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Abstract

In 1927 L.E.J. Brouwer wrote an article called “Über Definitionsbereiche von Funktionen” (“On
the domains of definition of functions”). In this article he proves that, intuitionistically, every
total function on the closed interval [0, 1] is uniformly continuous. He then wonders if we can
find a notion of a pseudofull domain (a pseudofull subset of [0, 1]) so that functions defined on
a pseudofull domain are not necessarily (uniformly) continuous. A pseudofull domain will have
to be very much ‘alike’ [0, 1] and will have to be almost full in the measure theoretic sense. A
classical mathematician would not see a difference between such a pseudofull domain and [0, 1].
In the fifth paragraph of his article he gives seven examples for possible pseudofull domains. In
this thesis we investigated these examples and verify most of the properties Brouwer claims for
them. For some it seems that Brouwer makes a mistake.
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Introduction

In this chapter we will give an introduction to this thesis. The goal of this thesis is to discuss
the results of the fifth paragraph of L.E.J. Brouwer’s 1927 article “Über Definitionsbereiche von
Funktionen” [4]. We will first give a historical introduction about this article. Then we will
outline what we will discuss in this thesis. We will also introduce some notation that we will use
and then discuss some intuitionistic background which will become very useful in this thesis.

A short historical introduction

In 1927 L.E.J. Brouwer wrote an article called “Über Definitionsbereiche von Funktionen” (“On
the domains of definition of functions”) [4]. In this article he proves that, intuitionistically, every
total function on the closed interval [0, 1] is uniformly continuous (theorem 3). What is needed
for this proof are his famous bar theorem and fan theorem, which are both discussed in this
article. Both the bar theorem and the fan theorem are related with the way Brouwer treated
the continuum. For more background information about the bar theorem and the fan theorem,
see [9]. In paragraph 4 of the article he then wonders if we can find a notion of a pseudofull
domain (a pseudofull subset of [0, 1]) so that functions defined on a pseudofull domain are not
necessarily (uniformly) continuous. A pseudofull domain will have to be very much ‘alike’ [0, 1]
and will have to be almost full in the measure theoretic sense. A classical mathematician would
not see a difference between such a pseudofull domain and [0, 1]. In the fifth paragraph of his
article he gives seven examples for possible pseudofull domains and discusses the properties of
these examples. In this thesis we will investigate these examples and their properties.

Outline

In the first chapter we will introduce real numbers and their properties. Also, we will introduce
the continuum and define a number of relations between subsets of the continuum, which have
been introduced by Brouwer.
In the next chapter we will discuss continuity, which will involve the important continuity
theorem and uniform continuity theorem. We will introduce the notion of a spread and the
continuity principle, which are needed to prove the continuity theorem. Also we will introduce
the notion of a fan, the notion of a bar, the fan theorem and the extended fan theorem, which
are needed to prove the uniform continuity theorem.
In chapter 3 we will discuss intuitionistic measure theory. We will define what an almost full
set is, when a function is measurable and when a set is measurable.
In the examples Brouwer gives in his article, he only discusses geometric types and in chapter 4
we will define what a geometric type is and discuss some intuitionistic mathematics on geometric
types. This will be useful in the discussion of the examples of Brouwer.
In the final chapter we examine Brouwers examples and verify most of the properties that
Brouwer claims for them. For some it seems that Brouwer makes a mistake.

Notation

We introduce a number of notations used in this thesis.
For every n ∈ N, Nn is the set of all sequences of natural numbers of length n. So Nn :=
{(a0 . . . , an−1) | ∀i < n[ai ∈ N]}.
N∗ is the set of all finite sequences of natural numbers. So N∗ =

⋃∞
n=0 Nn

NN is the set of all infinite sequences of natural numbers. So NN := {(α(0), α(1), α(2), . . . ) |∀i ∈
N[α(i) ∈ N]}.
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Suppose a ∈ N∗ and the length of a is n. Then, for every i < n, āi is the finite sequence
consisting of the first i numbers of the sequence a. So, for every i < n, āi = (a0, a1, . . . , ai−1).
Suppose α ∈ NN. Then, for every i ∈ N, ᾱi are the first i numbers of the sequence α. So, for
every i ∈ N, ᾱi = (α(0), α(1), . . . , α(i− 1)).
Let < > : N∗ → N be a fixed bijection between all finite sequences of natural numbers and the
natural numbers. So, when a0, a1, . . . , an ∈ N∗ then < a0, a1, . . . , ak > ∈ N. Also < > is the
natural number corresponding to the empty sequence.
Let ∗ : N×N→ N be a function where for every n,m ∈ N, n∗m corresponds to the concatenation
of the sequences corresponding to n and m via the bijection < >.

Intuitionist background

We will now introduce some intuitionistic background, needed to understand this thesis. First
we will introduce the natural numbers, the integers and the rational numbers. The real numbers
will be introduced in chapter 1. Then we will introduce some intuitionistic logic.

The natural numbers, the integers and the rational numbers

In his dissertation “On the Foundations of Mathematics” [1] Brouwer first starts with a chapter
called ’The construction of mathematics’. Here he first introduces the arithmetic of natural
numbers, then he introduces the integers and the rational numbers.
Brouwer introduces the natural numbers as something very fundamental. The construction of
the natural numbers is based on an observation of a move in time. Suppose we start now, we
experience a past and a present. We give this past the number 1 and this present the number
2. But as soon as we number the past and the present, the present already becomes a new past
and creates a new present. This new present will be the number 3 and continuing this way we
create the natural numbers.
All kinds of rules for calculating with natural numbers, such as the commutative property,
follow from the fundamental theorem of arithmetic as stated in [1]. This says that any fixed set
of signs will give us the same natural number when we count it, independently of the order in
which we count it. So, when we count a fixed set of signs we make a one-to-one correspondence
with a sequence of natural numbers. And no matter in which order we count the signs, the
sequence of natural numbers will stop at the same number.
From this follows, for example, 2 + 3 = 3 + 2. By 2 + 3 Brouwer means to first count to
2, but when counting on we let the elements after 2 have a one-to-one correspondence with
the sequence 1, 2, 3. So we get 1, 2, 3, 4, 5 where 3, 4, 5 corresponds to 1, 2, 3. When we do a
permutation we get 3, 4, 5, 1, 2 but 3, 4, 5 still corresponds to 1, 2, 3 and 1, 2 to 1, 2, which is
3 + 2. So the sequence 1, 2, 3, 4, 5 obtained by 2 + 3 can be counted in a different order and then
corresponds one-to-one to what we get from 3 + 2.
If we continue the sequence of natural numbers to the left we obtain −1,−2,−3, . . . . Addition
of integers is naturally defined by counting in two directions.
By a rational number we mean a pair of ordinal numbers (a,b) written in the form a

b . We define
−a
b = a

−b to make sure the denominator is always positive. We order the rational numbers by:

1. a
b = c

d if and only if a× d = b× c, and

2. a
b <

c
d if and only if a× d < b× c, and

3. a
b >

c
d if and only if a× d > b× c

We define a
b + c

d = ad+bc
bd and a

b ×
c
d = ac

bd . Now commutativity, associativity and distributivity
are clear.
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Intuitionistic logic

We will now introduce some intuitionistic logic, but we will not prove any of it. See [6] for more
background. First we will discuss some propositional logic and then some predicate logic.
Suppose p, q are propositions, then:

(i) ` p =⇒ ¬¬p

(ii) ` (p =⇒ q) =⇒ (¬q =⇒ ¬p)

(iii) ` ¬(p ∨ q) =⇒ ¬p ∧ ¬q

(iv) ` ¬p ∧ ¬q =⇒ ¬(p ∨ q)

(v) ` ¬p ∨ ¬q =⇒ ¬(p ∧ q)

(vi) ` ¬¬(p ∨ ¬p)

(vii) ` ¬¬(p ∧ q) =⇒ ¬¬p ∧ ¬¬q

(viii) ` ¬¬p ∧ ¬¬q =⇒ ¬¬(p ∧ q)

(ix) ` ¬¬p ∨ ¬¬q =⇒ ¬¬(p ∨ q)

Note that the inverse implication of (i), (ii), (v) and (ix) do not hold.

Now suppose P is a predicate, then:

(i) ` ∀x[P (x)] =⇒ ¬∃x¬[P (x)]

(ii) ` ∃x[P (x)] =⇒ ¬∀x¬[P (x)]

(iii) ` ∀x¬[P (x)] =⇒ ¬∃x[P (x)]

(iv) ` ¬∃x[P (x)] =⇒ ∀x¬[P (x)]

(v) ` ∃x¬[P (x)] =⇒ ¬∀x[P (x)]

(vi) ` ¬¬∀x¬¬[P (x)] =⇒ ¬∃x¬[P (x)]

(vii) ` ¬¬∀x[P (x)] =⇒ ∀x¬¬[P (x)]

(viii) ` ¬¬∃x[P (x)] =⇒ ¬∀x¬[P (x)]

(ix) ` ¬∀x¬[P (x)] =⇒ ¬¬∃x[P (x)]

Note that the inverse implication of (i), (ii), (v), (vii) and (x) do not hold.

5



6



1 The continuum

In this chapter we will discuss the intuitionistic continuum. We will define the notion of a real
number (1.1) and discuss some relations between real numbers (1.2). Then we will define a
special real number (1.3), which will be very useful in the next chapters. Furthermore we will
discuss how real numbers can relate to sets and how sets of real numbers can relate to each
other.

1.1 Real numbers

In this section we will define real numbers. To define real numbers we need a fixed bijection
λ : N → Q × Q. Also we need two functions P0 : Q × Q → Q and P1 : Q × Q → Q with
P0(q0, q1) = q0 and P1(q0, q1) = q1. We introduce the following abbreviations for all n ∈ N:
n′ = P0(λ(n)) and n′′ = P1(λ(n)).
Furthermore, S = {n ∈ N | n′ ≤ n′′ }. So S is the set of (code numbers of) rational segments.
For all n,m ∈ N we define n @ m if and only if m′ < n′ ≤ n′′ < m′′ or n v m if and only if
m′ ≤ n′ ≤ n′′ ≤ m′′. Lastly we define l : N → Q, a length function for rational segments: for
each n, l(n) = n′′ − n′.
We will now define a real number as a function from N to N.

Definition 1.1.1. A real number x is a function x : N→ N such that:

(i) ∀n ∈ N [x(n) ∈ S] (each x(n) is a rational segment), and

(ii) ∀n ∈ N [x(n+ 1) @ x(n)] (each rational segment contains the next rational segment), and

(iii) ∀m ∈ N∃n ∈ N [l(x(n)) ≤ 2−m] (the rational segments get arbitrarily small).

We now introduce R ⊂ NN, the set of all real numbers. For readability we define, for all real
numbers x and for all n ∈ N, x′(n) = (x(n))′ and x′′(n) = (x(n))′′.

We define a sequence of sets of ‘canonical intervals’, as follows

Definition 1.1.2. For every m ≥ 1 ∈ N we define:

λm := {n ∈ S | l(n)2m−1 = 1 ∧ n′2m ∈ Z}

Definition 1.1.3. A real numbers x is a regular real number if and only if for all n ∈ N,
x(n) ∈ λ, where λ =

⋃
n∈N λn.

We define addition and multiplication on the real numbers.

Definition 1.1.4. Suppose x and y are real numbers.

(i) For each n, (x+ y)(n) := x(n) +S y(n) := (x′(n) + y′(n), x′′(n) + y′′(n))

(ii) For each n, define Mn := {x′(n)y′(n), x′(n)y′′(n), x′′(n)y′(n), x′′(n)y′′(n)}.
Define (xy)(n) := x(n) ·S y(n) := (min(Mn),max(Mn))

It is easy to see that x+ y and xy are real numbers.

Definition 1.1.5. For every real number x we define a real number −x. For each n, −x(n) :=
(−x′(n),−x′′(n)) := (−(x′′(n)),−(x′(n)).

Also, we define the distance between real numbers. Note that the distance between real numbers
does not have to exist.
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Definition 1.1.6. Suppose x and y are real numbers. The distance between x and y is |x−y| =
max(x− y, y − x).

The following lemma will be useful.

Lemma 1.1.7. Suppose x, y and z are real numbers and suppose |x− y| ≤ 1
n and |y − z| ≤ 1

m ,
then |x− z| ≤ 1

n + 1
m .

Proof. Suppose x, y and z are real numbers and suppose |x − y| ≤ 1
n and |y − z| ≤ 1

m . Then
x − y ≤ 1

n , y − x ≤
1
n , y − z ≤

1
m and z − y ≤ 1

m . So x − z ≤ x − (y − 1
m) ≤ 1

n + 1
m . Also

z − x ≤ z − (y − 1
n) ≤ 1

m + 1
n . So max(z − x, x− z) ≤ 1

n + 1
m .

In the next section we define a number of relations on real numbers.

1.2 Relations between real numbers

First we define the relations < and ≤.

Definition 1.2.1. Suppose x and y are real numbers. We define:

(i) x < y if and only if ∃n ∈ N[x′′(n) < y′(n)]

(ii) x ≤ y if and only if ∀n ∈ N[x′(n) ≤ y′′(n)]

Next we define a number of (in)equality relations on real numbers. These notions are all
introduced in [3] (1).

Definition 1.2.2. Suppose x and y are real numbers. We define:

(i) x coincides with y (notation: x ≡ y) if and only if ∀n ∈ N∃m ∈ N[x(n) w y(m)] and
∀n ∈ N∃m ∈ N[y(n) w x(m)]. (Brouwer: Zusammenfallung)

(ii) x is apart from y (notation: x # y) if and only if ∃n ∈ N∃m ∈ N[x′(n) > y′′(m) ∨
x′′(n) < y′(m)]. (Brouwer: Entfernung)

(iii) x deviates from y (notation: x 6≡ y) if and only if ¬[x ≡ y]. (Brouwer: Abweichung)

There exist equivalent notions of apart and coincidence.

Lemma 1.2.3. For all real numbers x, y,

(i) x # y if and only if ∃k ∈ N[x′(k) > y′′(k) ∨ x′′(k) < y′(k)], and

(ii) x ≡ y if and only if ∀n ∈ N [x′(n) ≤ y′′(n) ∧ y′(n) ≤ x′′(n)].

Proof.

(i) Suppose x and y real numbers and ∃n ∈ N∃m ∈ N[x′(n) > y′′(m) ∨ x′′(n) < y′(m)].
Note that for all real numbers y: ∀n ∈ N∀m ∈ N [m > n =⇒ (y′(n) < y′(m) <
y′′(m) < y′′(n))]. Find n,m ∈ N such that x′(n) > y′′(m) ∨ x′′(n) < y′(m) and define
k = max(n,m). Now x′(k) > y′′(k) or x′′(k) < y′(k).

(ii) Suppose x and y are real numbers and x ≡ y. We first note that for all real numbers y:
∀n ∈ N∀m ∈ N [y′(m) < y′′(n)]. Pick any n ∈ N. Find m ∈ N such that x(n) w y(m).
Then x′(n) ≤ y′(m) ≤ y′′(n). Also y′(n) ≤ y′′(m) ≤ x′′(n). Now suppose ∀n ∈ N [x′(n) ≤
y′′(n) ∧ y′(n) ≤ x′′(n)] Pick any n ∈ N. We distinguish two cases:

(1)There is an English translation of Brouwer’s original article, see [8]. The terms used in this translation differ
from the terms we use.

