Cp, then Io UQ ~ C’. This means there exists a
uniformly continuous bijection f : [0,1] — [0,1] such that f(Io UQ) = C’. Now find an
enumeration qo,qi, qz,... of Q and consider ¢y := f(qo),c1 := f(q1),c2 := f(g2),.... This
sequence is a sequence such that conditions (i) — (iv) and are satisfied and such that C' =
I. U{cp|n € N}. In the proof of lemma 5.2.4 we can see that conditions (i) — (iv) are satisfied.
So we will now prove f(Io U Q) = I. U {¢,|n € N}, which proves C' = I. U {c,|n € N}. But
f(IoUQ) = f(I2) U f(Q). By the proof of lemma 5.2.4 we know f(I3) = I. and obviously
7(Q) = {caln € N}. 0

Lemma 5.3.3. Every representative of Co is of the form I. U ([0,1] \ I.) for some countable
sequence ¢ = (cp)02 o with:

(i) Vn € Nle, € [0,1]]
(ii) ¥Yn #m € N[e, # ¢
(111) ()52 is dense in [0, 1]

(i) In,m € N[e, = 0A ¢y = 1]
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Proof. Suppose C is a representative of Cy, then Io U ([0,1]\ I2) ~ C’. This means there exists
a uniformly continuous bijection f : [0,1] — [0,1] such that f(l> U ([0,1] \ I2)) = C’. Now
find an enumeration qo, g1, q2,... of Q@ and consider ¢y := f(qo),c1 := f(q1),c2 := f(q2),---.
This sequence is a sequence such that conditions (i) — (iv) are satisfied and such that C' =
I. U ([0,1] \ I.). In the proof of lemma 5.2.4 we can see that conditions (i) — (iv)are satisfied.
So we will now prove f(I; U ([0,1] \ I2)) = 1. U (][0, 1] \ I.), which proves C" = I. U ([0,1] \ I.).
But f(Io U ([0,1]\ I.)) = f(I2) U f([0,1] \ I.). By the proof of lemma 5.2.4 we know f(I3) = I,
so obviously also f([0,1]\ I2) = [0,1] \ L. O

Lemma 5.3.4. Every representative of either Cv or Co has measure 1.

Proof. Suppose C' is a representative of C; or Cs. By lemma 5.3.2 and 5.3.3 we know C’ is of
the form I. U {c,|n € N} or of the form .U ([0, 1] \ 1) for some ¢ = (¢,)52,. Thus it is enough
to show I. has measure 1. But we already showed this in the proof of lemma 5.2.5. O

Lemma 5.3.5. Every representative of Cs is of the form {c,|n € N} U ([0,1]\ ({cn|n € N}) for
some countable sequence ¢ = (¢y)02y with:

(i) Vn € Nep, € [0,1]]

(11) Yn # m € Nic, # cp]

(111) ()92 is dense in [0, 1]

(iv) In,m € N[e, =0 A ¢ = 1]
Proof. Suppose C’ is a representative of C3, then QU ([0,1] \ Q) ~ C’. This means there exists
a uniformly continuous bijection f : [0,1] — [0, 1] such that f(QU ([0,1] \ Q)) = C’. Now find
an enumeration qo, g1, q2,... of Q and consider ¢y := f(qo),c1 := f(q1),¢c2 := f(g2),.... This
sequence is a sequence such that conditions (i) — (iv) are satisfied and such that C' = {¢,|n €
N} U ([0,1] \ {cn|n € N}). In the proof of lemma 5.2.4 we can see that conditions (i) — (iv) are
satisfied. So we will now prove f(QU([0,1]\Q)) = {cn|n € N}U([0, 1]\{cn|n € N}), which proves
C' = {ealn € N}U([0, 1]\ {ealn € N}). But QU((0,1]\@)) = £(@) U £([0, 1]\ Q). Obviously
we have f(Q) = {c,|n € N}. This immediately implies f([0,1] \ Q) = [0,1] \ {cn|n € N}. O

Lemma 5.3.6. Every representative of Cy is of the form (]0,1] \ {cn|n € N}) U ([0, 1]\ ([0, 1] \
({en|n € N})) for some countable sequence c = (cp)02, with:

(i) Vn € Niey, € [0,1]]

(ii) ¥n # m € N[cy, # cm)
(iii) (cn)Soq is dense in [0,1]
(v) In,m € N[e, =0 A ¢ = 1]

Proof. Suppose C” is a representative of Cy, then ([0,1] \ Q) U ([0,1]\ ([0,1] \ Q)) ~ C’. This
means there exists a uniformly continuous bijection f : [0,1] — [0,1] such that f(([0,1] \
Q) U ([0,1] \ ([0,1] \ Q))) = C'". Now find an enumeration ¢, q1,q2,... of Q and consider
co = f(q),c1 := f(q1),c2 == f(q2),.... This sequence is a sequence such that conditions
(1) — (#v) are satisfied and such that C" = ([0, 1]\ {cp|n € N}) U ([0, 1]\ ([0, 1]\ {cn|n € N})). In
the proof of lemma 5.2.4 we can see that conditions (i) — (iv) are satisfied. So we will now prove
f([()’ 1] \QU [07 1] \ ([07 1] \Q)) = ([07 1} \{Cn|n € N}) U ([07 1] \ ([07 1]\{Cn|n € N}))7 which proves
C" = ([0, 1]\ {ealn € N} U([0, 1]\ ([0, 1]\ {en|n € N})). But f(([0, 1]\Q)U([0,1]\ ([0,1]\Q))) =
£([0,1]\ Q) U f([0,1] \ ([0,1] \ Q)). Obviously we have f(Q) = {c,|n € N}. This immediately
implies £([0, 1\Q) = [0, 1]\ {eal € N} and £([0, 11\ (10, 1\@)) = [0, 1]\ ([0, 1]\ {eal € N}). O
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Lemma 5.3.7. Every representative of C3 and Cy had measure 1.

Proof. Suppose C' is a representative of C5 or Cy. By lemma 5.3.5 and 5.3.6 we know C" is of the
form {c,|n € N}U([0, 1]\ {cn|n € N}) or of the form ([0, 1]\ {c,|n € N})U ([0, 1]\ ([0, 1]\ {cn|n €
N})). Thus it is enough to show that ([0,1] \ {¢,|n € N}) has measure 1. Following almost the
same proof as the proof of lemma 5.2.5 we can prove this. O

Lemma 5.3.8. (i) Every representative of Cy,Co,C3 and Cy is not apart from [0, 1].
(ii) Every representative of C1,Ca,Cs and Cy does not coincide with [0, 1].

(i1i) Every representative of Co,C3 and Cy does not deviate from [0, 1].

Proof. By lemma 4.2 it is enough to show (), (i7) and (i4i) for Ji, Jo, J3 and Ju.

(1) First we will prove =[J; # [0,1]]. Suppose there exists a j € J; such that j # [0,1] or
there exists an x € [0, 1] such that = # J;. Then there exists an x € [0, 1] such that
x # Jp, since J; C [0,1]. So there exists an = € [0, 1] such that for every j € Jy [z # j],
which means for every j € Q' [z # j|, so € I. Since also for every j € Iy[z # j] this
will give [z # z], which is a contradiction.

Secondly we will prove —[Jy # [0, 1]]. Suppose there exists aj € Jy such that j # [0, 1]
or there exists an x € [0,1] such that © # Js. Then there exists an x € [0, 1] such that
x # Ja, since Jy C [0,1]. So there exists an = € [0, 1] such that for every j € Jy [z # j],
which means for every j € I1[z # j], so =(x € I1) and thus z € ([0,1] \ I2). Since also for
every j € ([0,1]\ I2)[j # =] this will give [z # z], which is a contradiction.

Now we will prove —[J3 # [0,1]]. Suppose there exists a j € J3 such that j # [0,1] or
there exists an = € [0, 1] such that = # J3. Then there exists an = € [0, 1] such that
x # Js, since J3 C [0,1]. So there exists an x € [0, 1] such that for every j € Js,z # j,
which means for every j € Q,z # j, so x ¢ Q so z € ([0,1] \ Q). Since also for every

€ ([0,1]\ @),z # j this will give z # z, which is a contradiction.

Lastly we will prove —[Jy # [0,1]]. Suppose there exists a j € Jy such that j # [0,1] or
there exists an = € [0, 1] such that = # J4. Then there exists an x € [0, 1] such that x # Jy,
since Jy C [0,1]. So there exists an = € [0, 1] such that for every j € Jy,x # j, which
means for every j € ([0,1]\ Q),z # j, so z ¢ ([0,1]\ Q) so z € ([0, 1]\ ([0,1] \ Q)). Since
also for every j € ([0,1]\ ([0,1]\ Q)),x # j this will give x # =, which is a contradiction.

(7i) This follows directly from lemma 2.2.8.

(iti) Firstly we prove —=[J, # [0,1]]. So we have to prove —[3j € J, =[j € [0,1]]] and —~[3z €
[0,1] =[z €0 Jo]]. First we will prove =[3j € J, —[j € [0,1]]]. This ib trivial since
Jo € [0,1], so for every j € Ja, j €0 [0,1]. Now we will prove —[3z € | -z €9 Jo]].
Suppose there exists 2 € [0, 1] such that —(x €p Jo, then =(x €y I5) so ﬁ(az € I). This
means z € ([0,1] \ I2), but also =(x €p ([0, 1] \ I2), which is a contradiction.

Secondly will prove —[J5 # [0,1]]. So we have to proof =[3j € Js —[j € [0,1]]] and
=[3z € [0,1] =[x €¢ J5]]. First we will prove =[3; € J3 =[j €0 [0,1]]]. This is trivial since
J3 C[0,1], so Vj € Js [j €0 [0,1]]. Now we will prove =[3z € [0,1] =[x €y J3]]. Suppose
[(3z € [0,1] =[x €¢ J3]], then find this 2. So —(z €y J3]), thus =(z € J3) so =(z € Q)
which means x € [0,1] \ Q. This means z € J3 so x € J3, which is a contradiction.

Lastly we will prove =[J; # [0,1]]. So we have to proof =[3j € Jy =[j € [0,1]]] and
=3z € [0,1] =[x €y J4]]. First we will prove =[3j € Jy —[j €0 [0,1]]]. This is trivial
since Jy C [0,1], so Vj € Jy [j €0 [0,1]]. Now we will prove =[3z € [0,1] —[z €o J4]].
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Suppose [z € [0,1] =[x € J4]], then find this 2. So —(z €¢ J4]), thus ~(z € Jy) so
—(z € ]0,1] \ Q) which means = € [0,1] \ ([0,1] \ Q). This means = € Jy so = € Jy4, which
is a contradiction.

O]

Lemma 5.3.9. For each representative C of Cy or Co we can find a countable sequence
c1,¢2,¢3, - € [0,1] such that we can not prove ci,ca,c3,--- € C and such that ¢; # c; for
each i # j.

Proof. By lemma 4.11 it is enough to show this for J; and Js. First we will show this for
Ji. Define c1,c2,c3,... with ¢; = 27% + r with r as above. Obviously ¢; # ¢; for all i # j.
Furthermore, pick ¢ € N. Since we can not prove r is rational we can not prove 27¢ + r is
rational, so we can not prove 27¢ 4+ 7 € Q. Also, we can not prove r is irrational so we can not
prove 27% 4+ is irrational, so we can not prove 2~ +r € I. Thus we can not prove 2~* +r € J;.
We can do something similar for Js, by taking a sequence by, ba, bs, ... of elements from I» such
that b; # b; for every i # j and then define ¢; = b; 4 r for every i € N. O

Lemma 5.3.10. For each representative C of C1,Cs or Cy we can find an in [0,1] dense set
X such that for all x € X we can not prove x € C' and such that Vx1,x2 € X we have x1 = T3

or x1#xo.

Proof. By lemma 4.12 it is enough to show this for Ji,J3 and Jy. We define X133 ={ z |z €
0,1] | z=a+7r,a€Q}and Xy ={z|z€[0,1] |z=a+7r,a€Q}.

(i) X1 2 proves the claim for J; and J3
(ii) X4 proves the claim for Jy
We will now prove (i) and (ii).

(i) Since Q is dense in R we have X 3 is dense in [0, 1]. Pick z # y € X1 3, then x = a + 7
and y = b+ with a # b € Q. So obviously = # y. Now suppose € X; 2, then x =a+7r
with a € Q. Since we can not prove that r is rational or that r is irrational we can not
prove that a + r is rational or that a + r is irrational. Thus we can not prove a + 1 € Q
and we can not prove a+r € (]0,1]\ Q). Also, suppose we prove a +r € I then we prove
a+r # q for every ¢ € Q. This means a + r ¢ Q, which we can not prove.

(ii) Since Q is dense in R we have X} is dense in [0, 1]. Pick x # y € X4, then x = a + 7r and
y =b+ mr with a # b € Q. So obviously x # y. Now suppose x € X4, then z = a + 7r
with a € Q. Suppose we prove a + 7 € ([0,1] \ Q) then we prove a + pir is not rational.
This means we prove 7 is not rational so we prove r # 0, but we can not prove that.
Suppose we prove a + 7r € ([0,1]\ ([0,1] \ Q)), then we prove == (a + 7r is rational ).
This means we prove ——(7r is rational ) so we prove r = 0, but we can not prove that.

O

Lemma 5.3.11. For every representative C' of C,Co, C3 or Cy there exists a function f: C —
R such that f is discontinuous.

Proof. By corollary 4.4 it is enough to show this for Ji, Jo, J3 and Jy.
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(i) Define a function f : J1 — R by f(c) = 0if ¢ € I and f(c) =1 if ¢ € Q. To prove f
is discontinuous we consider any = € I and n = 2. Since Vg € Q3m € N|x — ¢| > % we

[o¢]
can find ai,a9,as,... such that x = Z ;—Z. Pick any m € N and find £ € N such that
=1
< 1 1 " a ’ > < 1 1
Z2—n§2—m.Deﬁneq:ZQ—Z€Q.Then|q—x|< Z— Z?SW ut
n=k+1 n=1 n=k+1
F@) - f@)]=1> L.

(ii) Define a function f : J» — R by f(c¢) =0if c € Ir and f(c) =1 if ¢ € ([0,1] \ I2). Since
Q C ([0,1] \ I2) the proof of (i) also applies to this function.

(iii) Define a function f : J3 — R by f(c) =01if c € Q and f(c) = 1 if c € ([0,1] \ Q). Since
I, C ([0,1] \ Q) the proof of (i) also applies to this function.

(iv) Define a function f : Jy — R by f(¢) = 0if ¢ € ([0,1]\ Q) and f(c) = 1if ¢ € ([0,1] \
[

([0,1]\Q)). Since Iy C ([0,1]\ Q) and Q C ([0, 1]\ ([0, 1]\ Q)) the proof of (i) also applies
to this function.

O
5.4 Example 5
We define F to be the geometric type of L (9, where L = L' U L” and:
. a
L' = 0,1 =Y 2 |VnéeNa, €{0,2
(v w1 |w=3 250 [ ¥n €N € (0.2)] )
. a
L'={xz|zel01] ’ 33223—2 } dm e N [Vn <mla, € {0,2}] A apm=1A
n=1
Vn > mla, € {0,1,2}] A
Ip,g>mlay, #0 A aq #2]]}
So L' is the Cantor discontinuum and L” are all the 2 € [0,1] which we can write as ;—n
n=1
for some sequence ay,az,as,--- € {0,1,2} and which are in the union of open intervals in the

complement of the Cantor discontinuum. Brouwer seems to think that L” is the union of the all
the open intervals in the complement of the Cantor discontinuum, but this is not true. We can

oo
a
not prove that we can write every = € [0, 1] as Z 3—2 for some sequence ay, ag,as,--- € {0,1,2}.
n=1

Lemma 5.4.1. L' =[0,1] \ L”
Note that we can not prove L” =[0,1] \ L.

Proof. Suppose = > o7, %2 € L'. This means Vn € N [a,, € {0,2}]. So —~[Im € N [a, = 1]],
sox e [0,1]\ L".

0 ap

Suppose x = Y °, g € [0,1] \ L”. This means there does not exists an m € N such that

) This is J from example 5 of Brouwers article.
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am = 1 or there exists m € N such that a,, = 1 but there does not exists p,g > m such that
ap # 0 and a4 # 2. Suppose there does not exists an m € N such that a,, = 1, then clearly for
all n € N, a, € {0,2}. Suppose there exists m € N such that a,, = 1 but there does not exists
p,q > m such that a, # 0 and a; # 2. This means for all p > m, a, # 1. Find m € N such
that a,,, = 1 and consider m + 1. Suppose a,,+1 = 0 (the case where a;,,,+1 = 2 is similar), then
there exists ¢ > m such that a, # 2 and thus there does not exists a p > m such that a, # 0.
This means for all p > m,a, =0. Then z =) 7, g—z with b,, = a,, for all n < m, b,, = 0 and
b, = 2 for all n > m. O

Lemma 5.4.2. Every representative of E is of the form X' U X" for some X', X" C [0,1] such
that X’ =10,1]\ X”.

Proof. Suppose E’ is a representative of E then L' U L” ~ E’. So there exists a uniformly
continuous bijection f : [0, 1] — [0,1] such that f(L'UL") = E’. But f(L'UL") = f(L")U f(L").
Define X’ = f(L') and X” = f(L"). Now suppose = € X', then f~1(x) € L' so f~!(x) ¢ L"
thus z ¢ X"”. Suppose x ¢ X” then f~(z) ¢ L" so f~(z) € L thus z € X". O

We will prove that L’ is measurable and the measure of L’ is 0. This means L” is measurable
and p(L"”) = 1.
Lemma 5.4.3. L’ is measurable and u(L') = 0.

Proof. We will prove that x/ is measurable. We will define an infinite sequence Xg, X1, Xo, ...
of measurable regions and an infinite sequence v, v1,ve,... of elementary sets of rectangles
such that they satisfy (i) and (¢i) of definition 3.3.1.

First, for every m > 1 we will define a measurable region Y,,. We select a subsequence of the

sequence Y7, Ys, Y3, ... to define our sequence Xg, X1, Xo,....
m
. a
Pick m > 1 and define L™ = {z € [0,1] | x = E 3—2 | Vn < mla, € {0,2}]}. The
n=1
number of elements in L™ is 2™. We enumerate L™ with ¢{*,¢7",...,¢5m_,. Now define
1 1

Vi = R(0m(0), am (1), am(2)....) where ap(i) = (¢ — gir.qf" + goir) for all i < 27
1 1

and ap (i) = (¢ _; — 52T, @oh_y + z=1) for all i > 2.
We will prove, for every = € [0,1], if # ¢ Y, then = € [0,1] \ L’ C dom(xy/). Suppose
o.9]

x € [0,1] and suppose = ¢ Y,. Also suppose x € L', then x = Z In with an € {0,2} for

n=1 3"
m a 1
all n > 1. Consider g = Z B—Z Then ¢ € L™ and x > ¢ which means = > ¢ — 527, Also
n=1

1 1 1
z < q—i-?%m < gtz Sox e (q—%,q%—?ﬂ%l) which means x € Y,,. This is a contradiction,

sox € [0,1]\ L. Also, u(Ym) < 52— = 3(3)™.
Now, for every n € N, find m € N such that 3(%)’” < 2% and define X,, = Y,,. So, for every

neN, u(Y,) < 5 and if z ¢ V), then = € dom(xz).

Now pick n € N. We define v, = (vn)o, (Un)1,---, (Vn)n With ((vn)i)o = (n-li-l”;j—ll) and
((vn)i)1 = (0, 5%) for every i < n. Clearly Ar*(v,) < 5. Now suppose z ¢ X,. By the

above we know z € [0,1] \ L’ so xz/(z) = 0. Furthermore 0 < 0 < 5% so x1/(z) g9 ((vn)i)1. So
length(vn)—l

L’ is measurable and p(L') = lim Z 0=0. O

n—00 ‘
=0

The next lemma will prove that every measurable representative of F has measure 1. After
that we will give a representative Lo of F for which we can not prove it is measurable. This
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representative was not given by Brouwer, but we add it to show there exist representatives of
FE for which we can not show they are measurable.