8



(a) x′(n) ≤ y′(n) ≤ y′′(n) ≤ x′′(n)

(b) y′(n) ≤ x′(n) ≤ y′′(n) ≤ x′′(n)

The cases y′(n) ≤ x′(n) ≤ x′′(n) ≤ y′′(n) and x′(n) ≤ y′(n) ≤ x′′(n) ≤ y′′(n) are of course
equivalent, since x and y are arbitrarily chosen.
We first consider case 1. x(n) w y(n) so ∃m ∈ N[x(n) w y(m)]. Thus we need to find
an m ∈ N such that y(n) w x(m). Since y(n) @ y(n + 1), there exists a q > 0 ∈ Q
such that y′(n + 1) − y′(n) = q. Find m > n + 1 ∈ N such that l(x(m)) ≤ q. Then
y′(n+ 1) < y′(m) ≤ x′′(m), so y′(n) < x′′(m)− q ≤ x′(m), thus y(n) w x(m).
Now we consider case 2. There exists a q > 0 ∈ Q such that y′′(n) − y′′(n + 1) = q.
Find m > n + 1 ∈ N such that l(x(m)) ≤ q. Then x′(m) ≤ y′′(m) < y′′(n + 1) so
x′′(m) ≤ x′(m) + q < y′′(n) so y(n) w x(m). Also, there exists a p > 0 ∈ Q such that
x(n + 1)′ − x′(n) = p. Find m > n + 1 ∈ N such that l(y(m)) ≤ p. Then x′(n + 1) <
x′(m) ≤ y′′(m), so x′(n) < y′′(m)− p ≤ y′(m), thus x(n) w y(m).

The following lemma shows that the definitions 1.2.2 (i), (ii) and (iii) are enough.

Lemma 1.2.4. For all real numbers x, y,

(i) if ¬[x#y] then x ≡ y, and

(ii) if ¬¬[x ≡ y] then x ≡ y, and

(iii) if ¬¬[x#y] then x 6≡ y.

Proof. Suppose x and y are real numbers.

(i) If ¬[x#y] then ¬∃n ∈ N∃m ∈ N[x′(n) > y′′(m) ∨ x′′(n) < y′(m)], so ∀n ∈ N∀m ∈
N[x′(n) ≤ y′′(m) ∧ y′(m) ≤ x′′(n)]. Thus ∀n ∈ N[x′(n) ≤ y′′(n) ∧ y′(n) ≤ x′′(n)] so, by
lemma 1.2.3, x ≡ y.

(ii) If ¬¬[x ≡ y] then, by lemma 1.2.3, ¬¬∀n ∈ N[x′(n) ≤ y′′(n) ∧ y′(n) ≤ x′′(n)]. So ∀n ∈
N¬¬[x′(n) ≤ y′′(n) ∧ y′(n) ≤ x′′(n)], so ∀n ∈ N[¬¬(x′(n) ≤ y′′(n)) ∧ ¬¬(y′(n) ≤ x′′(n))]
and thus ∀n ∈ N[x′(n) ≤ y′′(n) ∧ y′(n) ≤ x′′(n)]. Again, by lemma 1.2.3, x ≡ y.

(iii) Suppose x#y. Find n,m ∈ N such that x′(n) > y′′(m) or x′′(n) < y′(m). Suppose x ≡ y.
Assume x′(n) > y′′(m) then ∀k ∈ N[x′(n) > y′(k)], which is a contradiction. Now assume
x′′(n) < y′(m) then ∀k ∈ N[x′′(n) < y′′(k)], which is also a contradiction. So if x#y then
¬[x ≡ y] and thus if ¬¬[x ≡ y] then ¬[x#y]. So if ¬¬[x#y] then ¬¬¬[x ≡ y] and so
x 6≡ y.

Suppose x and y are real numbers. Let A −→ B be ‘A implies B’ and A
E←−→ B be ‘A and B

contradict each other’. In the diagram below the connections between the relations of definition
1.2.2 are shown.

x ≡ y x 6≡ y x#y
(2)

E
(1)

Figure 1: Relations between real numbers.

(1) is clear by the definition and for (2) see the proof of lemma 1.2.4 (iii).
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Lemma 1.2.5. Suppose x, y ∈ R. Then x#y ⇐⇒ ∃m ∈ N [|x− y| > 1
m ].

Proof. Suppose x#y. Then ∃n ∈ N ∃k ∈ N [x′(n) > y′′(k) ∨ x′′(n) < y′(k)]. Suppose,
without loss of generality, ∃n ∈ N ∃k ∈ N such that x′(n) > y′′(k). Pick n, k ∈ N such
that x′(n) > y′′(k). This means there exists a m ∈ N such that x′(n) − y′′(k) ≥ 1

m . Thus
|x− y| ≥ x′(n)− y′′(k) > 1

m .
Suppose ∃m ∈ N [|x− y| > 1

m ]. Find m ∈ N such that |x− y| > 1
m . |x− y| = max(x− y, y− x).

Suppose, without loss of generality, |x− y| = x− y. This means x− y > 1
m . So, for some n ∈ N

we have (x − y)′(n) = (x + (−y))′(n) = x′(n) + (−y)′(n) = x′(n) + −(y′′(n)) > 1
m and thus

x′(n) > y′′(n).

Lemma 1.2.6. Suppose x, y ∈ R. Then x ≡ y ⇐⇒ ∀n ∈ R |x− y| ≤ 1
n .

Proof. This follows directly from lemma 1.2.5 and lemma 1.2.4.

1.3 A special real number

In this section we define a special real number r that will become useful in this thesis.

Definition 1.3.1. Let dπ : N→ {0, . . . , 9} be the decimal expansion of π, i.e. π =
∑∞

n=0
dπ(n)
10n .

We take k1 to be the least natural number n such that in the infinite sequence dπ a block of
nine consecutive nines starts at position n. Note that we can not define k1 as the name of a
natural number, since we do not know if k1 exists. What we can define are the three following
predicates. For all n ∈ N:

• n < k1 ⇐⇒ ∀m ≤ n ¬[dπ(m) = dπ(m+ 1) = · · · = dπ(m+ 8) = 9]

• n = k1 ⇐⇒
(
dπ(n) = dπ(n+1) = · · · = dπ(n+8) = 9 ∧ ∀m < n ¬[dπ(m) = dπ(m+1) =

· · · = dπ(m+ 8) = 9]
)

• n > k1 ⇐⇒ ∃m < n [dπ(m) = dπ(m+ 1) = · · · = dπ(m+ 8) = 9]

We define the real number r to be the sequence r(0), r(1), r(2), . . . of rational intervals with:

r(n) =



((−1)k1
n∑

i=k1+2

1

2i
, (−1)k1

1

2k1
−

n∑
i=k1+2

1

2i
) if n ≥ k1 and k1 is even

((−1)k1 1
2k1

+
n∑

i=k1+2

1

2i
, (−1)k1

n∑
i=k1+2

1

2i
) if n ≥ k1 and k1 is odd

(−1
2n ,

1
2n ) if n < k1

So, if ¬∃n ∈ N[n = k1], then r = 0, if ∃n ∈ N[2n = k1], then r = 1
2k1+1 and if ∃n ∈ N[2n+ 1 =

k1], then r = − 1
2k1+1 .

We will discuss some properties of r. First of all, we can not prove that r is rational nor that
r is irrational. Anyone who says ‘r is rational’ claims ∃q ∈ Q [q ≡ r]. For all q ∈ Q we know
q < 0, q = 0 or q > 0. Suppose q < 0 or q > 0, then ∃n ∈ N[n = k1]. Suppose q = 0, then
¬∃n ∈ N[n = k1]. However, we do not have a proof of ∃n ∈ N[n = k1] or of ¬∃n ∈ N[n = k1] so
we do not have a proof of ‘r is rational’ and we do not have a proof of ‘r is irrational’.
The following lemma shows that we can prove ¬¬(r is rational), i.e. r is not irrational.

Lemma 1.3.2. ¬¬(r is rational)
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Proof. We distinguish two cases, namely: ∃n ∈ N [n = k1] and: ¬∃n ∈ N [n = k1]. If
∃n ∈ N [n = k1] then ∃n ∈ N[2n = k1] or ∃n ∈ N[2n+ 1 = k1]. Suppose ∃n ∈ N[2n = k1], then
r = −1

2k1+1 and thus r is rational. Suppose ∃n ∈ N[2n + 1 = k1], then r = 1
2k1+1 and thus r is

rational. So if ∃n ∈ N [n = k1] then r is rational. If ¬∃n ∈ N[n = k1] then r = 0 and thus r is
rational.
This gives us: if (∃n ∈ N[n = k1] ∨ ¬∃n ∈ N[n = k1]) then r is rational. So if r is irrational
then ¬(∃n ∈ N[n = k1] ∨ ¬∃n ∈ N[n = k1]) and thus if ¬¬(∃n ∈ N[n = k1] ∨ ¬∃n ∈ N[n = k1])
then ¬¬(r is rational). Note that, for all propositions A: ¬¬(A ∨ ¬A). So ¬¬(∃n ∈ N[n =
k1] ∨ ¬∃n ∈ N[n = k1]) so ¬¬(r is rational).

We can not prove (by the same argument) that r is negative, positive or zero. Anyone who says
‘r is positive’, claims ∃n ∈ N[n = k1] and k1 is even. Anyone who says ‘r is negative’, claims
∃n ∈ N[n = k1] and k1 is odd and anyone who says ‘r is zero’, claims ¬∃n ∈ N[n = k1].

1.4 Relations between real numbers and sets

In this section we will discuss how real numbers relate to sets. These notions are all introduced
in [3].

Definition 1.4.1. Suppose x is a real number and Y is a set of real numbers. We define:

(i) x is a member of Y (notation: x ∈0 Y ) if and only if ∃y ∈ Y [x ≡ y]. (Brouwer:
Einhüllung)

(ii) x is apart from Y (notation: x # Y ) if and only if ∀y ∈ Y [x # y]. (Brouwer: Entfer-
nung)

(iii) x is not a member of Y if and only if ¬[x ∈0 Y ]. (Brouwer: Abweichung)

(iv) x seems to be a member of Y if and only if ¬¬[x ∈0 Y ]. (Brouwer: Anschließung)

(v) x is not apart from Y if and only if ¬[x # Y ]. (Brouwer: Anlehnung)

(vi) x seems to be apart from Y if and only if ¬¬[x # Y ]. (Brouwer: Abtrennung)

Again we have a diagram, written below, which shows us the connections between the above
relations.

x ∈0 Y ¬¬[x ∈0 Y ] ¬[x ∈0 Y ]

x # Y ¬¬[x # Y ] ¬[x # Y ]

(1)

(3)

E
(4)

(6)

E
(2)

(5)

Figure 2: Relations between real numbers and sets.

Implications (1) and (3) and contradictions (2) and (4) are clear.

(5) Suppose x is a real number and Y a set such that ¬¬[x ∈0 Y ]. Then ¬¬[∃y ∈ Y [x ≡ y]],
so ¬∀y ∈ Y [x 6≡ y]. Now suppose ∀y ∈ Y [x#y] then, by figure 1, ∀y ∈ Y [x 6≡ y], which is a
contradiction. So ¬[x#Y ].

(6) Suppose x is a real number and Y a set such that x¬¬[x # Y ]. Then ¬¬[∀y ∈ Y [x#y]], so
¬∃y ∈ Y ¬[x#y]. This gives, by lemma 1.2.4, ¬∃y ∈ Y [x ≡ y] and thus ¬[x ∈0 Y ].
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1.5 Relations between sets

In this section we discuss relations between sets of real numbers. These notions are all introduced
in [3].

Definition 1.5.1. Suppose X and Y are sets of real numbers. We define:

(i) X coincides with Y (notation: X ≡ Y ) if and only if ∀x ∈ X[x ∈0 Y ] and ∀y ∈ Y [y ∈0

X]. (Brouwer: Zusammenfallung)

(ii) X deviates from Y (notation: X 6≡ Y ) if and only if ∃x ∈ X¬[x ∈0 Y ] or ∃y ∈ Y ¬[y ∈0

X]. (Brouwer: Abweichung)

(iii) X is apart from Y (notation: X # Y ) if and only if ∃x ∈ X[x # Y ] or ∃y ∈ Y [y # X].
(Brouwer: Entfernung)

(iv) X does not coincide with Y if and only if ¬[X ≡ Y ]. (Brouwer: Loswindung)

(v) X seems to coincide with Y if and only if ¬¬[X ≡ Y ]. (Brouwer: Verflechtung)

(vi) X does not deviate from Y if and only if ¬[X 6≡ Y ]. (Brouwer: Kongruenz)

(vii) X seems to deviate from Y if and only if ¬¬[X 6≡ Y ]. (Brouwer: Loslösung)

(viii) X is not apart from Y if and only if ¬[X # Y ]. (Brouwer: Übereinstimmung)

(ix) X seems to be apart from Y if and only if ¬¬[X # Y ]. (Brouwer: Absonderung)

Again we have a diagram, written below, which shows us the connections between the above
relations.

X # Y ¬¬[X # Y ] ¬[X # Y ]

X 6≡ Y ¬¬[X 6≡ Y ] ¬[X 6≡ Y ]

X ≡ Y ¬¬[X ≡ Y ] ¬[X ≡ Y ]

(1)

(7)

(3)

(5)

(9)

E
(4)

(10)

E
(6)

(11
)

E
(2)

(8)

Figure 3: Relations between sets.

The implications (1), (3) and (5) are clear, as are the contradiction (2), (4) and (6).

(7) Suppose X and Y are sets such that X#Y . Then ∃x ∈ X ∀y ∈ Y [x # y] or ∃y ∈ Y ∀x ∈
X[y # x]. Assume ∃x ∈ X∀y ∈ Y [x # y]. Then, by figure 1, ∃x ∈ X∀y ∈ Y [x 6≡ y] and
thus ∃x ∈ X¬∃y ∈ Y [x ≡ y], so ∃x ∈ X¬[x ∈0 Y ], so X 6≡ Y . The other case is similar.

(8) This implication follows directly from implication (7).

(9) Suppose X and Y are sets such that ¬[X 6≡ Y ]. Now suppose X # Y , then by (1) and (8)
we have ¬¬[X 6≡ Y ], which is a contradiction. So ¬[X # Y ].
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(10) Suppose X and Y are sets such that ¬¬[X 6≡ Y ]. Then ¬¬[∃x ∈ X¬[x ∈0 Y ] ∨ ∃y ∈
Y ¬[y ∈0 X]], so ¬[¬∃x ∈ X¬[x ∈0 Y ] ∧ ¬∃y ∈ Y ¬[y ∈0 X]], so ¬[∀x ∈ X
neg¬[x ∈0 Y ] ∧ ∀y ∈ Y ¬¬[y ∈0 X]]. Now suppose X ≡ Y , then ∀x ∈ X[x ∈0 Y ] ∧ ∀y ∈
Y [y ∈0 X], which is a contradiction. So ¬[X ≡ Y ].

(11) Suppose X and Y are sets such that ¬¬[X ≡ Y ]. Now suppose X 6≡ Y , by (3) and (10),
this gives ¬[X ≡ Y ], which is a contradiction. So ¬[X 6≡ Y ].
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2 Continuity

In this chapter we will state that every real-valued total function is continuous and that every
real-valued total function on [0, 1] is uniformly continuous. To discuss these statements we will
introduce two important notions, namely that of a spread (2.1) and of a fan (2.2). Also, the way
Brouwer thought about the continuum led to the continuity principle (2.1), the fan theorem
and the extended fan theorem (2.2) which are needed to prove the statements. We will not
prove any of the theorems in 2.2 but refer to [9] and [10] for the proofs of these theorems and
for further readings.

2.1 Spreads

In this section we will introduce spreads and the continuity principle. These two notions will
help us prove that every real-valued total function is continuous.
First we will define what a spread is.

Definition 2.1.1. A spread-law is a function σ : N→ {0, 1} such that:

(i) σ(<>) = 0, and

(ii) ∀s ∈ N
[
σ(s) = 0 ⇐⇒ ∃n ∈ N[σ(s∗ < n >) = 0]

]
.

You can think of a spread-law as an infinite tree with finite sequence at the nodes of the tree.
The root of this tree is the empty sequence. By (ii) we know every node a has children which
are the concatenation of a and a natural number n.