Lemma 5.4.4. Every measurable representative of E has measure 1.

Proof. Suppose E’ is a measurable representative of E. By lemma 5.4.2 E’ is of the form X'UX"
for some X', X" C [0, 1] such that X’ = [0, 1]\ X”. Since X’UX" is measurable, by lemma 3.3.10,
(X'UX")u([0,1]\ (X'UX")) is almost full. But (X’UX")U([0,1]\ (X'UX")) = ([0,1]\ X")U
X"U{z € [0,1]|x ¢ [0,1]\ X" and z ¢ X"} = ([0, 1]\ X")UX". So ([0, 1]\ X")UX" = dom(xx~)
is almost full. Also x x~ is bounded, so by theorem 3.3.4, X" is measurable. Suppose pu(X") = k.
By theorem 3.3.15, (]0,1] \ X”) is measurable and p([0,1] \ X”) = 1 — k. Also, by part 2. of
the proof of theorem 3.3.15, u(X"” U ([0,1] \ X”)) = (X" U X') = 1. O

Before we define a representative of E for which we can not prove it is measurable we need to
define a representative L1 of E which is measurable. This representative was also not given by
Brouwer. We define Ly = L} U LY, where:

[e.o]

an 3"+5
L’lz{a:\:ce[o,l]]w:ZG—n]VnEN[ane{O, 1}
n=1
b 3" 45
L'{:{x\xe[o,u\x—z 6k2 | Vn < klay, € {0, 5 A
3F+1
ap = 9 A

Vm € Nby, € {0,1,2}]
A 3p,q € N[b, # 0 A by # 2]]}

[o¢]
Gn
So L} is an alternative discontinuum and L} are all the = € [0, 1] which we can write as F=
n=1
for some sequence ay,asg,as,--- € {0,1,2} and which are in the union of the open intervals in

the complement of L]. Intuitively, for L] we first ‘delete’ the middle interval of size %. Then,
for every interval that is left (which are two intervals), we ‘delete’ the middle interval of size 6%.
Then for every interval that is left (which are four intervals), We ‘delete’ the middle interval of

size etc. This means we first delete intervals of total size 3, then intervals of total size z

637 97

then of total size 27, etc. See figure 6.

0 1
: | } |
5 1 229
36 3 3 36
— i
7 31
36 36
=" ="

Figure 6: Alternative discontinuum.

We will now show L; is a representative of E.

Lemma 5.4.5. L1 ~ L
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Proof. We will define a total bijection f : [0,1] — [0, 1]. For this we define two sets @, Q" C [0, 1]
with:

Q:={ze0,1]]|3meNz=3 " A Vn<mla, €{0,1,2}] ]}

™ 3" 45
@ ={zec(0,1]|3meNz=Y " A V< mla, € {0, ;H]}U
n=1
k a QIikb
€[0,1] | Tk, leNz= 2425 A
{x€[0,1] | 3,1 € N[z ;n+6kmzl3
345 341
Vn < klan € {0, ;HAGF ;

vm <1 — klam € {0,1,2}] |}

So @ are all the elements from L which we can write as a finite sum and @’ are all the elements
from L; which we can write as a finite sum. We define a bijection g : Q@ — @’ and use this

bijection to define f.
l

For every q = Z ;L—Z € @, define:

n=1
oy
6—2 if Vn <llay, # 1]
9(q) = "?lb 5 17k
S = i 3k < lfay = 1]
n:16 6 m:13

:L;E’ifan:2andif

. k
1fan:2,bk:%

with, if Vn < l[a, # 1] then, for all n <[, b, = 0 if a,, = 0 and b,
Ik < l[ay = 1] then, for all n < k, b, = 0 if a, = 0 and b, = 35
Vm <Il—k, ¢y = k-

and

l/ /

l
We will prove g is a bijection. Take ¢ = Z ;LZ’ q = Z ;LZ € @ and decide [ > " or I’ < 1. Sup-
n=1

Loy
pose, without loss of generality, [ > I’. Then define ¢’ = Z ;LZ with a), =0 for all I’ <n <.

n=1

Suppose ¢ # ¢'. Find the smallest k& < [ such that a; # a}. Suppose ar = 0 and aj, = 2.

n=1

3k41
2

an
67‘1‘

Then g(q) <

aj, = 0. Then g(q) >

n
Now we can define f.
For every = € [0, 1] there exists y, €

for every i € N, y/.,(i), ¥y (i) € Q. Pickx € [0,1] and find y,. Define f(z) = (9(3,(0)), g(47(0))), (g(v,(1)), g(y(1

Clearly, f is a uniformly continuous
f(L) = L. This will prove Ly ~ L.

and g(¢') > g(q) <D _k

3k4+5
2

6k -

Suppose a; = 1 and a) = 2. Then
3k+5
+ 6% Suppose ar = 1 and

an,
_ 167

3k41
2

6F -

n=1
k—1

_'_

6n

n=1

[0, 1] such that y, = 2 and y; = y(0), y=(1), y=(2), ... with,

function. We will prove f is a bijection. Also, we will prove
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First we will prove f is a bijection. Suppose z,z’ € [0,1] and = # 2’. Find y,,y,». Then
Yz # Y so there exists k € N such that y//(k) < v, (k) or y2 (k) < y,(k). Suppose, with-
out loss of generality, y, (k) < vl (k) then g(y)(k)) < g(y..(k)) so f(x)"(k) < f(z') (k)
which means f(z) # f(z’). Now suppose y € [0,1], then there exist z, € [0,1] such that
zy =y and 2y = 2,(0), 2,(1), 24(2), ... with, for every i € N, z;(i),z,(i) € Q. Now con-
sider 2 = (71 (,(0)), g~ (20(O)), (9~ (=) (1)1 g~ (1), (0~ ((2)). 9" ((4@)), ... Then
£(@) = 2, 50 £(@) = y, s0 f(z) =

Now we will prove f(L) = Ly. Suppose x € L, then z € L' or x € L". Suppose x € L. First we

note that g{z |z € Q |z € L'}) ={z | x € Q'| = € L} }. Now, :E—Zg—;lsuchthatVneN,

n=1
m

an € {0,2}. Also W%gnoo Z = z. So, for all k € N exists m € N such that |z — Zl —| <
n=

Pick | € N and find & e N such that for all z,y € [0, 1] if \x—y\ < Qk then \f x) — f(y)] < 4.

m

Find m € N such that \x—z 2| < Qk Then | f(x)— (237)|:\f( r)—g (Z )’_

nl n=1 nl

lign g( Z g—z ,s0 f(x) € L}. A similar argument proves if z € L” then f(z) € L]. O
n=1

Lemma 5.4.6. L) is measurable and p(L}) = %.

Proof. We will define a measurable region X with u(X) = 1 and prove [0,1] \ X = L].

M-1
. a 3™ + 5
Pick M > 1. Define LM := {z € [0,1] | 2 = ) o | Vn <M —1ay € {0, 1}, Also,
=1
3M11 3M45
define L' = {0}. Define Xj; = U <:c+ 6?‘4 , T+ 6?‘4 ) Now define X = U Xn. So
zeLM M>1
X are actually all the open intervals in the complement of L. This means L/ C X. Since
we can not prove, for every = € [0, 1] there exists a sequence ag, ai,az,--- € {0,1,2} such that
(e.9]
x = Z g—z, we can not prove X C L. But we can prove L} = [0,1] \ X.
n=1

We will prove:
(i) Ly € 0,1\ X
(i) [0,1]\ X C L}
(iii) X is measurable and p(X) = 3
With (i) and (ii) we prove L] = [0,1] \ X. Combining this with (iii) we prove L) is measurable
and p(L}) = 3. We will now prove (i), (i) and (iii).

o0

(i) Suppose z € L}. Then z = Z ZZ with a, € {0, 3n2+5} for all n > 1. Now suppose
n=1

M—-1 oM aM
b 377 +1 3 +5
x € X. Then find M > 1 and y = Z 6—2 e LM gsuch that = & <y+ Gy + i )
s n=1
This means y + —3— — 2 < 6%. Now suppose 3m < M such that am 7é bm,. Find the

3m+1

6

smallest such m and suppose a,, = 0 and b, = 255, Then z < Z — + and

2
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(i)

(iii)

M5 m—1 b 3m+5
Y+t 2y = %—F 6?” . This means |z — y| > 6%. So, for all m < M, a;, = byy,.
n=1
31W+1
Now suppose ap; = 0 then x < y + —%—, which is a contradiction. Suppose aj; = 2 then

3M4s
T >y + —ir—, which is a contradiction. So ays = 1, which is a contradiction. So z ¢ X.

k
Suppose = ¢ X. Now suppose z € LY then find k,p,q € N such that z = Z— +

n=1
2 > bm . 3745 3m+1 i
o Z 3m with for all n < k, a, € {0,°52}, ar, = =5=, b, # 0 and b, # 2. Consider
m=1

k—1

(29 3k 41 skys
y = 267 Then, since z ¢ X we have z < y + —5— or ¢ > y + —4—. Suppose
n=1
st 3k15

r <y+ —F—, then by, =0 for all m € N, which is a contradiction. Suppose x > y + &
then b, = 2 for all m € N, which is a contradiction. So = ¢ L" so z € L'.

We will prove X is a measurable region and pu(X) = 3. X = U X where Xy =
M>1
3M41 3M45
U (;U + 6?‘/" , T+ 6?‘/1 ) Define an enumeration «(1), @(2),a(3)... of the intervals
zeLM
in X with (i) is an interval of X|210g(i)41]- X = R(a).

. . _ . . N 2 )
We will prove nh—>120 plan) = 3 For every i € N, l(a(i)) = smmsmery- Also, for every

201 i

. : , ‘ N i B 2 B 2m

i # 7 € N, a(i) and a(j) are disjoint. So p(a2' — 1) = 51 SElos0 ] = 516"' So
, fogn 1

lim p(a2' — 1) = lim — =

i—00 i—00 —_ 6™ 2

Now we can define the representative Lo of E for which we can not prove it is measurable. We
define Ly = L, U LY, where:

k1 a 3141 o0 b
n m
n=1 m=1

3"+ 5
2

IV < ki [ay, € {0, } AVm € N[by, € {0, 2}]}
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! 00
Lg:{:c }me[o,u\amN[zgﬁ — [xzzg%+§zg%A
m=1

3"+5 341
Vn < l[a, € {0, i H A aq= ;_ A

Vim € N[by, € {0,1,2}] A
Ip,q € N[b, # 0 A by # 2]] A

k1 3k141 o0 b

_ Qn 2 m
1>k = [a:_n:16—n+ o mZ::leA
3"+ 5

Vn < kilay € {0, 5 HA

Vm <llam € {0,2}] A ap=1A
Vm > l[b, € {0,1,2}] A

Ip,q > I[by # 0 /\bq#Q]H}

So if =3n € N[n = k] then L, = L} and LY = LY. If 3n € N[n = ky] then L} are ‘small

Cantor discontinua’ inside the intervals left at step k; and L} are again all the real numbers in
o

a
the union of the open intervals in the complement of L, such that x = Z 3—2 for a sequence
n=1

a1,a2,a2, - € {07 17 2}
First we will show Lo is a representative of F.

Lemma 5.4.7. Ly ~ I

Proof. This will be similar to the proof of lemma 5.4.5.
We will define a total bijection f : [0,1] — [0,1]. For this we define two sets Q, Q" C [0, 1] with:

2
n=1
k a 9 -k b
{xe[o,1]|3k,z€N[x:Z—n+6—k o
n=1 m=1
345 3F 41
Vn < klan € {0, ; VA ap = ;

Vmgl—kﬁ[am € {0’172}] ]}
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k1 3k141 -k b
m

Ql;:{x ’1‘6[0,1] {EIZGN[:n: _IZZ—I- Gil Z_lgm]
3"—|—5

Vi < ki [an € {0, H AV < 1=k [bm € {0,2}] } U

v -
{o e |316N31’gz[z’§k1 S -

n=1 6" 61/ m=1 3m
Wn < U[an € {0, 3”;5}] A ar = 31/2“ A
¥m < 1—U[by € {0,1,2}]] A
k1 3k1+1 — k1
l/>k1:>[l‘227 6]€1 Z
"~ 3"—}—5

vn < kifan € {0, 5=} A

Ym <1l — k:l[am € {0,2}] AN ap_g =1A
Vim > ' — kibm € {0, 1,2}]}

So @ are all the elements from L; which we can write as a finite sum and Q' are all the elements
from Lo which we can write as a finite sum. We define a bijection g : Q — Q' and use this

bijection to define f.
l

Suppose ¢ € () and suppose exists [ € N with g = Z Z—Z with a, € {0, %} for all n <[, then

n=1
k1 a 3k141 -k X
+m
define g(q) = 677”1 + 621 3m " with by, = 0 if ag, 1 = 0 and by, = 2 if ag, 1 = %
n=1 m=1
k
Suppose ¢ € @ and suppose exists k,l € N with ¢ = Z ZZ o Z b such that for all n < k,
n=1

an € {0,553} a) = 32—“ and for all m <1 —k, a,, € {0,1,2}, then.

q if k< ky
_ k1 3k141 I—k
9(q) = an 5 b, .
ot o g k>
n=1 =

with, for all m < k, by, = 0 if @y, = 0 and by, = 2 if am = 5.

Similar, but a bit more complicated, to the proof of 5.4.5 we can prove g is a bijection. Now we
can define f.

For every x € [0, 1] there exists y, € [0, 1] such that y, = z and y, = ¥2(0), ¥ (1), y=(2), ... with,
for every i € N, (), y; (i) € Q. Pickz € [0,1] and find y,. Define f(z) = (9(y;(0)), 9(y3(0))), (9(y5(1)), g(yz (1
Clearly, f is a total function. This means, by the uniform continuity theorem, f is uniformly
continuous. We will prove f is a bijection. Also, we will prove f(Li) = Lg. This will prove
Ly~ Ls.

First we will prove f is a bijection. Suppose z,z’ € [0,1] and = # 2’. Find y;,y,». Then
Yz # Yo so there exists k € N such that y/(k) < v, (k) or v’ (k) < vy, (k). Suppose, with-
out loss of generality, y, (k) < y. (k) then g(yi(k)) < g(y..(k)) so f(z)"(k) < f(z')(k)
which means f(z) # f(z’). Now suppose y € [0,1], then there exist z, € [0,1] such that
z, =y and z;, = 2,(0),2,(1), 24(2),... with, for every i € N, 2 (i), 2,(i) € Q. Now con-
sider = (g~ (2)(0)), g~ (21(0), (g~ (2} (1)), g~ (1)), (g7 (=) (2)), g ((/(2)))s ... Then
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f(@) = zy so f(z) =y, so f(z) =y.
Now we will prove f(L1) = Ls. Suppose x € Ly, then z € L} or x € L. Suppose = € L].
o0

First we note that g({z | € Q | z € L}}) = {a | z € Q'| v € Ly}. Now, z = In

n=1 6"
a
3745 . n .
such that Vn € N, a, € {0,°5=}. Also n}gnoozﬁ = x. So, for all k € N exists m € N
n=1
m
1
such that |z — Z%:y < o5+ Pick I € N and find & € N such that for all 2,y € [0,1] if
n=1
1 1 . “ [79) 1
|z —y| < 55 then |f(z) — f(y)| < 5. Find m € N such that |z — 26—n| < o Then
" a " a 1 " a "
ny| n . ny /
MO f(Zl o)l =1f(@) —g(Zl el < 5 So nggnoomzl o) = f(a), so f(z) € L. A
n= n— n—=
similar argument proves if z € L] then f(z) € LY. O

Lemma 5.4.8. We can not prove Lo is measurable.

Proof. Suppose Ly would be measurable. Then, as in the proof of lemma 5.4, LJ would be
measurable and, since L, = [0,1] \ L}, also L}, would be measurable. Suppose —3n € N[n = k1]
then L) = L} so u(Lh) = 3. Suppose 3n € N[n = ky] then p(Lj) = 0. This can be proven
similar to the proof of lemma 5.4.3. Since 0 < % we know, either u(L5) > 0 or p(Lh) < 3.
Suppose u(Lh) > 0 then —3n € N[n = ky]. Suppose p(L}) < 3 then —=—3n € N[n = k;]. This

means we can not prove that Lo is measurable. ]
Lemma 5.4.9. (i) Every representative of E is not apart from [0, 1].
(ii) Every representative of E does not deviate from [0, 1]
(11i) Every representative of E does not coincide with [0, 1]
Proof. By lemma 4.2 it is enough to show (i), (#4) and (¢i7) for L.

(i) We will prove =[L # [0,1]]. Suppose there exists a [ € L such that [ # [0,1] or there
exists an x € [0, 1] such that = # L. Then there exists an x € [0, 1] such that « # L, since
L C [0,1]. So there exists an = € [0, 1] such that for every | € L [z # ], which means for
every l € L" [x # 1], s0o x ¢ L" so x € L'. Since also for every | € L"[x # I] this will give
[z # x|, which is a contradiction.

(it) We will prove —[L # [0,1]]. So we have to proof ~[3l € L —[l € [0,1]]] and =[3z €
[0,1] =[x €o L]]. First we will prove =[3 € L —[l €y [0,1]]]. This is trivial since
L C[0,1],s0Vl € L[l € [0,1]]. Now we will prove =[3z € [0,1] =[z € L]|. Suppose
[3z € [0,1] =[x €¢ L]], find this . Then =(z € L), so ~(z € L") so =(z € L") thus
x € L'. But also ~(x €p L', which is a contradiction.

(#i) This follows directly from 2.2.8.
O

Furthermore we can, for each representative E’ of F find a totally bounded perfect set X such
that for each z € X we can not prove z € E’.

Lemma 5.4.10. For every representative E' of E we can find a totally bounded perfect set X
such that for each v € X we can not prove x € E’.
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Proof. By lemma 4.10 we can prove our claim by proving it for L. Consider

o)

X:{x|x6[0,1]|azzz

n=1

30 | ag, = ag+1 =1 A a; € {0,2} Vid¢ {k1,k1 +1}}

where kp is as in definition 1.3.1. We claim that X is a totally bounded perfect set and for each
z € X we can not prove x € L.

We will first show that X is totally bounded. Pick any m € N. Find the smallest | € N such
that 3! > m. We take n = 2. We consider three options:

1. m < 3kh-1
2. 31« < 3ftl

3. m > 3ktl

1. We define po, p1,...,pp—1 € X withp; => 2 | % g% such that a; = 2%, for each j <[ and
aj = 0 for each j > [ where i1,12,...,7 is the binary notation of i.

2. We define po, p1,...,por—1 € X withp; = 7 | % g& such that a; = 2xi; for each j < k-1
and ap, = ay,+1 = 1 and a; = 0 for each j > k; — 1 where i1,42,...,7;,—1 is the binary
notation of i.