Definition 2.1.2. Suppose α ∈ NN and σ is a spread-law. We define α ∈ σ iff for every n ∈ N,
σ(ᾱn) = 0. The set {α ∈ NN|α ∈ σ} is called a spread. We will also use σ to refer to this set.

So, a spread is a set of infinite sequences which are accepted by a spread-law or the infinite
sequences which are made by walking through the tree defined by the spread-law.
We now introduce some useful spreads.

Definition 2.1.3. We define the spread σuni with σuni(n) = 0 for every n ∈ N. σuni is called
the universal spread and is obviously equal to NN.

Note that R is not a spread. But, the set of all regular real numbers is a spread.

Definition 2.1.4. We define the spread σreg as follows:

α ∈ σreg ⇐⇒ ∀n ∈ N [α(n) ∈ λ ∧ α(n+ 1) @ α(n)]

σreg is called the regular spread.

For the regular spread we have an important lemma.

Lemma 2.1.5. For the spread σreg we have the following two properties:

(i) Every α ∈ σreg is a real number, and

(ii) for every real number x there exists α ∈ σreg such that α ≡ x.

Proof. First we will show (i). Suppose α ∈ σreg. Then α(n) ∈ λ for every n ∈ N. So there
exists an m ∈ N such that α(n) ∈ λm, which means α(n) ∈ S. Also for every n ∈ N we have
α(n) @ α(n+ 1) which implies α(n) v α(n+ 1). Now pick m ∈ N, then α(m) ∈ λk for a k ≥ m.
This is easily proven by induction. So l(α(m)) ≤ 2−k ≤ 2−m.
Now we will show (ii). Take any real number x ∈ R. We will define α inductively by making
sure that for each n ≥ 1:
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(i) α(n) ∈ λ, and

(ii) α(n) @ α(n− 1), and

(iii) there exists m ∈ N such that x(m) v α(n)

Obviously, (i) and (ii) ensure α ∈ σreg. Furthermore we will show (iii) ensures α ≡ x.
Now we construct α. First find m ∈ N such that l(x(m)) ≤ 1

4 . We start with α(0) = (a, a+ 1),
where 2a ∈ Z and such that a ≤ x′(m) but a+ 1

2 > x′(m). Then a+ 1 > x′′(m). Now suppose
α(0), α(1), . . . , α(n− 1) are defined in the previous steps such that (i), (ii) and (iii) hold. Find
k such that α(n− 1) ∈ λk. To assure (i) and (ii) for α(n) we would like α(n) ∈ λp with p > k.
Find m ∈ N such that x(m) v α(n−1). Then x(m+1) @ α(n−1). Decide x′(m+1)−x′(m) ≤
x′′(m)− x′′(m+ 1) or x′′(m)− x′′(m+ 1) ≤ x′(m+ 1)− x′(m).

• Suppose x′(m+1)−x′(m) ≤ x′′(m)−x′′(m+1). This means x′(m+1)−x′(m) < 1
2 l(x(m)) <

1
2k−1 . Find p ∈ N such that x′(m + 1) − x′(m) > 1

2p−1 but x′(m + 1) − x′(m) ≤ 1
2p−2 .

Obviously p > k.
Now find m′ > m + 1 such that l(x(m′)) ≤ 1

2p+1 . Find q ∈ Q such that q2p+1 ∈ Z,
q ≤ x′(m′), but q + 1

2p+1 > x′(m′). Then q + 1
2p > x′′(m′) so x(m′) v (q, q + 1

2p ).
Furthermore q > x′(m), since suppose q ≤ x′(m) then q + 1

2p+1 ≤ x′(m) + 1
2p+1 < x′(m+

1) < x′(m′), which is a contradiction. So q > α′(n− 1).
Also q+ 1

2p < x′′(m) since suppose q+ 1
2p ≥ x

′′(m) then 1
2p ≥ l(x(m′))+

(
x′′(m)−x′′(m+1)

)
.

This is a contradiction since x′′(m)− x′′(m+ 1) ≥ x′(m+ 1)− x′(m) > 1
2p−1 >

1
2p .

Define α′(n) = q and α′′(n) = α′(n) + 1
2p . Then α(n) ∈ λp+1, α(n) @ α(n − 1), x(m′) v

α(n).

• Suppose x′′(m)−x′′(m+ 1) ≤ x′(m+ 1)−x′(m). We can do something similar by finding
p ∈ N such that x′′(m)− x′′(m+ 1) > 1

2p−1 but x′′(m)− x′′(m+ 1) ≤ 1
2p−2 .

We claim α ≡ x. By (iii), for every n ∈ N there exists m ∈ N such that x(m) v α(n). Now pick
n ∈ N. Define ln = l(x(n)). Find m such that l(α(m)) ≤ ln and find k such that x(k) v α(m).
Then l(x(k)) < ln so x(k) @ x(n). There are three cases:

• α(m) v x(n), then we are done.

• x′(n) ≤ α′(m) ≤ x′(k) < x′′(k) < x′′(n) ≤ α′′(m). Now, for every p > m we have
α′(p) < x′′(k). Since, suppose α′(p) ≥ x′′(k) then there can not exists b ∈ N such that
x(b) v α(p). Now find p > m such that l(α(p)) < x′′(n)−x′′(k). Then α′′(p) < x′′(n) and
since α′(m) < α′(p) and x′(n) ≤ α′(m) also x′(n) < α′(p) so α(p) v x(n).

• α′(m) ≤ x′(n) < x′(k) < x′′(k) ≤ α′′(m) ≤ x′′(n). This is similar as the previous case.

The above procedure defines a function Freg : R → σreg. So for every x ∈ R we find Freg(x)
with the above procedure.

We define one more spread.

Definition 2.1.6. Fix an enumeration {q0, q1, q2, . . . } of Q. We define the spread σirr as
follows:

α ∈ σirr ⇐⇒ α ∈ σreg ∧ ∀n ∈ N[qn < α′(n) ∨ qn > α′′(n)]

σirr is called the spread of the positively irrational numbers.
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With the definition of a spread we can introduce the continuity principle, which we will introduce
as an axiom. We will need the continuity principle to prove that every real-valued total function
f : R→ R is continuous.

Axiom 2.1.7. (Continuity principle). Suppose σ is a spread and A ⊆ σ × N.
If ∀α ∈ σ∃n ∈ N[A(α, n)] then ∀α ∈ σ∃n,m ∈ N∀β ∈ σ[A(α, n) ∧ ᾱ(m) = β̄(m) =⇒ A(β, n)]

We now define what a real-valued total function is and when a real-valued total function is
continuous.

Definition 2.1.8. A real-valued function f (f : R → R) is a method such that, for every
x ∈ R we can construct f(x) ∈ R and such that for every x, x′ ∈ R, if x ≡ x′ then f(x) ≡ f(x′).

When we say f : R→ R is a function we mean f is a real-valued total function.

Definition 2.1.9. Suppose f : R → R, then f is continuous if ∀x ∈ R∀n ∈ N∃m ∈ N∀y ∈
R
[
|x− y| ≤ 1

2m =⇒ |f(x)− f(y)| ≤ 1
2n

]
.

Definition 2.1.10. Suppose f : R → R, then f is discontinuous if ∃x ∈ R∃n ∈ N∀m ∈
N∃y ∈ R

[
|x− y| ≤ 1

2m ∧ |f(x)− f(y)| > 1
2n

]
.

We will now prove that every function f : R→ R is continuous.

Theorem 2.1.11. (Continuity theorem). Suppose f : R → R is function. Then f is
continuous.

Proof. Suppose f : R→ R is a function. We will define a special function f ′ : σreg → σreg such
that for every α ∈ σreg, f(α) ≡ f ′(α). For every α ∈ σreg, define f ′(α) = Freg(f(α)).
Using f ′ we will prove that f is continuous. Suppose x ∈ R and m ∈ N. We want to find n ∈ N
such that for every y ∈ R if |x− y| < 1

n then |f(x)− f(y)| < 1
m .

Find α ∈ σreg such that α ≡ x. Notice that for every α ∈ σreg there exists k ∈ N such that
f ′(α)(m + 1) = k. Thus, by the continuity principle, we can find a p ∈ N such that for every
β ∈ σreg if β̄p = ᾱp then f ′(β)(m + 1) = f ′(α)(m + 1). We have α(p) @ α(p − 1). Define
δ := min(α′(p) − α′(p − 1), α′′(p − 1) − α′′(p)) and find n ∈ N such that 1

n < δ. We claim
this n is such that for every y ∈ R if |x − y| < 1

n then |f(x) − f(y)| < 1
m . Suppose y ∈ R and

|x−y| < 1
n . Find β ∈ σreg such that β ≡ y and β̄p = ᾱp. This gives f ′(β)(m+1) = f ′(α)(m+1).

Since f ′(α) ∈ σ)reg we have l(f ′(α)(m + 1) ≤ 2−m−1, which is easily shown with induction.
Also f ′(α)′(m + 1) ≤ f ′(α) ≤ f ′(α)′′(m + 1) and f ′(α)′(m + 1) ≤ f ′(β) ≤ f ′(α)′′(m + 1) and
f ′(α) ≡ f(x) and f ′(β) ≡ f(y) so |f(x)− f(y)| ≤ 1

m .

We now prove three more lemmas related to continuous functions which will become useful
during this thesis.

Lemma 2.1.12. Suppose f : R → R is a continuous function and suppose x, y ∈ R. If
f(x)#f(y) then x#y.

Proof. Suppose f : R→ R is a continuous function and suppose x, y ∈ R and f(x)#f(y). Then,
by lemma 1.2.5, there exists an m ∈ N such that |f(x)− f(y)| > 1

m . By the continuity of f we
know, at x, ∀k ∈ N∃n ∈ N∀y ∈ R [ |x− y| ≤ 1

n → |f(x)− f(y)| ≤ 1
k ]. Find n ∈ N such that for

all y ∈ R if |x− y| ≤ 1
n then |f(x)− f(y)| ≤ 1

m . This gives us |x− y| > 1
n and thus x#y.

The following lemma is an adapted version of the classical intermediate value theorem.
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Lemma 2.1.13. (Approximate intermediate value theorem) Suppose f : [a, b] → R is
continuous and f(a) = d, f(b) = e and |a− b| ≤ 1. If d < e then for every c ∈ [d, e] and every
n ∈ N there exists cn ∈ [a, b] such that |f(cn) − c| ≤ 1

2n . If e < d then for every c ∈ [e, d] and
every n ∈ N there exists cn ∈ [a, b] such that |f(cn)− c| ≤ 1

2n .

Proof. Suppose d < e. Pick c ∈ [d, e] and n ∈ N. We will define sequences a1, a2, . . . , b1, b2, . . .
and c1, c2, . . . . First define a1 := a, b1 := b and c1 := a+b

2 . Now suppose k ∈ N and ak, bk and
ck are defined. Since c− 1

2n+2 < c+ 1
2n+2 we know, either f(ck) > c− 1

2n+2 or f(ck) < c+ 1
2n+2 .

Suppose f(ck) > c − 1
2n+2 then define ak+1 := ak, bk+1 := ck and ck+1 :=

ak+1+bk+1

2 . Suppose
ak+1, bk+1 and ck+1 have not been defined yet, then f(ck) < c+ 1

2n+2 . Define ak+1 := ck, bk+1 :=

bk and ck+1 :=
ak+1+bk+1

2 . We now have the following:

(i) For every k ∈ N, f(ak) < c+ 1
2n+2

(ii) For every k ∈ N, f(bk) > c− 1
2n+2

(iii) For every k ∈ N, ck − ak ≤ 1
2k

and bk − ck ≤ 1
2k

We will prove (i), (ii) and (iii).

(i) f(a1) = f(a) = d < c + 1
2n+2 . Now suppose k ∈ N and suppose we have proven f(al) <

c+ 1
2n+2 for every l ≤ k. Suppose f(ck) > c− 1

2n+2 , then ak+1 = ak so f(ak+1) = f(ak) <
c + 1

2n+2 , by the induction hypothesis. Now suppose f(ck) < c + 1
2n+2 , then ak+1 = ck so

f(ak+1) = f(ck) < c+ 1
2n+2 .

(ii) f(b1) = f(b) = e > c − 1
2n+2 . Now suppose k < m and suppose we have proven f(bl) >

c− 1
2n+2 for every l ≤ k. Suppose f(ck) > c− 1

2n+2 , then bk+1 = ck so f(bk+1) = f(ck) >
c − 1

2n+2 . Now suppose f(ck) < c + 1
2n+2 , then bk+1 = bk so f(bk+1) = f(bk) > c − 1

2n+2 ,
by the induction hypothesis.

(iii) This is easily shown with induction.

We define a real number x such that limn→∞ an = limn→∞ bn = limn→∞ cn = x. First define
x(0) = (a0 − 1, b0 + 1). Now suppose x(0), x(1), . . . , x(n − 1) are defined. Suppose an = an−1,
then define x′(n) = x′(n− 1) + 1

2 l(x
′(n− 1), an−1) and x′′(n) = bn−1. Suppose an > an−1, then

define x′(n) = an−1 and x′′(n) = x′′(n−1)− 1
2 l(bn−1, x

′′(n−1)). It is easily shown with induction
that an − x′(n) = 1

2n and x′′(n) − bn = 1
2n . We now show x ∈ R. Obviously, for every n ∈ N,

x(n) ∈ S and x(n) v x(n+ 1). Pick m ∈ N. Find k ∈ N such that 3
2k
≤ 1

2m and find n ≥ k such

that bn− an ≤ 1
2k

. Then l(x(n)) = (x′′(n)− bn) + (bn− an) + (an− x′(n)) ≤ 3
2k
≤ 1

2m . Now, for
every n ∈ N, k ≥ n x′(n) < x < x′′(n) and x′(n) < ak < bk < x′(n). So, for every n ∈ N, k ≥ n
, |x− ak| ≤ l(x(n)). Now, pick m ∈ mathbbN and find l ∈ N such that l(x(l)) ≤ 1

2m . Then, for
every k ≥ l, |x − ak| ≤ 1

2m . So, for every m ∈ N there exists l ∈ N such that for every k ≥ l,
|x− ak| ≤ 1

2m . With a similar argument, we prove for every m ∈ N there exists l ∈ N such that
for every k ≥ l, |x− bk| ≤ 1

2m and for every m ∈ N there exists l ∈ N such that for every k ≥ l,
|x− ck| ≤ 1

2m .
Find m ∈ N such that for all y ∈ [a, b] if |x − y| ≤ 1

2m then |f(x) − f(y)| ≤ 1
2n+2 . Find n ∈ N,

k ≥ n such that |x−ak| ≤ 1
2m and l ∈ N, p ≥ l such that |x−bp| ≤ 1

2m and t ∈ N, q ≥ t such that
|x− cq| ≤ 1

2m . Then |f(x)− f(ak)| ≤ 1
2n+2 , |f(x)− f(bp| ≤ 1

2n+2 and |f(x)− f(cq)| ≤ 1
2n+2 . This

means f(ak)− 1
2n+2 ≤ f(x) ≤ f(ak) + 1

2n+2 and f(bp)− 1
2n+2 ≤ f(x) ≤ f(bp) + 1

2n+2 . Combining
this with (i) and (ii) we get c− 1

2n+1 < f(bp)− 1
2n+2 < f(x) < f(ak) + 1

2n+2 < c+ 1
2n+1 and thus

|f(x)− c| ≤ 1
2n+1 . So, with lemma 1.1.7, we have |f(cq)− c| ≤ 1

2n+1 + 1
2n+2 ≤ 1

2n .
The case where e < d is similar.
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An important consequence of the continuity theorem is that the continuum is indecomposable
(Brouwer: unzerlegbar).

Lemma 2.1.14. Suppose A,B ⊆ R are such that R = A ∪ B and A ∩ B = ∅. Then R = A or
R = B.

Proof. Suppose A,B ⊆ R are such that R = A ∪ B and A ∩ B = ∅. This means, for every
x ∈ R[x ∈ A ∨ x ∈ B]. Define f : R → R with f(x) = 0 if x ∈ A and f(x) = 1 if x ∈ B.
Since for every x ∈ R[x ∈ A ∨ x ∈ B] and for every x ∈ R¬[x ∈ A ∧ x ∈ B] this is a well
defined total function. So, by the continuity theorem f is continuous. Now pick x1 ∈ R and
decide x1 ∈ A or x1 ∈ b Suppose, without loss of generality, x1 ∈ A. We will then prove R = A.
Suppose we find x2 ∈ B such that x1 # x2. Also suppose, without loss of generality, x1 < x2.
We now have f [x1, x2] → R continuous and f(x1) = 0 and f(x2) = 1. By the approximate
intermediate value theorem, there exists x ∈ [x1, x2] such that |f(x) − 1

2 | ≤
1
4 . But for every

x ∈ [x1, x2], f(x) = 0 or f(x) = 1, so this is a contradiction. So ¬x2 ∈ B which means x2 ∈ A.
Thus for every x ∈ R, x ∈ A, so A = R.

An interesting consequence of this lemma is that we can prove ¬∀x ∈ R[x ∈ Q ∨ x /∈ Q]. See
section 2 of [5].

2.2 Fans

In this section we will introduce fans, the fan theorem and the extended fan theorem. Also, we
will state that every real-valued total function on [0, 1] is uniformly continuous.
First we will define what a fan is.

Definition 2.2.1. A fan-law is a function τ : N→ {0, 1} such that:

(i) τ is a spread-law, and

(ii) ∀s ∈ N
[
τ(s) = 0 =⇒ ∃m ∈ N∀n ∈ N[τ(s∗ < n >) = 0 =⇒ n < m]

]
Definition 2.2.2. Suppose β ∈ NN. Define β ∈ τ iff for every n ∈ N, τ(β̄n) = 0. The set
{β ∈ NN|β ∈ τ} is called a fan. We will also use τ to refer to this set.

Every fan τ is thus a spread for which there are only finitely many choices for each next step in
the creation of any β ∈ τ . This means the nodes in the tree defined by the fan-law have finitely
many children.
Note that every closed interval of R coincides with a fan.
There are two more important theorems, namely the Fan theorem and the Extended fan theo-
rem. Brouwer used the extended Fan theorem to prove that every function on a closed interval
is uniformly continuous. To give the Fan theorem we need one more definition.

Definition 2.2.3. Suppose B ⊆ N and X ⊆ NN. B is a bar in X if and only if for every
α ∈ X there exists n ∈ N such that ᾱn ∈ B.

Theorem 2.2.4. (Fan theorem). Suppose τ is a fan and B ⊆ N is a bar in τ then there
exists a finite C ⊆ B which is a bar in τ .

Using the Fan theorem and the continuity principle we can prove the Extended fan theorem.

Theorem 2.2.5. (Extended fan theorem). Suppose τ is a fan and A ⊂ τ × N such that
∀β ∈ τ∃n ∈ N[(β, n) ∈ A]. Then we can find M ∈ N such that ∀β ∈ τ∃n ∈ N[n ≤M ∧ (β, n) ∈
A].
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With the Extended fan theorem we can prove that every real-valued total function on [0, 1] is
uniformly continuous. When we say f : [0, 1]→ R we mean f is a real-valued total function on
[0, 1]. First we will define what it means for a function to be uniformly continuous.

Definition 2.2.6. Suppose f : R → R, then f is uniformly continuous if ∀n ∈ N∃m ∈
N∀x, y ∈ R

[
|x− y| ≤ 1

2m =⇒ |f(x)− f(y)| ≤ 1
2n

]
.

Theorem 2.2.7. (Uniform Continuity Theorem). Suppose f : [0, 1] → R is a function.
Then f is uniformly continuous.

The indecomposability of R is also true for [0, 1].

Lemma 2.2.8. Suppose A,B ⊆ [0, 1] are such that [0, 1] = A∪B and A∩B = ∅, then [0, 1] = A
or [0, 1] = B.

Proof. This will be similar to the proof of lemma 2.1.14.

We will now prove one more lemma related to uniformly continuous functions. It proves that
every uniformly continuous function is monotone. This lemma will become useful in this thesis.
For this we need one more definition.

Definition 2.2.9. Suppose f : R→ R is a function. We call f an injection if for every x, y ∈ R
if x # y then f(x) # f(y).

Lemma 2.2.10. Suppose f : [0, 1] → [0, 1] is a continuous injection such that f−1 is also
continuous. Then, for all x, y ∈ [0, 1] if x < y then f(x) < f(y) or for all x, y ∈ [0, 1] if x < y
then f(x) > f(y).

Proof. Suppose f : [0, 1] → [0, 1] is a continuous injection and suppose f−1 is also continuous.
Consider 0 and 1. Since f is an injection and since 0 # 1 we know f(0) # f(1). This means
f(0) < f(1) or f(1) < f(0). If f(0) < f(1), then for all x, y ∈ [0, 1] if x < y then f(x) < f(y).
And if f(1) < f(0) then for all x, y ∈ [0, 1] if x < y then f(y) < f(x). Now suppose f(0) < f(1).
The other case is similar.
First we will prove, for every x ∈ [0, 1] if 0 < x then f(0) < f(x). Since 0 < x we have
f(0) # f(x), so f(0) < f(x) or f(x) < f(0). We will prove ¬(f(x) < f(0)) so f(0) < f(x). For
this, suppose f(x) < f(0). This means f(x) < f(0) < f(y). Now look at f � [x, y] : [x, y]→ R.
By the approximate intermediate value theorem, for every n ∈ N there exists cn such that
|f(cn)− f(0)| ≤ 1

n . Also, since f−1 is continuous, for every m ∈ N there exists n ∈ N such that
if |a − b| ≤ 1

n then |f(a) − f(b)| ≤ 1
m . Thus, for every m ∈ N there exists n ∈ N such that

|cn − 0| ≤ 1
m . This means limn→∞ cn = 0, so 0 ∈ [x, y], which is a contradiction.

Similarly we can show, for every y ∈ [0, 1] if y < 1 then f(y) < f(1).
Now we will prove, for every x, y ∈ [0, 1] if x < y then f(x) < f(y). Pick x, y ∈ [0, 1] such
that x < y. Then, since f is an injection and x#y, f(x)#f(y). This means either f(x) < f(y)
or f(y) < f(x). Also, we can prove ¬(f(y) < f(x)) so we must have f(x) < f(y). We will
now prove ¬(f(y) < f(x)). Suppose f(y) < f(x). Then consider f � [0, x] : [0, x] → R. Since
f(0) ≤ f(y) < f(x), by the intermediate value theorem, for every n ∈ N there exists cn such
that |f(cn) − f(y)| < 1

n . Again, for every m ∈ N there exists n ∈ N such that if |a − b| ≤ 1
2n

then |f−1(a)− f−1(b)| ≤ 1
2m . Thus, for every m ∈ N there exists n ∈ N such that |cn− y| ≤ 1

2m .
This means limn→∞ cn = y, thus y ∈ [0, x], which is a contradiction.
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3 Measure theory

In this chapter we will introduce intuitionistic measure theory. In the first section we will define
some notions needed to define almost full sets and measurable functions and sets. In the second
section we will define almost full sets and in the third section we will define measurable functions
and sets.

3.1 Intervals, rectangles and regions

We will need to define a couple of things before we are able to discuss almost full sets, measurable
functions and measurable sets. Let length : N→ N be a function, where length(n) is the length
of the sequence of natural numbers corresponding to n via the bijection < > introduced in the
introduction. Also, for every n ∈ N and every i ≤ length(n) : ni−1 is the i-th number of the
sequence of natural numbers corresponding to n via < >.

Definition 3.1.1. Suppose v ∈ S, where S is the set of (code numbers of) rational segments
introduced in chapter 1. Suppose x ∈ R.

(i) x ε0 v if and only if ∀n ∈ N [x′(n) ≤ v′′ ∧ v′ ≤ x′′(n)]

(ii) x ε1 v if and only if ∃n ∈ N [v′ < x′(n) ≤ x′′(n) < v′′]

Then {x ∈ R | x ε0 v} is the closed interval defined by v and {x ∈ R | x ε1 v} is the open
interval defined by v.

We also define an intersection of two intervals in S.

Definition 3.1.2. For s, t ∈ S we define s and t touch if and only if max(s′, t′) ≤ min(s′′, t′′)
and s and t miss if and only if max(s′, t′) > min(s′′, t′′).
Also, we define:

s ∩ t =

{
(max(s′, t′),min(s′′, t′′)) if s and t touch

⊥ else

We now define partial functions, since the definition of a measurable function is for partial
functions.

Definition 3.1.3. f : [0, 1] → R is a partial function if there exists X ⊆ [0, 1] such that
for every x ∈ X we can construct f(x) ∈ R and such that for every x, x′ ∈ X, if x ≡ x′ then
f(x) ≡ f(x′).
We define dom(f) := {x ∈ [0, 1] | ∃y ∈ R [(x, y) ∈ f ]} to be the domain of f .

So f : [0, 1]→ R is a partial function if it is function on a subset of [0, 1].

Definition 3.1.4. A rational rectangle is a natural number v ∈ N such that length(v) ≥ 2
and such that v0 ∈ S and v1 ∈ S. We define R = {v ∈ N | v is a rational rectangle}.

Definition 3.1.5. Suppose v ∈ R. We define Ar(v) := (v′′0 − v′0)(v′′1 − v′1) to be the area of v.

Definition 3.1.6. An elementary set of rectangles is a natural number v ∈ N such that:

(i) for every i < length(v) [vi ∈ R], and

(ii) the sequence (v0)0, . . . , (vlength(v)−1)0 is a partition of [0, 1], that is:
(v0)′0 = 0, (v0)′′0 = (v1)′0, (v1)′′0 = (v2)′0, . . . , (vlength(v)−1)′′0 = 1.
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We now define when an elementary set of rectangles captures a partial function. For an intuitive
notion see figure 4.

Definition 3.1.7. Suppose f : [0, 1] → R is a partial function and v is an elementary set of
rectangles. We say v captures f if and only if for all x ∈ dom(f) and for all i < length(v) if
x ε0 (vi)0 then f(x) ε0 (vi)1.

1
x

1
f(x)

0

Figure 4: The set of elementary rectangles capture f .

Definition 3.1.8. Suppose v is an elementary set of rectangles. We define:

(i) The area of v as Ar∗(v) =

length(v)−1∑
i=0

Ar(vi).

(ii) I(v) =

length(v)−1∑
i=0

(
(vi)

′′
0 − (vi)

′
0

)
(vi)

′
1

(iii) I(v) =

length(v)−1∑
i=0

(
(vi)

′′
0 − (vi)

′
0

)
(vi)

′′
1

Definition 3.1.9. Suppose a,m ∈ N such that length(a) = m and ∀i < m [ai ∈ S]. We
define µ(a) to be the total length of the rational segments a0, a1, . . . , am−1 where ‘double covered
intervals are not counted twice’. That is, if a0, a1, . . . , am−1 do not intersect pairwise then
µ(a) = l(a0) + l(a1) + · · ·+ l(am−1), else:

µ(a) =

m−1∑
k=0

µ
(
ak \

k−1⋃
i=0

ai
)

We now define the intuitionistic notion of an open set. We call this a region.

Definition 3.1.10. Suppose α = α(0), α(1), α(2), . . . is an infinite sequence of code numbers
of rational segments, that is, for every n ∈ N : α(n) ∈ S. We call R(α) := {x ∈ R | ∃m ∈
N [x ε1 α(m)]} the region defined by α.
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Definition 3.1.11. We define X is a measurable region if and only if there exists an infinite
sequence α = α(0), α(1), α(2), . . . of code numbers of rational segments such that X = R(α)
and such that the sequence µ(ᾱ1), µ(ᾱ2), . . . converges. If X is a measurable region we call
µ(X) := lim

n→∞
µ(ᾱn) the measure of X.

The following lemma shows that this definition makes sense.

Lemma 3.1.12. Suppose α = α(0), α(1), α(2), . . . is an infinite sequences of code numbers of ra-
tional segments such that µ(ᾱ1), µ(ᾱ2), . . . converges. Suppose also, β = β(0), β(1), β(2), . . . is
an infinite sequence of code numbers of rational segments and R(α) = R(β). Then µ(β̄1), µ(β̄2), . . .
converges and lim

n→∞
µ(ᾱn) = lim

n→∞
µ(β̄n)

Proof. We know α is such that µ(ᾱ1), µ(ᾱ2), . . . converges to µ(R(α)). We want to show:
µ(β̄1), µ(β̄2), . . . converges to µ(R(α)). It suffices to prove:

(i) For every n ∈ N there exists k ∈ N such that µ(β̄k) > µ(R(α))− 1
2n , and

(ii) for every m, l ∈ N, µ(β̄l)− 1
2m ≤ µ(R(α)).

We will now prove (i) and (ii).

(i) We first prove, for every l,m ∈ N there exists k ∈ N such that µ(β̄k) > µ(ᾱl)− 1
2m . Pick

l,m ∈ N and find n ∈ N such that 2l
2n <

1
2m . Consider

⋃
i<l

[α(i)′ +
1

2n
, α(i)′′ − 1

2n
]. Since

R(α) = R(β) we know, for every x ∈
⋃
i<l

[α(i)′ +
1

2n
, α(i)′′ − 1

2n
] there exists p ∈ N such

that x ∈ β(p). Since
⋃
i<l

[α(i)′ +
1

2n
, α(i)′′ − 1

2n
] is a finite union of closed intervals, by the

fan theorem, there exists k ∈ N such that for every x ∈
⋃
i<l

[α(i)′ +
1

2n
, α(i)′′ − 1

2n
] there

exists p ≤ k such that x ∈ β(p). This means
⋃
i<l[α(i)′+ 1

2n , α(i)′′− 1
2n ] ⊆ R(β̄k) and thus

µ(ᾱl) − 1
2m < µ(ᾱl) − 2l

2n <≤ µ(
⋃
i<l[α(i)′ + 1

2n , α(i)′′ − 1
2n ]) ≤ µ(β̄k). Thus there exists

k ∈ N such that µ(ᾱl)− 1
2m < µ(β̄k).

Since µ(ᾱ1), µ(ᾱ2), . . . converges to µ(R(α)), for every n ∈ N there exists l ∈ N such that
µ(ᾱl) > µ(R(α))− 1

2n . Note: for every n ∈ N there exists l,m ∈ N such that µ(ᾱl)− 1
2m >

µ(R(α) − 1
2n . Now, pick n ∈ N and find l,m ∈ N such that µ(ᾱl) − 1

2m > µ(R(A) − 1
2n .

Now find k ∈ N such that µ(β̄k) > µ(ᾱl)− 1
2m , then µ(β̄k) > µ(R(A)− 1

2n .

(ii) Suppose m and l are given. We have µ
(⋃
i<l

[β′(i) +
1

l2m
, β′′(i)− 1

l2m
]
)
≥ µ(β̄l)− 1

2m
. Also,

obviously
⋃
i<l

[β′(i)+
1

l2m
, β′′(i)− 1

l2m
] ⊂ R(β) = R(α) so µ

(⋃
i<l

[β′(i)+
1

l2m
, β′′(i)− 1

l2m
]
)
≤

µ(R(α)). This means µ(β̄l)− 1
2m ≤ µ(R(α))

Lemma 3.1.13. Suppose X and Y are measurable regions and v ∈ S. Then:

(i) X ∩ v is a measurable region

(ii) X ∪ Y is a measurable region
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Proof.