3. First define the smallest number b € N such that m < 38170+ Now we define po, p1, . . . , Dok —146 €
X with p; = > 07 | % such that a; = 2*i; for each j < k; — 1 and ap, = ag,+1 = 1

n=1 3n
and a; = z (k1) for each j < k1 +b+ 1 and a; = 0 for each j > k1 + b+ 1 where
i1,42,...,9k —1 1s the binary notation for L;—bJ and where i,i,...,4 _; is the binary

notation for i modulo 2°

We will now prove that X is closed. For this we need to show:
(i) Vo € X 32’ € X such that x = 2’
(ii) Va2’ € X 3x € X such that x = 2/

Since X C X (i) is clear. Now take 2’ € X. We will construct x = Y °° 3n € X by defining

o0

ay, for every n € N. Pick n € N and find y,, = Z (a?)nk)k € X such that |y, — 2'| < 3nl+1. Define
k=1

bp, = (an)n. We will show, for every n € N, \a: —a/| < &, so by lemma 1.2.6 2 = 2’. By lemma

1.1.7 it is sufficient to prove |x — yn+1| < 3n+1 and |yp41 — /| < 3n+2 By definition of 41
we already know |y,+1 — 2/ < o . Thus we will prove |z — y,11] < o —+—. With the following
claim we see it will be sufficient to prove by = (ap+1)1,---bnt+1 = (nt1)n+1-
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00 o o

c
Claim. Fory:ZS—Z,y’:Z— eXifer=d,...,cp = then |y —y S:%k and

3TL
n=1 n=1
if [y —yl < 3% then ci =¢),...,cp = ¢},
o0
Proof. Suppose y = Z 3n, = Z € X. Suppose ¢1 = ¢},...,c; = ¢, then
= ¢ et c 1
ly—y'| = Z sz - Z 32 35 Now suppose |y —y| < 3% and suppose there
n=k+1 n=k+1

exists m < k such that ¢, # ¢},,. Find the smallest m < k such that ¢,, # ¢},. Decide
m < ky,m € {ki,k1 + 1} or m > ki + 1. Suppose m < ki then cm,cﬁn € {0,2}.

1
Suppose without loss of generality ¢,, = 0 and ¢/, = 2. Then y < Z 3m

and 3/ > Z — + 3—m so ly —vy| > 3% > Sik which is a contradiction. Suppose

m € {ki, kl + 1} then ¢,, = ¢/, = 1, which is a contradiction. Suppose m > ki + 1
then then ¢, c, € {0,2}. Suppose without loss of generality ¢,, = 0 and ¢, = 2.

m—1 1 m—1 9
Theny<23—n+3fmandy_23—n+3—mso\y—y| ingikwhichisa
n=1 n=1
contradiction. So not there exists m < k such that ¢, # ¢}, which means ¢, = ¢}, for
all m < k. O
We will prove by = (ant1)1,---bpn+1 = (@nt1)ns+1 with induction, by using the above claim.
By definition b7 = (a1);. Now suppose we know b; = (an)1,...,bn = (an)n. Then, since
lyn — 2’| < # and |2/ — ypy1| < ?)n%, by lemma 1.1.7, |y, — yns1] < 3% So, by the
above claim, (an)1 = (@n+1)1s--- (@n)n = (@nt1)n, S0 b1 = (ant1)1,---bnt1 = (@n+1)n and by
definition bn+1 = ((ln+1)n+1. OJ

Moreover, Brouwer claims we can construct a representative £’ of E for which we can define a
set X of positive measure such that for each z € X we can not prove x € E’. For this purpose
Brouwer defines a set E7, but we will show that we can not prove that F; is a representative of
E.

We will define the set E; by first defining sets U, and T, for every v > 2, U,, and T, and Uy,
and Tj,. We note that, in defining these sets, Brouwers makes some mistakes. He defines the
sets Ty, T, and T}, and then defines the sets U,, U, and Uy, as their complements. With the
definition of T,,T;, and T}, it would not be clear what U,, U, and Uy, would be. Also, he
claims that the sets T}, T, and T}, are closed and the sets U,, U, and Uy, are regions, but it is
not always the case that the complement of a closed set is a region. This is why we define the
sets Uy, U, and Uy, and then define T),, T, and T}, as their complements.

Following the style of Brouwer, we first define, for every v > 2 a set U]. For this, we define a
function, o : N! — N with o(v) = % So o(1) =0,0(2) =2,0(3) =5,0(4) =9, etc.
Also define, for every v > 1, X, := {7t55[n < 37}, Now:

00
an

= U{m|x€[0,1Hx:

qgeXy n:l

3TL
Vn > mlay, € {0,1,2}] A
Ip,g>mlay #0 A ag#2]] }

—) | ImeN [Vn <mla, € {0,2}] A apm =1A



oo
a
So, for every v > 2, U] are all the = € [0, 1] which we can write as ¢ + (ﬁ Z 3—2) and which
n=1
are in the union of open intervals in the complement of small Cantor discontinua inside the
intervals [0, 3(,—1@)], ey [30;?@ L 1].

Again, Brouwer seems to make the assumption that for every x € [0, 1] we can find a sequence
oo

ai,az,as,--- € {0,2} such that =z = Z ;—Z. With the above definition for U] it is not possible to
n=1
prove that, for every v > 2, U} is a region. So we change the definition a little more. For this we
M-1
define for every M > 1, similar as in the proof of 5.4.6, EM = {z € [0,1] | z = Z g—z | Vn <
n=1
1 2 .
M — 1[a, € {0,2}]}. Now define UM = U (z + W,x#— 3—M) and U := U UM, With
zeEM M>1
this we define, for every v > 2,

1
U-U{xéOl\az— y+q|y€U}
9€ Xy

So U, is really the union of all the open intervals in the complement of small Cantor discontinua
inside the intervals [0, ﬁ], ce [%, 1].

Since, for every v > 2, both U] and U, give the same complement we choose to use U,.
Lemma 5.4.11. For every v > 2, ([0,1]\ U;) = ([0,1] \ Uy).

Proof. We will not prove this is detail but refer to similar proofs.

As in the proof of lemma 5.4.1 we see that, for every v > 2, ([0,1]\U}) = U {z]xzel0,1] |z

qeXy
I o=
+ (W Z ;Ln) | Vn € Nla, € {0,2}] } = T,. With a similar argument as in the proof of

lemma 5.4.6 we can prove, for every v > 2:

(i) T, € ([0,1]\ Uo)
(i) ([0,1]\Uy) € T}

This shows ([0,1]\ U)) = ([0,1] \ Uy). O
We now also define U, and Uy, :

Sooo3h 143 3
e (U Bt 1)

v>1 NgeX,

Up ={z|z€[0,1] | weNp=kAzel,)}

Furthermore, we define T),, T}, respectively T}, to be the complements of U,, U, respectively
Uk,. For Ty, this gives T, = { z | 2 € [0,1] | Vv € N [v = k; — = € T,] }. Also, note the
following: suppose Jv € N [v = ky] then T}, = T, and Uy, = U,. Now suppose —3v € N [v = k]
then Ty, = [0,1] and Uy, = 0.

We will now prove a number of lemma’s about the sets constructed above.

Lemma 5.4.12. The sets U,,U,, and Uy, are regions.
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Proof. Clearly, for every v > 2, U, is a region. Also, clearly U, is a region. Now define

a = a0),a(l),a(2),... with a(i) = (0,0) if i < k; and «a(i) = (3’31(;1%, k:;g_(,ij)l) for every

ki <i < ki 4 3°%1) and a(i) = oy, for all i > ky 4+ 37*1). Uy, = R(a) so Uy, is a region. [

Lemma 5.4.13. For each v > 2, U, is measurable and pu(Uy,) = 1.

Proof. Pick v > 2. Then the number of elements in X, is 3°(*). We have u(U,) = 1(Ugex, (¢, a+
3o(v) -1

1
Fo)= 2 @ =L -

n=0
Lemma 5.4.14. u(T,) > 2.

Proof. We will prove p(U,) < %. U, is a measurable region since, for every m € N there
n k n k
> k=03 142 k=03 ) < L Now

exists v € N such that for all n > wv, ,u( U (¢ +

ST et T o) m
v v > 30(v) o
_ Zn: 3" 1+Zn: 3m 3 _ o(v)—o(v+1) __
w(Us) = N(Uv21 (quxv (q + 30(7]21) ,q + 3U(v+?) >>) < ZW = 23 W)=olv+l) —
n=1 n=1
=1 1
Zl Frasiairs -

Here the first inequality again holds since, for every v > 1 the number of elements of X, is
30(1})_

We define the set E; as the union of T}, and Uy, so By = T}, U Uy,. We define X as the
intersection of Ty, Uz, Us, ..., s0 X =T, N ((Noey Uy).

Lemma 5.4.15. X has a positive measure (i.e. there exists an n € N with |u(X) — 0| > %)
and for every x € X we can not prove x € Fy.

Proof. Since for every v > 2, u(U,) = 1 we have pu(();2, Uy) = 1. This means pu(X) > 2. Also,
suppose z € X and suppose we prove x € Eq, then we prove x € Uy, or we prove x € Ty, .

« Suppose we prove = € T}, and also suppose Jv € N [v = k1]. Find v € N such that v = &y,
then x € T,. By definition of T, x ¢ U,. But then x ¢ X. So we have =3v € N [v = k].
We can not prove this, so we can not prove z € T}, .

« Suppose z € Uy, then Uy, # 0 so =—3v € N [v = k1]. We can not prove this, so we can
not prove x € Uy,.

So, for every x € X we can not prove x € Fj. O
Now we will show that we can not prove that F; is a representative of E.
Lemma 5.4.16. We can not prove L ~ E;.

Proof. Suppose we prove L ~ FE7, then there would exists a uniformly continuous bijection f :
[0,1] — [0, 1] such that f(L) = E; and such that it’s inverse f~! is uniformly continuous as well.
Now suppose —3v € N [v = k], then E; = [0,1]. But then L = f~1(E;) = f71([0,1]) = [0, 1].
So =—=3v € N [v = k1]. So we can not prove such an f exists. O

Lastly, we will show, for every representative E’ of E there exists discontinuous functions
f:E =R
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Lemma 5.4.17. For every representative E' of E there exists discontinuous functions f : E' —

R.