(i) X is a measurable region, so there exists an infinite sequence α = α(0), α(1), α(2), . . . of
code numbers of rational segments such that µ(ᾱ1), µ(ᾱ2), . . . converges and such that
R(α) = X.
Define, for all i ∈ N, β(i) = α(i) ∩ v and β = β(0), β(1), β(2), . . . . Then R(β) = X ∩ v.
We will show that µ(β̄1), µ(β̄2), . . . converges and thus that X ∩ v is a measurable region.
Since µ(ᾱ1), µ(ᾱ2), . . . converges we know:

∀n ∈ N∃m ∈ N
[ ∞∑
k=m

µ
(
α(k) \

k−1⋃
i=0

α(i)
)
≤ 1

n

]
, thus

∀n ∈ N∃m ∈ N
[ ∞∑
k=m

µ
((
α(k) \

k−1⋃
i=0

α(i)
)
∩ v
)
≤ 1

n

]
, so

∀n ∈ N∃m ∈ N
[ ∞∑
k=m

µ
((
α(k) ∩ v

)
\
( k−1⋃
i=0

α(i)
)
∩ v
)
≤ 1

n

]
, so

∀n ∈ N∃m ∈ N
[ ∞∑
k=m

µ
((
α(k) ∩ v

)
\
k−1⋃
i=0

(
α(i) ∩ v

))
≤ 1

n

]
.

(ii) X is a measurable region, so there exists an infinite sequence α = α(0), α(1), α(2), . . .
of code numbers of rational segments such that µ(ᾱ1), µ(ᾱ2), . . . converges and such
that R(α) = X. Y is a measurable region, so there exists an infinite sequence β =
β(0), β(1), β(2), . . . of code numbers of rational segments such that µ(β̄1), µ(β̄2), . . . con-
verges and such that R(β) = Y .
Define, for all i ∈ N, γ(2i) = α(i) and γ(2i+ 1) = β(i) and γ = γ(0), γ(1), γ(2), . . . . Then
R(γ) = X ∪ Y . We will show that µ(γ̄1), µ(γ̄2), . . . converges and thus that X ∪ Y is a
measurable region.

µ(ᾱ1), µ(ᾱ2), . . . converges, so ∀n ∈ N∃m ∈ N
[ ∞∑
j=m

µ
(
α(j) \

j−1⋃
i=0

α(i)
)
≤ 1

2n

]
.

µ(β̄1), µ(β̄2), . . . converges, so ∀n ∈ N∃k ∈ N
[ ∞∑
j=k

µ
(
β(j) \

j−1⋃
i=0

β(i)
)
≤ 1

2n

]
.

Now pick n ∈ N and find m, k ∈ N such that
[ ∞∑
j=m

µ
(
α(j) \

j−1⋃
i=0

α(i)
)
≤ 1

2n

]
and

[ ∞∑
j=k

µ
(
β(j) \

j−1⋃
i=0

β(i)
)
≤ 1

2n

]
. Then:

[ ∞∑
j=max{m,k}

µ
(
α(j) \

j−1⋃
i=0

α(i)
)

+

∞∑
j=max{m,k}

µ
(
β(j) \

j−1⋃
i=0

β(i)
)
≤ 1

n

]
,so

[ ∞∑
j=max{m,k}

µ
(
α(j) \

j−1⋃
i=0

α(i)
)

+ µ
(
β(j) \

j−1⋃
i=0

β(i)
)
≤ 1

n

]
, so

[ ∞∑
j=max{m,k}

µ
(
α(j) \

j−1⋃
i=0

α(i) ∪
j−1⋃
i=0

β(i)
)

+ µ
(
β(j) \

j−1⋃
i=0

β(i) ∪
j⋃
i=0

α(i)
)
≤ 1

n

]
.
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3.2 Almost full sets

Definition 3.2.1. Let X ⊆ [0, 1]. The set X is almost full if and only if there exists a
sequence X0, X1, X2, . . . of measurable regions such that:

(i) for every n ∈ N, µ(Xn) < 1
2n , and

(ii) for every n ∈ N, every x ∈ [0, 1] if x /∈ Xn then x ∈ X.

The following lemma proves that for every measurable region of measure smaller then 1 we can
find an element in the complement. With that we can show that for every set which is almost
full we can find an element in the set.

Lemma 3.2.2. Suppose X is a measurable region and µ(X) < 1, then there exists an x ∈ [0, 1]
such that x /∈ X.

Proof. X is a measurable region, so there exists an infinite sequence α = α(0), α(1), α(2), . . . of
code numbers of rational segments such that µ(ᾱ1), µ(ᾱ2), . . . converges and such that R(α) =
X. We will define a real number x as a sequence x(0), x(1), x(2), . . . of (code numbers of)
rational segments such that x /∈ R(α). We will define x such that it has the following properties:

(i) ∀n ∈ N[0 ≤ x′(n) < x′(n+ 1) < x′′(n+ 1) < x′′(n) ≤ 1], and

(ii) ∀n ∈ N[l(x(n+ 1)) = 1
2 l(x(n))], and

(iii) ∀n ∈ N[µ(R(x(n)∩α)
µ(x(n)) ≤ 1− 1

2n+1 ].

Ensuring (i) and (ii) we know that x is a real number and that x ∈ [0, 1]. We will show that
(iii) ensures x /∈ R(α). Suppose x ∈ R(α). Find m,n ∈ N such that α′(n) < x′(m) < x′′(m) <
α′′(n). This means x(m) @ α(n), so µ(x(m) ∩ α(n)) = µ(R(x(m) ∩ α)) = µ(x(m)) and thus
µ(R(x(m)∩α))

µ(x(m)) = 1, which is a contradiction with (iii). So x /∈ R(α).

We will define x with induction. Define x(0) to be the code number of the rational segment
(0, 1). Suppose we have defined x(0), x(1), . . . , x(n). Split x(n) in two rational segments, x(n)0

and x(n)1, where x(n)′0 = x′(n), x(n)′′0 = x(n)′1 = x′(n) + 1
2 l(x(n)) and x(n)′′1 = x′′(n). Thus

x(n)0 is the first half of x(n) and x(n)1 is the second half of x(n). Find m ∈ N such that
µ(ᾱm) ≥ (1 − 1

24n+4 )µ(R(α)). Find i ∈ {0, 1} such that µ(x(n)i ∩ ᾱm) ≤ µ(x(n)1−i ∩ ᾱm). If
i = 0 then define x(n + 1) = (x(n)′0 + 1

22n+2 l(x(n)), x(n)′′0 + 1
22n+2 l(x(n))). If i = 1 then define

x(n+ 1) = (x(n)′1 − 1
22n+2 l(x(n)), x(n)′′1 − 1

22n+2 l(x(n))). We have:

1. µ(x(n)∩ᾱm)
µ(x(n)) ≤ µ(R(x(n)∩α))

µ(x(n)) ≤ 1− 1
2n+1 , and

2. since µ(x(n)i∩ ᾱm) ≤ µ(x(n)1−i∩ ᾱm) we have µ(x(n)i∩ ᾱm) ≤ 1
2µ(x(n)∩ ᾱm) and thus

µ(x(n+ 1) ∩ ᾱm) ≤ 1
2µ(x(n) ∩ ᾱm) + 1

22n+2 l(x(n)). Also

3. µ(R(x(n+ 1) ∩ α) ≤ µ(x(n+ 1) ∩ ᾱm) + 1
24n+4µ(R(α)), and lastly

4. µ(x(n+ 1)) = 1
2µ(x(n)) = 1

2 l(x(n)) = 1
2n+1

For the x defined above, properties (i) and (ii) are obvious. The properties 1, 2, 3 and 4 proof
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property (iii) as follows:

µ(R(x(n+ 1) ∩ α)

µ(x(n+ 1))
≤

1
2µ(x(n) ∩ ᾱm)

µ(x(n+ 1))
+

l(x(n))
22n+2

µ(x(n+ 1))
+

µ(R(α))
24n+4

µ(x(n+ 1))
(by 3 and 4), so

µ(R(x(n+ 1) ∩ α)

µ(x(n+ 1))
≤ µ(x(n) ∩ ᾱm)

µ(x(n))
+

l(x(n))
22n+2

1
2n+1

+

µ(R(α))
24n+4

1
2n+1

(by 4), so

µ(R(x(n+ 1) ∩ α)

µ(x(n+ 1))
≤ 1− 1

2n+1
+

2n+1l(x(n))

22n+2
+

2n+1µ(R(α))

24n+4
(by 1), so

µ(R(x(n+ 1) ∩ α)

µ(x(n+ 1))
≤ 1− 1

2n+1
+

1

22n+1
+

1

23n+3
(since R(α) ≤ 1), so

µ(R(x(n+ 1) ∩ α)

µ(x(n+ 1))
≤ 1− 1

2n+2

Corollary 3.2.3. Suppose X is an almost full subset of [0, 1], then there exists an x ∈ [0, 1]
such that x ∈ X.

Proof. Suppose X is an almost full subset of [0, 1], then there exists a sequence X0, X1, X2, . . .
of measurable regions which meet the requirements (i) and (ii) of definition 3.2.1. Pick X1 from
this sequence, then µ(X1) < 1

2 < 1. For every x ∈ [0, 1] if x /∈ X1 then x ∈ X. By lemma 3.2.2
we can construct an x ∈ [0, 1] such that x /∈ X1.

3.3 Measurable functions and sets

We are now able to define when a function is measurable.

Definition 3.3.1. A partial bounded function f : [0, 1] → R is measurable if and only if
there exists an infinite sequence X0, X1, X2, . . . of measurable regions and an infinite sequence
v0, v1, v2, . . . of elementary sets of rectangles such that:

(i) for every n ∈ N, µ(Xn) < 1
2n and Ar∗(vn) < 1

2n , and

(ii) for every n ∈ N, every x ∈ [0, 1], whenever x /∈ Xn then x ∈ dom(f) and vn captures f .

We define
∫
f(x) dx = lim

n→∞
I(vn) = lim

n→∞
I(vn) to be the integral of f .

Note that the domain of a measurable function is almost full. The following lemma shows that
the above definition makes sense.

Lemma 3.3.2. Suppose f : [0, 1]→ R is a partial bounded function, X0, X1, X2, . . . is an infi-
nite sequence of measurable regions and v0, v1, v2, . . . is an infinite sequence of elementary sets
of rectangles such that conditions (i) and (ii) of definition 3.3.1 are met. Then lim

n→∞
I(vn) and

lim
n→∞

I(vn) exist, are equal and do not depend on the choice of the infinite sequence v0, v1, v2, . . .

and the measurable regions X0, X1, X2, . . .

Proof. We claim the following:

(i) lim
n→∞

I(vn) and lim
n→∞

I(vn) exist. That is, for all k ∈ N there exists an N ∈ N such that for

all m,n ≥ N , |I(vn)− I(vm)| ≤ 1
k and |I(vn)− I(vm)| ≤ 1

k

(ii) lim
n→∞

I(vn) = lim
n→∞

I(vn)
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(iii) For every infinite sequence Y0, Y1, Y2, . . . of measurable regions and every infinite sequence
u0, u1, u2, . . . of elementary sets of rectangles such that conditions (i) and (ii) of definition
3.3.1 are met we have: lim

n→∞
I(vn) = lim

n→∞
I(wn)

This shows that the integral of definition 3.3.1 makes sense. We will now prove (i), (ii) and (iii).

(i) f is a bounded function, thus find M ∈ N such that −M ≤ f(x) ≤ M for all x ∈ [0, 1].
Pick k ∈ N and find N ∈ N such that 2M+1

2N−1 ≤ 1
k . Pick n,m ≥ N .

We have the measurable regions Xn and Xm and the elementary sets of rectangles vn and
vm. For readability we define v := vn, u := vm, ln := length(vn) and lm := length(vm).
Also, we define two new measurable regions X and Y . For this, find p, q ∈ N such that
µ(Xn)+ 2(ln+1)

p < 1
2n and µ(Xm)+ 2(lm+1)

q < 1
2m . Now define X := Xn∪{

(
(vi)

′
0− 1

p , (vi)
′
0 +

1
p

)
| 0 ≤ i < ln} ∪

(
(vln−1)′′0 − 1

p , (vln−1)′′0 + 1
p

)
and Y := Xm ∪ {

(
(ui)

′
0 − 1

q , (ui)
′
0 + 1

q

)
| 0 ≤

i < lm}∪
(
(ulm−1)′′0− 1

q , (ulm−1)′′0 + 1
q

)
. Thus, X is the union of Xn and small open intervals

around the boundaries of v and Y is the union of Xm and small open intervals around the
boundaries of u. Clearly, X and Y are measurable regions. Note: we now have, for all
x ∈ [0, 1], if x /∈ X ∪ Y then there exists 0 ≤ i < ln and 0 ≤ j < lm such that x ε0 (vi)0

and x ε0 (uj)0.
Next, we will consider the elementary sets of rectangles. The idea is to show that almost
every rectangle of v “touches” a rectangle of u. See figure 5. For this, we define wilm+j :=
(vi)0 ∩ (uj)0 and W := {wilm+j | 0 ≤ i < ln, 0 ≤ j < lm and wilm+j 6= ⊥}, which clearly is
a partition of [0, 1]. We will separate W into two subsets, W> and W⊥, where W> is the
set of rectangles that “touch” and W⊥ is the set of rectangles that do not “touch”. So we
define W> := {wilm+j | wilm+j ∈ W | (vi)1 ∩ (vj)1 6= ⊥} and W⊥ := {wilm+j | wilm+j ∈
W | (vi)1 ∩ (vj)1 = ⊥}. Now, for all x ∈ [0, 1], whenever x /∈ X ∪ Y there exist 0 ≤ i < ln
and 0 ≤ j < lm such that x ε0 wilm+j and, by clause (ii) of definition 3.3.1, wilm+j ∈W>.
This means, if wilm+j ∈W⊥ then for all x ε0wilm+j , x ∈ X ∪ Y . Thus W⊥ ⊆ X ∪ Y . This
gives:

µ
( ⋃
w∈W⊥

w
)
≤ µ(X ∪ Y ) ≤ µ(X) + µ(Y ) ≤ 1

2n
+

1

2m
≤ 1

2min(n,m)−1
≤ 1

2N−1
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Now we can prove the claim:

|I(vn)− I(vm)| = |I(v)− I(u)|

= |
ln−1∑
i=0

(
(vi)

′′
0 − (vi)

′
0

)
(vi)

′
1 −

lm−1∑
i=0

(
(ui)

′′
0 − (ui)

′
0

)
(ui)

′
1|

= |
∑

wilm+j∈W

(
w′′ilm+j − w′ilm+j

)(
(vi)

′
1 − (uj)

′
1

)
|

≤
∑

wilm+j∈W

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′
1 − (uj)

′
1

)
|

≤
∑

wilm+j∈W>

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′
1 − (uj)

′
1

)
| +

∑
wilm+j∈W⊥

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′
1 − (uj)

′
1

)
|

≤
∑

wilm+j∈W>

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (vi)

′
1

)
+
(
(uj)

′′
1 − (uj)

′
1

)
| +

∑
wilm+j∈W⊥

(
w′′ilm+j − w′ilm+j

)
2M

≤ 1

2m
+

1

2n
+

2M

2N−1
≤ 2M + 1

2N−1
≤ 1

k

And similarly we get:

|I(vn)− I(vm)| = |I(v)− I(u)|

= |
ln−1∑
i=0

(
(vi)

′′
0 − (vi)

′
0

)
(vi)

′′
1 −

lm−1∑
i=0

(
(ui)

′′
0 − (ui)

′
0

)
(ui)

′′
1|

= |
∑

wilm+j∈W

(
w′′ilm+j − w′ilm+j

)(
(vi)

′′
1 − (uj)

′′
1

)
|

≤
∑

wilm+j∈W

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (uj)

′′
1

)
|

≤
∑

wilm+j∈W>

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (uj)

′′
1

)
| +

∑
wilm+j∈W⊥

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (uj)

′′
1

)
|

≤
∑

wilm+j∈W>

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (vi)

′
1

)
+
(
(uj)

′′
1 − (uj)

′
1

)
| +

∑
wilm+j∈W⊥

(
w′′ilm+j − w′ilm+j

)
2M

≤ 1

2m
+

1

2n
+

2M

2N−1
≤ 2M + 1

2N−1
≤ 1

k
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(ii) Let, for all n ∈ N, ln = length(vn)− 1.

∀n ∈ N [Ar(vn) ≤ 1

2n
] =⇒

∀n ∈ N [

ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)(
((vn)i)

′′
1 − ((vn)i)

′
1

)
≤ 1

2n
] =⇒

∀n ∈ N [

ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′′
1 −

ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′
1 ≤

1

2n
] =⇒

∀n ∈ N[

ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′′
1 ≤

ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′
1 +

1

2n
] =⇒

lim
n→∞

( ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′′
1

)
≤

lim
n→∞

( ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′
1 +

1

2n

)
=

lim
n→∞

( ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′
1

)
+ lim
n→∞

1

2n
=

lim
n→∞

( ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′
1

)
So lim

n→∞
I(vn) ≥ lim

n→∞
I(vn). Also:

∀n ∈ N[(vn)i)
′
1 ≤ (vn)i)

′′
1] =⇒

∀n ∈ N[

ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′
1 ≤

ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′′
1] =⇒

lim
n→∞

( ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′
1

)
≤ lim

n→∞

( ln∑
i=0

(
((vn)i)

′′
0 − ((vn)i)

′
0

)
((vn)i)

′′
1

)
So lim

n→∞
I(vn) ≤ lim

n→∞
I(vn).

(iii) It is sufficient to prove, for every k ∈ N there exists N ∈ N such that for all n,m ≥ N ,
|I(vn) − I(um)| ≤ 1

k . Again, f is a bounded function, thus find M ∈ N such that −M ≤
f(x) ≤ M for all x ∈ [0, 1]. Pick k ∈ N and find N ∈ N such that 2M+1

2N−1 ≤ 1
k . Pick

n,m ≥ N . This proof is very similar to the proof in (i).
We have the measurable regions Xn and Ym and the elementary sets of rectangles vn and
um. For readability we define v := vn, u := um, ln := length(vn) and lm := length(um).
Also, we define two new measurable regions X and Y . For this, find p, q ∈ N such that
µ(Xn)+ 2(ln+1)

p < 1
2n and µ(Ym)+ 2(lm+1)

q < 1
2m . Now define X := Xn∪{

(
(vi)

′
0− 1

p , (vi)
′
0 +

1
p

)
| 0 ≤ i < ln}∪

(
(vln−1)′′0− 1

p , (vln−1)′′0 + 1
p

)
and Y := Ym∪{

(
(ui)

′
0− 1

q , (ui)
′
0 + 1

q

)
| 0 ≤ i <

lm} ∪
(
(ulm−1)′′0 − 1

q , (ulm−1)′′0 + 1
q

)
. Thus, X is the union of Xn and small open intervals

around the boundaries of v and Y is the union of Ym and small open intervals around the
boundaries of u. Clearly, X and Y are measurable regions. Note: we now have, for all
x ∈ [0, 1], if x /∈ X ∪ Y then there exists 0 ≤ i < ln and 0 ≤ j < lm such that x ε0 (vi)0

and x ε0 (uj)0.

29



Next, we will consider the elementary sets of rectangles. Again, we will see that almost
every rectangle of v “touches” a rectangle of u. For this, we again define wilm+j :=
(vi)0 ∩ (uj)0 and W := {wilm+j | 0 ≤ i < ln, 0 ≤ j < lm and wilm+j 6= ⊥}, which again is a
partition of [0, 1]. We will again separate W into two subsets, W> := {wilm+j | wilm+j ∈
W | (vi)1 ∩ (vj)1 6= ⊥} and W⊥ := {wilm+j | wilm+j ∈W | (vi)1 ∩ (vj)1 = ⊥}. Now, for all
x ∈ [0, 1], whenever x /∈ X ∪Y there exist 0 ≤ i < ln and 0 ≤ j < lm such that x ε0 wilm+j

and, by clause (ii) of definition 3.3.1, wilm+j ∈W>. This means, if wilm+j ∈W⊥ then for
all x ε0wilm+j , x ∈ X ∪ Y . Thus W⊥ ⊆ X ∪ Y . So :

µ
( ⋃
w∈W⊥

w
)
≤ µ(X ∪ Y ) ≤ µ(X) + µ(Y ) ≤ 1

2n
+

1

2m
≤ 1

2min(n,m)−1
≤ 1

2N−1

This gives us:

|I(vn)− I(um)| = |I(v)− I(u)|

= |
ln−1∑
i=0

(
(vi)

′′
0 − (vi)

′
0

)
(vi)

′′
1 −

lm−1∑
i=0

(
(ui)

′′
0 − (ui)

′
0

)
(ui)

′′
1|

= |
∑

wilm+j∈W

(
w′′ilm+j − w′ilm+j

)(
(vi)

′′
1 − (uj)

′′
1

)
|

≤
∑

wilm+j∈W

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (uj)

′′
1

)
|

≤
∑

wilm+j∈W>

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (uj)

′′
1

)
| +

∑
wilm+j∈W⊥

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (uj)

′′
1

)
|

≤
∑

wilm+j∈W>

(
w′′ilm+j − w′ilm+j

)
|
(
(vi)

′′
1 − (vi)

′
1

)
+
(
(uj)

′′
1 − (uj)

′
1

)
| +

∑
wilm+j∈W⊥

(
w′′ilm+j − w′ilm+j

)
2M

≤ 1

2m
+

1

2n
+

2M

2N−1
≤ 2M + 1

2N−1
≤ 1

k

1
x

1
f(x)

0
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Figure 5: Most elementary rectangles “touch”.

We will now prove some important lemmas and theorems about measurable function which will
become useful in chapter 5 of this thesis.

Lemma 3.3.3. Suppose f : [0, 1] → R is a bounded and measurable function and suppose
g : [0, 1]→ R is a bounded function and f(x) = g(x) almost everywhere (that is, there exists an
almost full set Y ⊆ [0, 1] such that ∀y ∈ Y [f(y) = g(y)]) then g is measurable and

∫
f(x) dx =∫

g(x) dx.

Proof. Since f is a measurable function we know there exists a sequence X0, X1, X2, . . . of
measurable regions and a sequence v0, v1, v2, . . . of elementary sets of rectangles which meet the
requirements (i) and (ii) of definition 3.3.1.
Also, since there exists an almost full set Y ⊆ [0, 1] such that ∀y ∈ Y [f(y) = g(y)] we know
there exists a sequence Y0, Y1, Y2, . . . of measurable regions which meet the requirements (i) and
(ii) of definition 3.2.1.
To prove that g is measurable we take the sequence Z0 = X0∪Y0, Z1 = X1∪Y1, Z2 = X2∪Y2, . . .
of measurable regions and the sequence v0, v1, v2, . . . of elementary sets of rectangles. Now we
have:

(i) For every n ∈ N [Ar(vn) < 1
2n ] and µ(Zn) ≤ µ(Xn) + µ(Yn) < 1

2n−1 , and

(ii) For every n ∈ N and every x ∈ [0, 1] whenever x /∈ Zn) then x /∈ Xn and x /∈ Yn. This
means x ∈ Y and x ∈ dom(f) and so x ∈ dom(g). This also means f(x) = g(x) and thus
∀i < length(vn) when x ε0 ((vn)i)0 then f(x) ε0 ((vn)i)1, so g(x) ε0 ((vn)i)1.

It immediately follows that
∫
f(x) dx =

∫
g(x) dx.

Theorem 3.3.4. Suppose f : [0, 1] → R is a partial function such that dom(f) is almost full
and such that f is bounded, then f is measurable.

To prove this theorem we need three lemmas.

Lemma 3.3.5. Suppose α = α(0), α(1), α(2), . . . is an infinite sequence of code numbers of
rational segments such that the sequence µ(ᾱ1), µ(ᾱ2), . . . converges. Suppose a ∈ S. Then

there exists n ∈ N such that µ(ᾱn∩a)
µ(a) ≥ 1

2 or there exists n ∈ N such that for all m ∈ N,
µ(ᾱm∩a)
µ(a) < 1− 1

2n .

Proof. Suppose α = α(0), α(1), α(2), . . . is an infinite sequence of code numbers of rational
segments such that the sequence µ(ᾱ1), µ(ᾱ2), . . . converges. Suppose a ∈ S. Find k ∈ N
such that µ(α) − µ(ᾱk) < 1

2µ(a). Suppose µ(ᾱk∩a)
µ(a) ≥ 1

2 , then we are done. So suppose not
µ(ᾱk∩a)
µ(a) ≥ 1

2 then, since these are rational numbers, µ(ᾱk ∩ a) ≤ 1
2µ(a). Pick m ∈ N and

suppose µ(ᾱm ∩ a) = µ(a). This means m > k and more then half of a gets covered by(
α(m− 1) ∪ · · · ∪ α(k)

)
\
(
α(k − 1) ∪ · · · ∪ α(0)

)
. But µ

((
α(m− 1) ∪ · · · ∪ α(k)

)
\ (α(k − 1) ∪

· · · ∪ α(0)
))

=
m−1∑
n=k

µ
(
α(n) \

n−1⋃
i=0

α(i)
)

= µ(ᾱm) − µ(ᾱk) < µ(α) − µ(ᾱk) <
1

2
µ(a), which is a

contradiction. So, for every m ∈ N, µ(ᾱm ∩ a) < µ(a).

Lemma 3.3.6. Suppose α = α(0), α(1), α(2), . . . is an infinite sequence of code numbers of
rational segments such that the sequence µ(ᾱ1), µ(ᾱ2), . . . converges. Suppose a ∈ S and there

exists n ∈ N such that for all m ∈ N, µ(ᾱm∩a)
µ(a) < 1 − 1

2n . Now define a0 = (a′, a
′+a′′

2 ) and
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a1 = (a
′+a′′

2 , a′′). Then there exists n ∈ N such that for all m ∈ N, µ(ᾱm∩a0)
µ(a0) < 1 − 1

2n or there

exists n ∈ N such that for all m ∈ N, µ(ᾱm∩a1)
µ(a1) < 1− 1

2n .

Proof. Suppose α = α(0), α(1), α(2), . . . is an infinite sequence of code numbers of rational
segments such that the sequence µ(ᾱ1), µ(ᾱ2), . . . converges. Suppose a ∈ S and there exists

n ∈ N such that for all m ∈ N, µ(ᾱm∩a)
µ(a) < 1 − 1

2n . Find this n ∈ N and find k ∈ N such

that µ(α) − µ(ᾱk) < 1
2nµ(a). Find i ∈ {0, 1} such that µ(ai ∩ ᾱk) ≤ µ(a1−i ∩ ᾱk). Then

µ(ai ∩ ᾱk) ≤ 1
2µ(a ∩ ᾱk). Then µ(ai∩ᾱk)

µ(ai)
≤

1
2
µ(a∩ᾱk)
1
2
µ(a)

< 1 − 1
2n . Also, pick m ∈ N and suppose

µ(ai∩ᾱm)
µ(ai)

≥ 1 − 1
2n+1 . This means m > k and more then 1

2n+1µ(ai) of ai gets covered by(
α(m−1)∪ · · ·∪α(k)

)
\
(
α(k−1)∪ · · ·∪α(0)

)
. But µ

((
α(m−1)∪ · · ·∪α(k)

)
\ (α(k−1)∪ · · ·∪

α(0)
))

=
m−1∑
n=k

µ
(
α(n) \

n−1⋃
i=0

α(i)
)

= µ(ᾱm) − µ(ᾱk) < µ(α) − µ(ᾱk) <
1

2n+1
µ(a) =

1

2n+1
µ(ai),

which is a contradiction. So, for every m ∈ N, µ(ai∩ᾱm)
µ(ai)

< 1− 1
2n+1 .

Lemma 3.3.7. Suppose X ⊆ [0, 1] and X is almost full. Then for every n ∈ N we can find
a measurable region Y and a fan τ such that µ(Y ) < 1

2n , τ ⊆ X and for every x ∈ [0, 1] if
¬(x ∈ Y ) then x ∈ τ .

Proof. X is almost full, so find a measurable region Xn such that µ(Xn) < 1
2n+2 and for every

x ∈ [0, 1] if ¬(x ∈ Xn) then x ∈ X. Since Xn is a measurable region we have an infinite sequence
α(0), α(1), α(2), . . . of code numbers of rational segments such that µ(ᾱ1), µ(ᾱ2) converges and
R(α) = Xn.
We define, for every n ∈ N a set of rational segments Sn := {(0, 1

2n ), . . . , (2n−1
2n , 1)}. Also, for

every n ∈ N we define a Rn ⊆ Sn such that:

(i) R0 = {(0, 1)}

(ii) For every n ∈ N and a ∈ Rn we can find a b ∈ Rn+1 such that b @ a

(iii) For every n ∈ N and a ∈ Sn, if a ∈ Rn then there exists k ∈ N such that for all m ∈ N,
µ(ᾱk∩a)
µ(a) < 1− 1

2k
and if a /∈ Rn then we can find b ∈ S such that a @ b and µ(b∩α)

µ(b) ≥
1
2 .

We can always make Rn by lemma 3.3.6 and 3.3.5. We now define a sequence β = β(0), β(1), . . .
of rational intervals. This sequence is created by first numbering the rational intervals of S1\R1,
then of {a ∈ S2|∃b ∈ R1[a @ b]} \ R2, then of {a ∈ S3|∃b ∈ R2[a @ b]} \ R3, etc. We claim
that the set Y ′ = R(β) is a measurable region. Thus we have to show that the sequence
µ(β̄1), µ(β̄2), . . . converges. Suppose n ∈ mathbbN . Find N ∈ N such that µ(α)−µ(ᾱN) < 1

2n4 .
Find M ∈ N such that µ({a ∈ SM |a is covered by ᾱN} ≥ µ(ᾱN) − 1

2n4 . Now find L ∈ N such
that {a ∈ SM |a is covered by ᾱN} ⊆ {β(0), . . . , β(L − 1)}. Then we have, for every k ≥ L,
µ(β̄L) ≤ µ(β̄k) ≤ µ(β̄L) + 2

2n4 + 2
2n4 = µ(β̄L) + 1

2n . Where the last inequality holds since
µ(β̄L) ≥ µ({a ∈ SM |a is covered by ᾱN}) ≥ µ(ᾱN) − 1

2n4 ≥ µ(α) − 1
2n4 −

1
2n4 . This means

β(L), β(L+ 1), . . . can cover only 2
2n4 of α extra. Since β consists of intervals which are not in

Rn this means these segments are covered for more then half by α. Thus the measure of Y ′ can
only grow 2 2

2n4 . For the same reasoning, µ(Y ′) ≤ 2µ(α).
Now define τ as follows:

α ∈ τ ⇐⇒ ∀n ∈ N[α(n) ∈ λn+1 ∧ α(n+ 1) v α(n) ∧ α(n) ∈ Rn]

Obviously, τ is a spread.
Furthermore we can show for every x ∈ [0, 1] if ¬(x ∈ Y ′) and for every q ∈ Q, q#x then there
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exists γ ∈ τ such that γ ≡ x. Pick x ∈ [0, 1] and suppose ¬(x ∈ Y ′) and for every q ∈ Q,
q#x. We define γ = γ(0), γ(1), γ(2), . . . with induction. Define γ(0) = [0, 1]. Now suppose
γ(0), . . . , γ(n) are defined in such a way that for all k ≤ n[γ(k) ∈ λk+1∧γ(k) v γ(k−1)∧γ(k) ∈
Rk∧∃m ∈ N[x(m) v γ(k)] and suppose γ(n) = [ a2n ,

a+1
2n ] with 0 ≤ a < 2n. Since 2a+1

2n+1 ∈ Q we can
find k ∈ N such that 2a+1

2n+1 > x′′(k) or 2a+1
2n+1 < x′(k). If 2a+1

2n+1 > x′′(k) define γ(n+1) = [ 2a
2n+1 ,

2a+1
2n+1 ]

else define γ(n + 1) = [2a+1
2n+1 ,

2a+2
2n+1 ]. Now obviously, γ(n + 1) ∈ λn+2, γ(n + 1) v γ(n). Also,

find m ∈ N such that x(m) v γ(n). This means γ(n)′ ≤ x′(m) and x′′(m) ≤ γ(n)′′. Define
l = max(k,m). Suppose γ(n + 1) = [ 2a

2n+1 ,
2a+1
2n+1 ] then γ(n + 1)′ = γ(n)′ ≤ x′(m) < x′(l)

and γ(n + 1)′′ > x′′(m) > x′′(l) so x(l) v γ(n + 1). Suppose γ(n + 1) = [2a+1
2n+1 ,

2a+2
2n+1 ] then

γ(n + 1)′ < x′(k) < x′(l) and γ(n + 1)′′ = γ(n)′′ ≥ x′′(k) > x′′(l) so x(l) v γ(n + 1). Lastly,
suppose γ(n+1) /∈ Rn+1 then there exists m ∈ N such that γ(n+1) = β(m). But, since x /∈ Y ′,
6= (β(m)′ < x′(l) < x′′(l) < β(m)′′) so 6= (γ(n + 1)′ < x′(l) < x′′(l) < γ(n + 1)′′) which is a
contradiction. Thus γ(n+ 1) ∈ Rn+1.
Furthermore, the set B = {x ∈ [0, 1]|∀q ∈ Q[q#x]} is almost full, so we can find a measurable
region Y such that µ(Y ) ≤ 2µ(Y ′) and such that for all x ∈ [0, 1] if x ∈ Y ′ then x ∈ Y and if
x /∈ Y then x ∈ B. So, for all x ∈ [0, 1] if x /∈ Y then there exists γ ∈ τ such that γ ≡ x.