Proof. By lemma 4.3 it is enough to prove this for L. Now define f : L — R with f(z) =0
if x € L’ and f(x) = 1if x € L”. To prove f is discontinuous we consider any x € L’ and

infty
n = 2. Since z € L' we can find a sequence aq,as,as,--- € {0,2} such that x = Z g—z. Pick
= 2 1 b "
any m € N and find £ € N such that Z I < om Define y = 23—2 with b, = a, for
n=k+1 n=1
= 2 1
all n < k and bgy, = 1 for all n > 1. Then y € L”. We have |z — y| < Z T < om but
n=k+1
[f(z) = fly)l =1> . O

5.5 Example 6

We define F to be the geometric type of M (19 where M = M’ U M” and:

M’:{x\me[o,l]]xzzg—;blﬂmeNVn>m[an7é1]}
n=1

M”:{x]xe[O,l]\sz%\VmGNHnEN[an:H}
n=1

Lemma 5.5.1. M’ C ([0,1]\ M") and M" C ([0,1]\ M’ so M’ (1 M" = 0.

Proof. Suppose © € M’ then z = > >, g& and we can find m € N such that for all n > m,
an # 1. Suppose x € M"” then for all £ € N there exists n > k such that a, = 1. Now find
n > m such that a,, = 1. This is a contradiction so x ¢ M".

Now suppose © € M” and suppose x € M’, then by the above we get a contradiction. So
x ¢ M. O

Corollary 5.5.2. For every representative F' of ' we have F' is of the form X' U X" such
that X' N X" = 0.

Proof. Suppose F’ is a representative of F, then there exists a uniformly continuous bijection
f :[0,1] — [0,1] such that f(M) = F’ and such that f~! is uniformly continuous. But
f(M)=f(MUM") = f(M)U f(M") = F'. So define X’ = f(M') and X" = f(M"). Now
suppose there exists € (X’ N X”) then x € X’ so x € f(M') which means f~1(x) € M’. This
means f~1(x) ¢ M” so x ¢ X". This is a contradiction so X = . O

Lemma 5.5.3. 1. Every representative of F is not apart from [0, 1].
2. Every representative of F' does not coincide with [0, 1].

Proof. By lemma 4.2 it is enough to show (i), (#4) and (iii) for M.

(19 This is K from example 6 of Brouwers article.
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(i) Suppose M # [0,1]. Then, there exists = € [0,1] such that [x # M] or there exists

x € M such that [x # [0,1]]. Since M C [0,1] we know there exists x € [0, 1] such
that [v # M]. Find z € [0 1] such that z # M. Then = # M’. We define, for all

k€N, M’-:{Z yz EM/]EIlgk:[EInl;é...?gnl[ng[am:1] A Y ¢

{n1,...,ni}an # 1]]] } So Mk, is the set which consist of all z € M’ that contain at most

k terms where the nominator equals 1. Then M’ = U M;j,. Now, for every k € N, M,

keN
is a fan and Vz € M;3n € N[z'(n) > z V 2”(n) < z]. So, by the fan theorem, for every

k € NGN,Vz € Mj3n < Ni[z'(n) > z V 2"(n) < z]. We will prove there exists w € M"
with z = w. Since [z # M"] this is a contradiction, so =[M # [0, 1]]. For this, we will
prove the following:

k
(1) There exists a sequence aj, ag,as, - - € {0,1,2} such that lim Z I — o
k—o0 —1 n
> a
n "
(2) ) greM
n=1

k k
(1) Define (ay)22; with induction and such that, for every k € N, Z g—z <x< 221 an
1
3 For k =1, decide x < 3 or > 3. This is possible since = # M. Ifzx< % then
ap =0. Ifz > 1 thendec1dea:<3orx> e < 2 thenal—llfx>%then

1
a1 = 2. This means Z <z < Z — + —. Now suppose we defined a1, ao, ..., a.

3
k: k 1
Then decide z < Z Z W of x > Z —k. If 2 < Z 3k+1 then
n=1

k
n 2
ap+1 = 0, else de01dex<z 3k+1 ora:>z 3k+1 Ifx<237+3k+1’

then arp41 = 1, else a4y = 2 Clearly, for every n € N there exists k: € N such that

o
|Z x\<— So, by lemma 1.2.6, hmz Z%El’.
n=0 n=1

oo
(2) To show Z g—z we have to define a real number y = y(0),y(1),y(2),... with y/(k) =

k+1 k+1

1 1

Z g—z ~ 3 and y" (k) = Z g—z + 3 With y we will prove for all m € N there exists
n=1 n=1

n > m such that a, = 1.

" a 1 Ml 1
. n
Pick k € N, then 2/(k) < z < ZB—Z—F? < (k) and o/ (k) = Zg—n— 3 <z <
n=1 n=1

oo
a
2" (k), so x = y. We will now prove, with induction, Z 3—Z e M.

Since y = = we have, for every k € NIN,Vz € M 3n < Ni[z'(n) > z vV 2"(n) < z].

67



NO NO
Find Ny. Consider Z Z—Z and suppose for all n < Ny, a,, € {0,2}. Then Z g—z € Mj,
=1 =1
Noan Noa NOHa 1 nNOa
so y"(No) < ZB—: or y'(Ng) > Zg—z But y"(Np) = Z 372 + 3N > 23—2 and
n=1 n=1 n=1 n=1
No+1 a 1 No+1 a 2 No+1 a
n n .
y'(No) = 13—2—370< lg—wg 2:1371 This means dn < Ny such
n= n= n—=
that a,, = 1. Now suppose we have proven Inj # --- # np < max(Ny, ..., Ny) such

that ap, = 1 for all i < k and a,, # 1 for all n ¢ {ni,...,ng}. Then find Ni4; and
m

m = max(Np,..., Ngi1). Consider Z Z—Z and suppose Iny # --- # ni < m such

n=1
m
that an,, = 1 for all i < k and a,, # 1 for all n ¢ {n4,...,nx}. Then Zg—z € M;,.
1
ma No Nl N
'(Ni) '(N, —=. But y(N;) = S
00 9 m NkJrla 1 ma 9 a
n n n
> 7223 wd v = 3 L SNMszB i
n=Np+2 n=1 n=1 n=1 n=1

means Ing # -+ - # ngy1 < m such that a,, =1 for all ¢ < k + 1. With induction, we
o0
Qn "
see Z 3n e M".
n=1

(7i) This follows directly from lemma 2.2.8.

Lemma 5.5.4. M is measurable and p(M) = 1.

Proof. We will prove M" is measurable and p(M") = 1, then also M is measurable and p(M) =
1.
To prove M" is measurable we have to proof y s~ is measurable. We will define a set Yj; :=

!
{1: |z €10,1] | 3 € N[z = Zg—z A Vn <la, € {0,1,2}}]}. Since for every z € Yy, v € Q
n=1

we can enumerate Yys with qo,q1,q2,. ...

Now define an infinite sequence of measurable regions Xy, X1, Xo,... such that, for each n € N,
Xn = R(an(0), ap (1), an(2),...) with ay (i) = (¢ — 2n+1i+2 1 i + 2n+1+2) for every i € N. Then
1(Xy) < 5 for every n € N. Pick z € [0,1] and suppose z ¢ X,, then Vm € NVk € N[g,, —
gz = @/(k) V 2"(k) > Gm + grperz). Similar to the proof of lemma 5.5.3 we can prove
xe M.

Now define, for every n € N, (vp)o, ..., (vn)n With ((vy)i)o = (nil, ;Lill) and ((vy)i)1 = (1 —
5w, 1). Then Ar* = Ztlo = L

= (ngl)

Suppose x € [0,1] and suppose x ¢ X,,, then by the above x € M"” which means y»(z) = 1.
1

Also 1 — 55 <1< 1s0 xy~(z) € ((vn)i)1. This gives u(M"”) = lim ntl_g O
n—oon + 1

Corollary 5.5.5. M’ is measurable and u(M') = 0.

Proof. Since M is measurable and M = M’ U M” such that M’ N M"” = () we know, by lemma
3.3.12, both M" and M" are measurable. Also, since u(M") = 1 we have p([0,1] \ M") = 0.
Since M C ([0,1] \ M") we know u(M’) = 0. O
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Lemma 5.5.6. Fvery measurable representative of F' has measure 1.

Proof. Suppose F’ is a representative of F' and suppose F’ is measurable. Suppose u(F') < 1.
This means £([0,1] \ F’) > 0 and thus, by lemma 3.3.11, we know 3z € ([0,1] \ F”’) such that
x # F'. By lemma 5.5.3 this is not possible, so u(F’) = 1. O

So every measurable representative of F' has measure 1, but there exist representatives of F' for
which we can not prove they are measurable. We will show this with the set Ms. To define My
we first have to define a measurable representative of ', M;. Brouwer did not mention these
representatives, but we give them to show that we can not prove that every representative of I
is measurable.

We define My = Mj U M{ where Mj = L} UM"" and:

k 0o
2 b
M = el [z= "+ > om
{x|x [7”37 n:16n+6km:13m
3"+ 5 3F+1
|V < Klag € {0, 23] A aj = ; A

3l € NVm > U, #1] }

k [e%)
2 b
Ml = ci01]|z=S"% L 2N m
3"+ 5 3k 41
| n < Ky, € {0, ;_}]/\ak: ; A

Vi € NIm > l[b,, = 1]}
We will first prove that M; is a representative of F' and then prove that M; is measurable.
Lemma 5.5.7. M ~ M;

Proof. This is very similar to the proof of 5.4.5. We will define a total bijection f : [0,1] — [0, 1].
For this we define two sets @, Q" C [0, 1] with:

Q::{xE[O,l]\EImEN[x:ia—n A ¥n < mla, € {0,1,2}] |}

" an 3" +5
Q ={ze[0,1]|ImeNz= "2 A ¥n<mla, € {0, ;}]]}u
n=1
k a 9 l—kb
{xe[o,mak,z@N[x:;ert;kalWA
3"+5 3¢ +1
Vi < klan € {0,223 A ap= >t A

2
Vm <1 — klan, € {0,1,2}] ]}

2

So @ are all the elements from M which we can write as a finite sum and @’ are all the elements
from M; which we can write as a finite sum. We define a bijection g : @ — Q' and use this
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bijection to define f.