We can now prove theorem 3.3.4.

Proof of Theorem 3.3.4. Suppose f : [0, 1]→ R is a partial function such that dom(f) is almost
full and such that f is bounded. Find M ∈ N such that for all x ∈ [0, 1], −M ≤ f(x) ≤ M .
Pick n ∈ N. We want to find a measurable region Xn and an elementary set of rectangles vn
such that:

(i) µ(Xn) ≤ 1
2n and Ar(vn) ≤ 1

2n

(ii) for every x ∈ [0, 1] if x /∈ Xn then x ∈ dom(f) and vn captures f .

By lemma 3.3.7, we can find a measurable regionXn and a fan τ ⊆ dom(f) such that µ(Xn) ≤ 1
2n

and for all x ∈ [0, 1] if x /∈ Y then x ∈ τ . Find k ∈ N such that 1
2k

+ M
2k
≤ 1

2n . By the continuity
theorem f is continuous. Also τ ⊆ dom(f), so for every γ ∈ τ there exists y ∈ [0, 1] such
that f(γ) = y. This means, for every γ ∈ τ there exists m ∈ N such that for all x ∈ [0, 1] if
|x− γ| ≤ 1

2m then |f(x)− f(γ)| ≤ 1
2k

. This means, for every γ ∈ τ there exists v ∈ R such that

length(v0) ≤ 1
2m , length(v1) ≤ 1

2k
, γ ε0 v0 and for all x ∈ [0, 1] if x ε0 v0 then f(x) ε0 v1. Since

τ is a fan we can use the fan theorem and find N ∈ N such that for every γ ∈ τ there exists
v ∈ R with v ≤ N such that length(v0) ≤ 1

2m , length(v1) ≤ 1
2k

, γ ε0 v0 and for all x ∈ [0, 1] if

x ε0 v0 then f(x) ε0 v1. This means we can construct a set of rectangles v with Ar(v) ≤ 1
2k

such
that v captures f � τ . We define vn = v ∪ {a ∈ R|a0 is not covered by v and a1 = [−M,M ]}.
Then Ar(vn) ≤ 1

2k
+ M

2k
≤ 1

2n and for every x ∈ [0, 1] if x /∈ Y then x ∈ τ so x ∈ dom(f) and vn
captures f .

We will now define when a set X is measurable. For this we need the definition of a characteristic
function.

Definition 3.3.8. The characteristic function of a set X is defined as follows:

χX(x) =

{
1 if x ∈ X
0 if ¬(x ∈ X)

Definition 3.3.9. Suppose X ⊆ [0, 1]. X is measurable if and only if its characteristic function
χX is. Assume X ⊆ [0, 1] is measurable, then the measure of X is µ(X) :=

∫
χX(x) dx.
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Lemma 3.3.10. Suppose X is a measurable set, then X ∪ ([0, 1] \X) is almost full.

Proof. Since X is a measurable set, its characteristic function χX is measurable. As already
noted after 3.3.1, the domain of a measurable function is almost full. We have dom(χX) =
X ∪ ([0, 1] \X). Since χX is measurable, there exists a sequence X0, X1, X2, . . . of measurable
regions and a sequence v0, v1, v2, . . . of elementary sets of rectangles such that they meet the
requirements (i) and (ii) of definition 3.3.1. This means for every n ∈ N and every x ∈ [0, 1] if
x /∈ Xn then x ∈ dom(χX) = X ∪ ([0, 1] \X).

We can prove an even stronger lemma then corollary 3.2.3. We will not prove it here but refer
to [6] for a proof.

Lemma 3.3.11. Suppose X is a measurable set and µ(X) > 0 then there exists x ∈ X such
that x # ([0, 1] \X).

We will now prove a number of lemmas about measurable sets.

Lemma 3.3.12. Suppose X is a measurable set and X = X ′ ∪ X ′′ such that X ′ ∩ X ′′ = ∅.
Then X ′ and X ′′ are measurable.

Proof. Suppose X is a measurable set and X = X ′ ∪ X ′′ such that X ′ ∩ X ′′ = ∅. Since X
is measurable we know, by lemma 3.3.10, X ∪ ([0, 1] \ X) is almost full. This means X ′ ∪
X ′′ ∪ ([0, 1] \ (X ′ ∪X ′′)) is almost full. But, since X ∩X ′′ = ∅ we know X ′′ ⊆ ([0, 1] \X ′) so
X ′∪X ′′∪ ([0, 1]\ (X ′∪X ′′)) ⊆ X ′∪ ([0, 1]\X ′) which means X ′∪ ([0, 1]\X ′) is almost full. By
theorem 3.3.4 this means χX′ is measurable thus X ′ is measurable. In a similar way we prove
X ′′ is measurable.

Lemma 3.3.13. Suppose X is a measurable set. Suppose a ∈ [0, 1] and a ≡ 0 or a # 0. Then
Xa := { x ∈ [0, 1] | x = ya| y ∈ X} is measurable and µ(Xa) = aµ(X). Also if there exists
a region v = (v′, v′′) and a region w = (w′, w′′) such that v′ < 0 < v′′ and w′ < 1 < w′′ such
that for each x ∈ v we know x /∈ X and for each x ∈ W we know x /∈ X then X + a :=
{ x | x = y + a|y ∈ X} is measurable for all a ∈ R if and only if X + a ⊆ [0, 1]. We then have
µ(X + a) = µ(X).

Proof. Suppose X is measurable, then there exists an infinite sequence of measurable regions
X0, X1, X2, . . . and in infinite sequence of elementary sets of rectangles v0, v1, v2, . . . such that
the requirements (i) and (ii) of definition 3.3.1 are met. Pick any a ∈ [0, 1], then we can
prove Xa is measurable with aX0, aX1, aX2, . . . and av0, av1, av2, . . . . Here for every n ∈ N,
aXn = R(β(0), β(1), β(2), . . . with β(n) = (aα(n)′, aα(n)′′) when Xn = R(α(0), α(1), α(2), . . . ).
Also if a ≡ 0 then for every n ∈ N and every i < length(vn) if i < length(vn) − 1 then
((avn)i)0 = (0, 0), if i = length(vn)− 1 then ((avn)i)0 = (0, 1) and ((avn)i)1 = ((vn)i)1. If a # 0
then for every i < length(vn), ((avn)i)0 = (a((vn)i)

′
0, a((vn)i)

′′
0) and ((avn)i)1 = ((vn)i)1. Now

it is easy to show µ(aX) = aµ(X).
Suppose X is such that there exists a region v = (v′, v′′) and a region w = (w′, w′′) such that
v′ < 0 < v′′ and w′ < 1 < w′′ such that for each x ∈ v we know x /∈ X and for each x ∈ W we
know x /∈ X. Pick any a ∈ [0, 1] such that X+a ⊆ [0, 1] then we can prove X+a is measurable
with a+X0, a+X1, a+X2, . . . and a+v0, a+v1, a+v2, . . . . Here a+Xn = R(β(0), β(1), β(2), . . .
with β(n) = (a+ α(n)′, a+ α(n)′′) when Xn = R(α(0), α(1), α(2), . . . ) and:

(i) ((a+ vn)0)0 = (0, a+ ((vn)0)′0) and ((a+ vn)0)1 = (0, 0)

(ii) for all 0 < i < length(vn), ((a + vn)i)0 = (a + ((vn)i−1)′0, a + ((vn)i−1)′′0) if and only if
a+((vn)i−1)′0, a+((vn)i−1)′′0 ≤ 1. If a+((vn)i−1)′′0 > 1 then ((a+vn)i)0 = (a+((vn)i−1)′0, 1)
and if a+((vn)i−1)′0, a+((vn)i−1)′′0 > 1 then ((a+vn)i)0 = (a+((vn)i−1)′0, a+((vn)i−1)′′0) =
(1, 1).
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(iii) for all 0 < i < length(vn), ((a+ vn)i)1 = ((vn)i)1

Now it is easy to show µ(a+X) = µ(X).

Lemma 3.3.14. Suppose X and Y are measurable sets, then µ(X \ Y ) ≥ µ(X)− µ(Y ).

Proof. Suppose X and Y are measurable sets. Then χX is measurable so we have an infinite
sequence X1, X2, X3, . . . of measurable regions and an infinite sequence v1, v2, v3, . . . of elemen-
tary sets of rectangles such that the condition of definition 3.3.1 hold. Also, χY is measurable
so we have an infinite sequence Y1, Y2, Y3, . . . of measurable regions and an infinite sequence
u1, u2, u3, . . . of elementary sets of rectangles such that the condition of definition 3.3.1 hold.
Now consider Z1 = X1 ∪ Y1, X2 ∪ Y2, X3 ∪ Y3, . . . . Pick n ∈ N and suppose x /∈ Zn then x /∈ Xn

and x /∈ Yn so x ∈ X ∪ ([0, 1] \X)) and x ∈ Y ∪ ([0, 1] \ Y ). Suppose x ∈ X and x ∈ Y then
x ∈ ([0, 1]\(X \Y )). Suppose x ∈ X and x ∈ [0, 1]\Y then x ∈ (X \Y ). Suppose x ∈ ([0, 1]\X)
then x ∈ ([0, 1] \ (X \ Y )). So if x /∈ Zn then x ∈ (X \ Y ) ∪ ([0, 1] \ (X \ Y )) = dom(χX\Y ).

Also µ(Zn) ≤ 2
2n .

We define an elementary set of rectangles wn for every n ∈ N. Pick n ∈ N and define
ln = length(vn) and kn = length(un). Define, for every i < ln and j < kn, ((wn)ikn+j)0 =
(wi,j)0 = ((vn)i)0 ∩ ((un)j)0 and consider W = {(wi,j)0|0 ≤ i < ln, 0 ≤ j ≤ kn and (wi,j)0 6= ⊥}
Define (wi,j)1 =

(
((vn)i)

′
1

(
1− ((un)j)

′′
1

)
, ((vn)i)

′′
1

(
1− ((un)j)

′
1

))
for every (wi,j)0 ∈W . Also:

Ar∗(wn) =
∑

(wi,j)0∈W

(
(wi,j)

′′
1 − (wi,j)

′
1

)(
(wi,j)

′′
0 − (wi,j)

′
0

)
=

∑
(wi,j)0∈W

(
((vn)i)

′
1

(
1− ((un)j)

′′
1

)
− ((vn)i)

′′
1

(
1− ((un)j)

′
1

))(
(wi,j)

′′
0 − (wi,j)

′
0

)
=

∑
(wi,j)0∈W

(
((vn)i)

′′
1 − ((vn)i)

′
1

)(
(wi,j)

′′
0 − (wi,j)

′
0

)
+

∑
(wi,j)0∈W

(
((vn)i)

′
1((un)j)

′′
1 − ((vn)i)

′′
1(un)j)

′
1

(
(wi,j)

′′
0 − (wi,j)

′
0

)
=

∑
0≤i<ln

(
((vn)i)

′′
1 − ((vn)i)

′
1

)(
(vn)i)

′′
0 − ((vn)i)

′
0

)
+

∑
0≤j<kn

(
((vn)i)

′
1((un)j)

′′
1 − ((vn)i)

′′
1(un)j)

′
1

(
((un)j)

′′
0 − ((un)j)

′
0

)
≤ 1

n
+

1

n

Here the last inequality holds since ((vn)i)
′
1 ≤ ((vn)i)

′′
1 and 0 ≤ ((un)j)

′
1 ≤ ((un)j)

′′
1 ≤ 1.

Now pick x ∈ [0, 1] and n ∈ N and suppose x /∈ Zn, then x ∈ (X \ Y ) or x ∈ ([0, 1] \ (X \ Y )).
First suppose x ∈ (X \ Y ) then if x ε0 (wi,j)0 then x ε0 ((vn)i)0 and x ε0 ((un)j)0. So
χX(x) = 1 ε0 ((vn)i)0 and χY (x) = 0 ε0 ((un)j)0. This means ((vn)i)

′
1 ≤ 1 = ((vn)i)

′′
1 and

((un)j)
′
1 = 0 ≤ ((un)j)

′′
1 ≤ 1 so ((wi,j)

′
1 ≤ ((vn)i)

′
1 ≤ 1 and ((wi,j)

′′
1 = ((vn)i)

′′
1 = 1. So

(wi,j)
′
1 ≤ χX∪Y = 1 ≤ ((wi,j)

′′
1. Now suppose x ∈ ([0, 1] \ (X \ Y )) then if x ε0 (wi,j)0 then

x ε0 ((vn)i)0 and x ε0 ((un)j)0. So χX(x) = 1 ε0 ((vn)i)0 and χY (x) = 1 ε0 ((un)j)0 or
χX(x) = 0 ε0 ((vn)i)0. This means ((vn)i)

′
1 ≤ 1 = ((vn)i)

′′
1 and ((un)j)

′
1 ≤ 1 = ((un)j)

′′
1 so

((wi,j)
′
1 = 0 and ((wi,j)

′′
1 ≤ 1. So ((wi,j)

′
1 ≤ χX∪Y = 0 ≤ ((wi,j)

′′
1. Or ((vn)i)

′
1 = 0 ≤ ((vn)i)

′′
1

so ((wi,j)
′
1 = 0 and ((wi,j)

′′
1 ≤ 1. So ((wi,j)

′
1 ≤ χX∪Y = 0 ≤ ((wi,j)

′′
1. This means X \ Y is

35



measurable. Also:

µ(X \ Y ) = lim
n→∞

( ∑
0≤i<ln
0≤j<kn

(
(wi,j)

′′
0 − (wi,j)

′′
0

)(
(vi)

′′
1(1− (uj)

′
1

))

= lim
n→∞

( ∑
0≤i<ln
0≤j<kn

(
(wi,j)

′′
0 − (wi,j)

′′
0

)
(vi)

′′
1 −

∑
0≤i<ln
0≤j<kn

(
(wi,j)

′′
0 − (wi,j)

′′
0

)
(vi)

′′
1(uj)

′
1

)

= lim
n→∞

( ∑
0≤i<ln
0≤j<kn

(
(wi,j)

′′
0 − (wi,j)

′′
0

)
(vi)

′′
1

)
− lim
n→∞

( ∑
0≤i<ln
0≤j<kn

(
(wi,j)

′′
0 − (wi,j)

′′
0

)
(vi)

′′
1(uj)

′
1

)
≥ µ(X)− µ(Y )

Theorem 3.3.15. If a set X is measurable and µ(X) = k, then the complement of X, [0, 1]\X
is measurable and µ([0, 1] \X) = 1− k.