l
For every ¢ = Z — € Q, define:

n= 13”
Ny
6% if Vn <llay, # 1]
9(q) = nilb 9 I—k
n Cm .
;6”+6’“;3m if 3k < l[ap = 1]

with, if Vn < l[a, # 1] then, for all n <, b, = 0 if a,, = 0 and b, = Lf if a, = 2 and if
Jk < llay = 1] then, for all n < k, b, = 0 if a, = 0 and b,, = 3n2+5 if a, = 2, bkzngHand
Vm <Il—k, ¢y = Q-

! v o,
We will prove g is a bijection. Take ¢ = Z %’ q = Z 3n € Q and decide [ > " or I’ < I. Sup-
n=1 n=1
Loy

pose, without loss of generality, [ > I’. Then define ¢’ = Z ;LZ with a), =0 for all I’ <n <.

n=1
Suppose ¢ # ¢'. Find the smallest k£ < [ such that a; # a}. Suppose ar = 0 and a}, = 2.
i 3k 41 i 3F+5
— n — mn
Then g(q) < n=1gn + 62’f and g(¢') > n=1gn + 62k . Suppose ar = 1 and aj, = 2. Then
a 3k 41 9 3k+5
n
9(q) < Zk—16—n+627k+@ and g(¢') > g(q) < Zk—lﬁ—n+6—k Suppose a = 1 and
-1 =1
" k-1 a 3k+1 k— 1; 3’“+1
aj, = 0. Then g(q) > 26—Z+ 62k and ¢g(¢') < 6—2
n=1 n=1

Now we can define f.
For every x € [0, 1] there exists y, € [0, 1] such that y, = z and y, = y(0), ¥ (1), y2(2), ... with,
for every i € N, y},(i), 4 (i) € Q. Pickz € [0,1] and find y,.. Define f(x) = (9(y;(0)), 9(y7(0))), (9(y5(1)), g(yz (1
Clearly, f is a total function. This means, by the uniform continuity theorem, f is uniformly
continuous. We will prove f is a bijection. Also, we will prove f(M) = M. This will prove
My ~ M.
First we will prove f is a bijection. Suppose z,z’ € [0,1] and = # 2’. Find y,,y,». Then
Yz # Y so there exists k € N such that y/(k) < vl (k) or y2 (k) < y,(k). Suppose, with-
out loss of generality, yy (k) < vl (k) then g(y)(k)) < g(y..(k)) so f(x)"(k) < f(z') (k)
which means f(z) # f(2’). Now suppose y € [0,1], then there exist z, € [0,1] such that
zy =y and 2y = 24(0), 2,(1), 24(2),... with, for every i € N, 2 (i), /(i) € Q. Now con-
sider = = (g7 (2;(0)), 971 (2,(0))), (97 (2 (1)), g (2 (1)), (97 (2,(2)), g~ ((25/(2))); - - - . Then
£(@) = 2, 50 f(z) = y, s0 f(x) =
Now we will prove f(M) = M. Suppose x € M, then x € M’ or x € M". Suppose x € M’ and
o m

first suppose x € L'. Then z = Z a—z with Vn € Nla,, # 1]. Also lim ;—Z = z. So, for all

n=1 3 m—)oonzl
S 1
k € N exists m € N such that |z — Z 3n < ok Pick I € N and find k¥ € N such that for all
n=1
. 1 1 . - (29 1
r,y € [0,1] if [z — y| < 5 then [f(z) — f(y)| < 5. Find m € N such that |z — Z—| < o
— 3n 2
Then | f(z) —f(i ) = 1f() —g<fj ) < 2 So Tim g<§j ) 300 .
n=1 " n=1 gno T2 meree n=1 3 meree n=1 6"
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Since, for all n € N, a,, # 1 we have, for all m € N for all n < m, b, # L;l So f(x) € L.

[e.9]

a
Now suppose x = Z — ¢ M’ and there exists m € N such that a,, = 1. Also, find p € N

37’L
n—
such that for all n > p, a,, # 1. Now, with the same argument as above, but starting at m,
k m k—m
bn 2
we get kli)rgog(; ;—Z) = klgroloz & + & z; % = f(z). Pick k € N. Since a,, = 1 we have
by = 3m2+1 and for all [ < k — m we have ¢, = ayprg. So, for all m > k — p, ¢, # 1. This
means f(x) € Mj.
A similar argument proves if x € M” then f(z) € M. O

Lemma 5.5.8. M{ is measurable and (M) = %.
k

Proof. We first define Qy = {0} and, for each k > 1, Qx = {z |z € L} |z = 23—2} Now

define Q@ = Uy @k~ So all the elements from @ are all the elements from L} which we can

write like a finite sum. Enumerate, for all k € N, @ with qf, e ,qgk, .... Pick £ > 2 and
k—1 k k
a 3k 41 3k1s5
i < 21 and consider qf_l = Z—Z Then consider (qf 4 & ,qf_l + ). In Mj we
n=1
' ' ) PRETT- LS SR 3k 45
actually make a ‘small version’ of M’ in every interval of the form (¢~ + g a4t —a)

for some qf_l € Q. All of these ‘small versions’ have measure 0 so M{ has measure 0.

R N
We will now define this ‘small version’ of M’ in (¢; " + - ) with Wq;fl. So
3k41 © b,
Wkl—{x|mEM1\x—qkl+ 23—+ & o | 3 € Ném > Iby, # 1]}. Then
3k k m=1
+1 3"+5
qu71 C (Qf T+ 6k an 1y 2—) € [0,1].
00 b,
Furthermore u(M') = p({ | x € [0,1] | z = Z 3m | 3l € NVm > by, # 1]}) = 0, so, by
m=1
lemma 3.3.13 u({ z | z € [0,1] | z = % Z —::L | 3l € NVm > l[by, #1]}) = 0 and p(W,,) = 0.
B oo 2k-1 00
Also M" = Ups1(Uj<or—1 qul) so p(M") = Z(Z M(W(Z_l) = ZO = 0. . Since M] is a
k=1 i=1 k=1
union of two disjoint sets we have p(M]) = (L)) + p(M") = 3. O

Lemma 5.5.9. M{ is measurable and p(M{') = 1.

k
Proof. We first define Qy = {0} and, for each k > 1, Qp = {z | z € L} |z = Zg—Z} Now

n=1

define @ = Uy @k~ So all the elements from @ are all the elements from L} which we can
write like a finite sum. Enumerate, for all £ € N, @), with q’f, . ,qgk, .... Pick k£ > 2 and
a 3V+1 3V+5
i < 2F=1 and consider qk L Z 6% Then consider (qfC 14 & ,qffl + ——). In M{ we
n=1
) ) ] b1 she1 3ki5
actually make a ‘small version’ of M" in every interval of the form (¢; " + —3—, ¢ + &)

2

for some qffl € Q. All of these ‘small versions’ have measure or -
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3k41 3k4ys
We will now define this ‘small version’ of M” in (qf*1 + & ,qffl + ——) with qu_cfl. So

3k

+1 2 = bm —
Z— + & Zl?’m | VI € N3m > I[b,, = 1]}. Then

quq:{l“l'GM{‘x:qk_l_F

1

3k 11 3k15
qu*1 - (qfil + 62]9 aqlkil + 62k ) - [07 1]
[e9) by
Furthermore p(M") = p({ = | = € [0,1] | = = Z 3m | VI € NIm > b, =1]}) =1, so
m=1
— b 2
by lemma 3.3.13 u({ =z | = € [0,1] | z = 6% 3m | 31 € NYm > I[b,, # 1]}) = o and
m=1
/’L(qu_l) = 6%
' oo 2k-1 oo 2k: 1
Also MY = U1 (Uj<or1 qu—l) so p(M{') = Z(Z ﬂ(qufl) = Z 6 2 o
k=1 i=1 k=1
Corollary 5.5.10. M; is measurable and pu(M;) = 1.
Proof. Since Mj and M]" are measurable we have M; measurable, so (M) = 1. O

We will now define the representative My of F' for which we can not prove My is measurable.
We define My = M4 U My, where M} = Ly U M"™" and:

l )

M" :={z|zel0,1] |3l€N[l§k1 = [aczzg—n —1—6%22—2/\
=1

n
n=1

3"+5 3F+1
Vn < la, € {0, ; H A a= ; A
' € NVm > U[by, #1]] A
k1 a ﬁ o) b
>k = [z=) ~ +-2% A
> K1 [x P 6n +6k17§:13m
3" +5
Vi < kafan € {0, ;_}]/\

Vm < I[bm € {0,2}] Ab=1A
3> vm > U[b, # 1]}

e e}
" __ _Zan 2 bm

n=1

3" +5 3k 4+1
o Hha=—
VI' € Nam > U'[by, = 1]] A

3 oo

Vn < l[a, € {0, A

1>k = [z= a—"+izb—m/\

¥m < b € {0,2}] Ab=1A
V' > 13m > U'[by, = 1]]}
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First we will prove that My is a representative of F' and then we will show that we can not
prove that Ms is measurable.

Lemma 5.5.11. M; ~ M.

Proof. This will, again, be very similar to the proof of 5.4.5 and we will not give a detailed
proof again. O

Lemma 5.5.12. We can not prove that My is measurable.

Proof. By lemma 3.3.12 it is enough to prove that M} is not measurable. Suppose —-3n € N[n =
k1] then M} = M{ so u(Mj) = 3. Suppose In € N[n = ki then p(M}) = p(Ly) + p(M") =
0+0 = 0. But 0 < 1 so if M} is measurable then p(MJ}) > 0 or (M) < . Suppose u(M3) >0
then —3n € N[n = k1], but we can not prove this so we can not prove p(M}) > 0. Suppose
1(M3) < % then ——=3n € N[n = ki), but we can not prove this so we can not prove p(M3) > 1.
This means we can not prove M is measurable. O

Furthermore we can, again, for each representative F’ of F find a totally bounded perfect set
X such that for each z € X we can not prove z € F’.

Lemma 5.5.13. For every representative F' of F we can find a totally bounded perfect set X
such that for each x € X we can not prove x € F'.

Proof. By lemma 4.10 it is enough to show it for M. Consider

X:{x|1:€[0,1]|93:Z§—Z|Vn>k1[an:1]/\ Vn < kilan € {0,2}] }

n=1

We will first show that X is totally bounded. Pick any m € N. Suppose m < k;. We define

PO, P1s - -+ Pam—1_1 With p; = 3> | & such that a,, = 24, for each n < m —1, a,, = 0 for each
m <n <k and a, = 1 for each n > k; where i1,...,%,,_1 is the binary notation of .
Suppose m > ki. We define po, 1, ..., por—1 with p; =5 7, g% such that a, = 2 * i, for each
n < ki and a, = 1 for each n > k; where iy, ...,4,,_1 is the binary notation of i.

Now we will prove that X is closed. For this we need to show:
(i) Vo € X 32’ € X such that 2 = 2/
(ii) V2’ € X 3z € X such that x = 2/

Since X C X (i) is clear. Now take 2/ € X. We will construct z = 5°° %2 ¢ X by defining

~ n=1 3n
an for every n € N. Pick n € N and find y,, = Z (a?)nk>k

k=1
by = (an)n. We will show, for every n € N, |z — 2| < 2, so by lemma 1.2.6 2 = 2/. By lemma
1.1.7 it is sufficient to prove |z — yp41| < 371% and |yp+1 — 2| < 371% By definition of 41
we already know |y,+1 — 2/ < 371% Thus we will prove |z — yp41| < 3,1% With the following
claim we see it will be sufficient to prove by = (ap+1)1,- -+, bntr1 = (Gpt1)nt1-

€ X such that |y, — /| < gr5r. Define

73



00 o o

c
Claim. Fory:ZS—Z,y’:Z— eXifer=d,...,cp = then |y —y S:%k and

3TL
n=1 n=1
if [y —yl < 3% then ci =¢),...,cp = ¢},
o0
Proof. Suppose y = Z 3n, = Z € X. Suppose ¢1 = ¢},...,c; = ¢, then
= ¢ et c 1
ly—y'| = Z sz - Z 32 35 Now suppose |y —y| < 3% and suppose there
n=k+1 n=k+1

exists m < k such that ¢, # ¢},,. Find the smallest m < k such that ¢, # ¢},,. Decide
m < ky or m > k1. Suppose m < kp then cm, /. € {0,2}. Suppose without loss of

m—1

1 2
generality ¢,, = 0 and ¢/, = 2. Then y < Z—+—andy’2 23—n+3—m SO
ly =y > % > 3,“ which is a contradlctlon Suppose m < ky, then ¢,, = ¢, = 1,
which is a contradiction. So not there exists m < k such that ¢, # cm which means

em = ¢, for all m < k. O

n=1

We will prove by = (ant1)1,---bp+1 = (@nt1)ns+1 with induction, by using the above claim.
By definition b7 = (a1);. Now suppose we know b; = (an)1,...,bn = (an)n. Then, since
lyn — 2| < ?)n% and |2' —yn41| < :,)n%, by lemma 1.1.7 |y, — ynt1| < 3% So, by the above claim,
(an)1 = (an+1)1,---(@n)n = (@nt1)n, 0 b1 = (anti)1,-..-bpt1 = (@p+1)n and by definition
bn1 = (Gnt1)n+1- O

Moreover, Brouwer again claims we can construct a representative F; of F' for which we can
define a set X such that for each £ € X we can not prove z € F7 and such that the measure
of X is 1. Brouwer here gives a number of definitions of sets which are composed to a set [}
and a set X. For us it is not clear what he tries to define, so we will not cover this construction
in this thesis. Lastly, we will show, for every representative F’ of F' there exists discontinuous
functions f: F' — R.

Lemma 5.5.14. For every representative F' of F there exists discontinuous functions f : F' —

R.

Proof. By lemma 4.3 it is enough to prove this for M. Now define f : M — R with f(z) =
if z € M and f(x) =1if 2 € M". To prove f is discontinuous we consider any x € M’ and

infty
n = 2. Since x € M’ we can find a sequence aq,as,as,--- € {0,1,2} such that = = Z g—z and
such that there exist p E N such that for all n > p, a, # 1. Pick any m € N and ﬁnd keN
o
2 b
such that 2 < om . Define y = Z 3% with b, = ay, for all n < k and by, = 1 for all
n=k+1 n=1
2
n> 1 Theny e MY, Wehave [v—y| € 37 = < o but /(@) — f(y)| = 1> L m
n=k+1

5.6 Example 7
We define G to be the geometric type of N (1), where N = M’ U [0,1] \ M’.

Lemma 5.6.1. N is measurable and u(N) = 1.

(D This is Ko from example 7 of Brouwers article.

74



Proof. We already know M’ is measurable and p(M’) = 0. This means [0, 1] \ M’ is measurable
and p([0,1]\ M’) = 1. So N is measurable and u(N) = 1. O

Lemma 5.6.2. Every representative of G is of the form X' U X" for some X', X" C [0,1] such
that X" =10,1] \ X'.

Proof. Suppose G’ is a representative of G then M’ U ([0,1] \ M’) ~ G’. So there exists a
uniformly continuous bijection f : [0,1] — [0,1] such that f(M' U ([0,1] \ M')) = E’. But
FOM'U(0,1]\ M) = F(M")U £([0,1]\ M"). Define X' = f(M’) and X" = £([0,1]\ M"). Now
suppose © € X”, then f~1(z) € [0,1] \ M’ so f~1(z) ¢ M’ thus z ¢ X'. Suppose = ¢ X' then
fHzx) ¢ M’ so f~Y(x) €[0,1]\ M’ thus x € X". O

Lemma 5.6.3. FEvery measurable representative of G has measure 1.

Proof. Suppose G’ is a measurable representative of G, then G’ is of the form X’ U X" for some
X', X" C [0,1] such that X” = [0,1] \ X’. Since X’ U X" is measurable, by lemma 3.3.10,
(X'UX"M U ([0,1]\ (X'UX")) is almost full. But (X'UX")U([0,1]\(X'UX")) = ([0,1]\ X")U
X'U{ze[0,1]jx ¢ [0,1]\ X and z ¢ X'} = ([0,1] \ X") U X". So ([0,1]\ X")U X" = dom(xx~)
is almost full. Also yx is bounded, so by theorem 3.3.4, X’ is measurable. Suppose u(X') = k.
By theorem 3.3.15 [0,1] \ X’ is measurable and p([0,1] \ X’) = 1 — k. Also, by part 2. of the
proof of theorem 3.3.15, u(X' U ([0,1] \ X)) = u(X' U X") = 1. O

We will also show that there exists a representative Na of G which is not measurable. To define
this representative we first have to define the measurable representative Ni.

We define N7 = Mj U ([0,1] \ M{). This is clearly a representative of G since we already saw
M’ ~ M{ so ([0,1] \ M’) ~ ([0,1] \ M) so N ~ Nj. Also, clearly N; is measurable since M] is
measurable with p(M]) = 3.

Now we define No = M}U([0, 1]\ MJ). Again, clearly this is a representative of G since M4 ~ M.
Also M} is not measurable so ([0,1] \ M}) is not measurable, thus by lemma 3.3.12 Ny is not

measurable.
Lemma 5.6.4. For every representative G' of G we have:
(i) G' is not apart from [0,1]
(it) G' does not deviate from [0,1]
(11i) G’ does not coincide with [0, 1]
Proof. By lemma 4.2 it is enough to prove (i), (ii) and (iii) for N.
(i) Suppose N # [0,1] then 3z € [0,1][z # N] or 3z € N[z # [0,1]. Since N C [0, 1] we must
have 3z € [0,1][z # NJ|. Find this . Then = # M’ so z ¢ M’ so z € ([0,1] \ M’). But
x # [0,1] \ M’, which is a contradiction. This means =[N # [0, 1].
(ii) Suppose N # [0,1] then 3z € [0,1]-[z €y N] or existsz € N—[z € [0,1]. Since N C [0, 1]
we must have 3z € [0,1]-[z €p L]. Find this z. Then -~z €9 M’ so x ¢ M' so x €

([0,1]\ M"). But -z €0 ([0,1] \ M'), which is a contradiction. This means =[N % [0, 1]].

(iii) This follows directly from lemma 2.2.8
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Again, Brouwer claims we can construct a representative G of G for which we can define a
set X such that for each x € X we can not prove x ¢ G and such that X is measurable and
1(X) = 1. To construct this representative he uses the representative Fj. Since for us it is not
clear what F} is, it is also not clear what G is.

Lastly, we will show, for every representative G’ of G there exists discontinuous functions
f:G =R

Lemma 5.6.5. For every representative G' of G there exists discontinuous functions f : G' —
R.

Proof. By lemma 4.3 it is enough to prove this for N. Now define f : N — R with f(z) =0 if
x € M and f(x)=1if x ¢ M'. Since M” C ([0,1] \ M’) the proof of lemma 5.5.14 also proves

that this function is discontinuous. O
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6 Conclusion

Brouwers goal was to find a pseudofull subset of [0, 1] which is very much ‘alike’ [0, 1] such that
functions defined on these pseudofull domains are not necessarily (uniformly) continuous. He
tries to find a property, which from a classical point of view, means they coincide with [0, 1]. In
the first example we see that if we have X C [0, 1] such that X seems to coincide with [0, 1] we
can not guarantee that there exists an element in X. This shows that, even with the strongest
form of being ‘alike’, only this property is not enough for a pseudofull subset of [0, 1] and we
also need our pseudofull domain to be almost full. By the continuity principle we can even
conclude that it is too much to state that these pseudofull domains should seem to coincide
with [0, 1], since then we exclude all sets which are the union of two disjoint sets which both
contain at least one element. This is why Brouwer concludes that the properties for being ‘alike’
[0, 1] should be that a pseudofull domain does not deviate from [0, 1].

We also see in example 2 that only the property of being almost full is not enough, since every
representative of B is apart from [0,1] and function defined on any representative of B are
continuous. This why Brouwer concludes that the pseudofull subsets of [0, 1] should not deviate
from [0, 1] and should be almost full.
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