Proof. The proof will consist of two parts. In part 1 we will prove that [0, 1] \X is measurable
and in part 2 we will prove µ([0, 1] \X) = 1− k.

1. We know X is measurable, so the characteristic function χX is. This means there exists a
sequence X0, X1, X2, . . . of measurable regions and a sequence v0, v1, v2, . . . of elementary
sets of rectangles such that the requirements (i) and (ii) of definition 3.3.1 are met.
To prove that χ[0,1]\X is measurable we take the same sequence X0, X1, X2, . . . of mea-
surable regions. Furthermore we define a sequence w0, w1, w2, . . . of elementary sets of
rectangles as follows. For all n ∈ N and for all i < length(vn) define ((wn)i)0 = ((vn)i)0,
((wn)i)

′
1 = 1− ((vn)i)

′′
1 and ((wn)i)

′′
1 = 1− ((vn)i)

′
1. We have Ar(wn) = Ar(vn) < 1

2n .
Now suppose x /∈ Xn then x ∈ dom(χX) = dom(χ[0,1]\X). This means either x ∈ X or
x ∈ [0, 1] \X.
First suppose x ∈ X, then χX(x) = 1 and χ[0,1]\X(x) = 0. Suppose x ε0 ((wn)i)0,
then x ε0 ((vn)i)0 and thus 1 ε0 ((vn)i)1. This gives us ((vn)i)

′
1 ≤ 1 ≤ ((vn)i)

′′
1, so

−((vn)i)
′′
1 ≤ −1 ≤ −((vn)i)

′
1 which means ((wn)i)

′
1 ≤ 0 ≤ ((wn)i)

′′
1 and thus 0 ε0 ((wn)i)1.

Now suppose x ∈ [0, 1] \X, then χX(x) = 0 and χ[0,1]\X(x) = 1. Suppose x ε0 ((wn)i)0,
then x ε0 ((vn)i)0 and thus 0 ε0 ((vn)i)1. This gives us ((vn)i)

′
1 ≤ 0 ≤ ((vn)i)

′′
1, so

−((vn)i)
′′
1 ≤ 0 ≤ −((vn)i)

′
1 which means ((wn)i)

′
1 ≤ 1 ≤ ((wn)i)

′′
1 and thus 1 ε0 ((wn)i)1.

So, χ[0,1]\X is a measurable function.

2. Consider the function g : [0, 1] → R with g(x) = χX(x) + χ[0,1]\X(x). For every x ∈
dom(g) we have g(x) = 1. We will prove that this function is measurable and that∫
χX(x) dx+

∫
χ[0,1]\X(x) dx =

∫
g(x) dx = 1. This will show

∫
χ[0,1]\X(x) dx = 1− k.

To prove that g is measurable we again take the sequence X0, X1, X2, . . . of measurable
regions and we define a sequence u0, u1, u2, . . . of elementary sets of rectangles as fol-
lows. For all n ∈ N and for all i < length(vn) define ((un)i)0 = ((vn)i)0, ((un)i)

′
1 =

max(((vn)i)
′
1, ((wn)i)

′
1) and ((un)i)

′′
1 = max(((vn)i)

′′
1, ((wn)i)

′′
1). Now we have Ar(un) =

Ar(vn) < 1
2n .

Furthermore, suppose x /∈ Xn then x ∈ dom(χX) = dom(g). This means either x ∈ X or
x ∈ [0, 1] \X.
First suppose x ∈ X, then χX(x) = 1 and χ[0,1]\X(x) = 0. Suppose x ε0 ((un)i)0,
then x ε0 ((vn)i)0 and thus 1 ε0 ((vn)i)1 and 0 ε0 ((wn)i)1 This gives us ((vn)i)

′
1 ≤ 1 ≤

((vn)i)
′′
1 and ((wn)i)

′
1 ≤ 0 ≤ ((wn)i)

′′
1 so ((un)i)

′
1 = ((vn)i)

′
1 and ((un)i)

′′
1 = ((vn)i)

′′
1 thus

g(x) ε0 ((un)i)1.
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Suppose x ∈ [0, 1] \X, then χX(x) = 0 and χ[0,1]\X(x) = 1. Suppose x ε0 ((un)i)0, then
x ε0 ((vn)i)0 and thus 0 ε0 ((vn)i)1 and 1 ε0 ((wn)i)1 This gives us ((vn)i)

′
1 ≤ 0 ≤ ((vn)i)

′′
1

and ((wn)i)
′
1 ≤ 1 ≤ ((wn)i)

′′
1 so ((un)i)

′
1 = ((wn)i)

′
1 and ((un)i)

′′
1 = ((wn)i)

′′
1 thus

g(x) ε0 ((wn)i)1.
What is left for us to prove is

∫
χX(x) dx +

∫
χ[0,1]\X(x) dx =

∫
g(x) dx = 1. We have:∫

χX(x) dx = limn→∞ I(vn) and
∫
χ[0,1]\X(x) dx = lim

n→∞
I(wn), so:

∫
χX(x) dx+

∫
χ[0,1]\X(x) dx = lim

n→∞

( length(vn)−1∑
i=1

(((vn)i)
′′
0 − ((vn)i)

′
0)((vn)i)

′′
1

)
+

lim
n→∞

( length(vn)−1∑
i=1

(((vn)i)
′′
0 − ((vn)i)

′
0)(1− (vn)i)

′′
1

)
= lim
n→∞

( length(vn)−1∑
i=1

(((vn)i)
′′
0 − ((vn)i)

′
0)
)

Also: ∫
g(x) dx = lim

n→∞
I(un) = lim

n→∞

( k∑
i=1

(((vn)i)
′′
0 − ((vn)i)

′
0)((un)i)

′′
1

)
= lim

n→∞

( k∑
i=1

(((vn)i)
′′
0 − ((vn)i)

′
0) max(((vn)i)

′′
1, ((wn)i)

′′
1)
)

= lim
n→∞

( k∑
i=1

(((vn)i)
′′
0 − ((vn)i)

′
0)
)

Define f : [0, 1]→ R with f(x) = 1 for all x ∈ [0, 1]. By lemma 3.3.10 dom(g) is almost full so
f(x) = g(x) almost everywhere, thus by lemma 3.3.3

∫
g(x) dx =

∫
f(x) dx = 1.
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4 Geometric types

The examples of possible pseudofull subsets that Brouwer gives to define discontinuous functions
fall into certain equivalence classes that Brouwer calls geometric types. In this chapter we define
what a geometric type is and discuss some intuitionistic mathematics on geometric types.

Definition 4.1. Two sets V,W ⊆ [0, 1] are of the same geometric type if there exists a
uniformly continuous bijection f : [0, 1] → [0, 1] such that f(V ) = W and such that its inverse
f−1 is uniformly continuous as well. Notation: V ∼W .

We now show that the properties of sets defined in definition 1.5 may be considered as properties
of geometric types.

Lemma 4.2. Suppose V,W ⊆ [0, 1] and suppose V ∼W . Then:

(i) If V ≡ [0, 1] then W ≡ [0, 1]

(ii) If V 6≡ [0, 1] then W 6≡ [0, 1]

(iii) If V#[0, 1] then W#[0, 1]

(iv) If ¬[V ≡ [0, 1]] then ¬[W ≡ [0, 1]]

(v) If ¬¬[V ≡ [0, 1]] then ¬¬[W ≡ [0, 1]]

(vi) If ¬[V 6≡ [0, 1]] then ¬[W 6≡ [0, 1]]

(vii) If ¬¬[V 6≡ [0, 1]] then ¬¬[W 6≡ [0, 1]]

(viii) If ¬[V#[0, 1]] then ¬[W#[0, 1]]

(ix) If ¬¬[V#[0, 1]] then ¬¬[W#[0, 1]]

Proof. We will prove (i), (ii) and (iii). The others will then follow directly. Suppose V,W ⊆
[0, 1] and suppose V ∼ W . Then there exists an uniformly continuous function bijection f :
V →W such that f(V ) = W and such that it’s inverse f−1 is also uniformly continuous.

(i) We have to show ∀x ∈ [0, 1]∃w ∈ W [w ≡ x] and ∀w ∈ W∃x ∈ [0, 1] [x ≡ w]. Since
W ⊆ [0, 1] obviously ∀w ∈ W∃x ∈ [0, 1] [x ≡ w]. Now, pick x ∈ [0, 1]. Consider f(x).
V ≡ [0, 1], so find v ∈ V such that f(x) ≡ v. Define w = f−1(v) ∈ W . Since f(x) ≡ v
and since f−1 is a function we know x ≡ w.

(ii) We have to show ∃x ∈ [0, 1] ¬
[
∃w ∈ W [x ≡ w]

]
or ∃w ∈ W ¬

[
∃x ∈ [0, 1] [x ≡ w]

]
.

Since W ⊆ [0, 1], obviously ∃w ∈W ¬
[
∃x ∈ [0, 1] [x ≡ w]

]
can not be true. Now suppose

¬[V ≡ [0, 1]] then, also since V ⊆ [0, 1], we must have ∃y ∈ [0, 1] [¬[∃v ∈ V [y ≡ v]].
Find this y and consider x = f(y). Now suppose ∃w ∈ W s.t. x ≡ w. Then, since
f−1 is a function, we have y ≡ f−1(w). Since f−1(w) ∈ V , this is a contradiction, so
¬[∃w ∈W s.t. x ≡ w].

(iii) We have to show ∃x ∈ [0, 1]∀w ∈ W [x#w] or ∃w ∈ W∀x ∈ [0, 1][x#w]. Since W ⊆ [0, 1],
obviously ∃w ∈ W∀x ∈ [0, 1][x#w] can not be true. Now suppose [V#[0, 1]] then, also
since V ⊆ [0, 1], we must have ∃y ∈ [0, 1]∀v ∈ V [y#v]. Find this y and consider x = f(y).
Now pick any w ∈ W . We know, since f−1(w) ∈ V , y#f−1(w) and so f−1(x)#f−1(w).
By lemma 2.1.12 we have x#w.
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The following lemma follows from the fact that the composition of two continuous functions is
continuous.

Lemma 4.3. Suppose V,W ⊆ [0, 1] and suppose V ∼ W . If every function h : V → R is
continuous then every function f : W → R is continuous.

Proof. Suppose f : W → R is a function. Pick x ∈W and m ∈ N. We want to find n ∈ N such
that for all y ∈W if |x− y| < 1

n then |f(x)− f(y)| < 1
m . Find a uniformly continuous bijection

g : [0, 1]→ [0, 1] such that g(V ) = W and such that its inverse g−1 is also uniformly continuous.
Consider h : V → R with h(v) = f(g(v)) for all v ∈ V . This function is continuous, since
every function from V to R is, so for every z ∈ V there exists k ∈ N such that for all w ∈ V if
|z − w| < 1

k then |h(z) − h(w)| < 1
m . Find n ∈ N such that for all x, y ∈ [0, 1] if |x − y| < 1

n
then |g−1(x)− g−1(y)| < 1

k . We claim this is the n we are looking for. Pick any y ∈W and find
z, w ∈ V such that g(z) = x and g(w) = y. Find k ∈ N such that for all w ∈ V if |z−w| < 1

k then
|h(z)− h(w)| < 1

m . Suppose |x− y| < 1
n then |g(z)− g(w)| < 1

n so |g−1(g(z))− g−1(g(w))| < 1
k

so |z−w| < 1
k so |h(z)−h(w)| < 1

m and thus |f(g(z))−f(g(w))| < 1
m so |f(x)−f(y)| < 1

m .

Corollary 4.4. Suppose V,W ⊆ [0, 1] and suppose V ∼W . If there exists a function f : V → R
such that f is discontinuous then there exists a function h : W → R such that h is discontinuous.

Proof. Find f : V → R such that f is discontinuous. Find x ∈ V and n ∈ N such that for
every m ∈ N exists y ∈ V with |x − y| ≤ 1

2m but |f(x) − f(y)| > 1
2n . Also, find a uniformly

continuous bijection g : [0, 1]→ [0, 1] such that g(W ) = V and such that its inverse g−1 is also
uniformly continuous. We define h : W → R with h(v) = f(g(v)) for all v ∈ W . We will prove
h is discontinuous. For this, consider z := g−1(x) ∈ W and n. Pick any m ∈ N. Find k ∈ N
such that for all y ∈ R if |x− y| ≤ 1

2k
then |g−1(x)− g−1(y)| ≤ 1

2m . Now, find y ∈ V such that

|x − y| ≤ 1
2k

but |f(x) − f(y)| > 1
2n . We claim w := g−1(y) ∈ W is such that |z − w| ≤ 1

2m

but |h(z) − h(w)| > 1
2n . Since |x − y| ≤ 1

2k
we have |g−1(x) − g−1(y)| ≤ 1

2m so |z − w| ≤ 1
2m .

Also |f(x) − f(y)| > 1
2n so |f(g(g−1(x))) − f(g(g−1(y)))| ≤ 1

2n so |h(z) − h(w)| > 1
2n . So h is

discontinuous.

For the next lemma we need a couple of definitions.

Definition 4.5. X is a totally bounded (Brouwer: katalogisiert) set if for all m ∈ N there
exists p0, p1, . . . , pn−1 ∈ X such that for all q ∈ X there exists i < n with |q − pi| < 1

m .

Definition 4.6. A point x ∈ [0, 1] is a closure point of X if for every n ∈ N there exists a
y ∈ X such that |x− y| < 2−n.

Definition 4.7. The closure of X is X̄ := {x | x ∈ [0, 1] | x is a closurepoint of X}, the set
of closure points of X.

Definition 4.8. A set X is closed if X ≡ X̄.

Definition 4.9. X is a perfect set if it is closed and if for all x ∈ X and every n ∈ N there
exists y ∈ X such that 0 < |x− y| < 1

n .

Lemma 4.10. Suppose V,W ⊆ [0, 1] and suppose V ∼ W . Also suppose there exists a totally
bounded perfect set X such that for each x ∈ X we can not prove x ∈ V . Then there exists a
totally bounded perfect set Y such that for each y ∈ Y we can not prove y ∈W .
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Proof. Since we have V ∼ W , there exists an uniformly continuous function bijection f : V →
W such that f(V ) = W and such that its inverse f−1 is also uniformly continuous. Define
Y = f(X). First we will prove that Y is totally bounded, then we will prove that Y is closed,
then that Y is perfect and lastly we will prove that for each y ∈ Y we can not prove y ∈W .
To prove that Y is totally bounded pick any m ∈ N. Find k ∈ N such that for all x, y ∈ [0, 1] if
|x− y| < 1

k then |f(x)− f(y)| < 1
m . For this k, find p0, p1, . . . , pn−1 ∈ X such that for all x ∈ X

there exists i < n with |q − pi| < 1
k . Consider the sequence p′0 = f(p0), p′1 = f(p1), . . . , p′n−1 =

f(pn−1). Pick any y ∈ Y and define x = f−1(y). Then x ∈ X so find i < n such that |x−pi| < 1
k .

But this means |y − p′i| < 1
m .

To show that Y is closed pick any y ∈ [0, 1] which is a closure point of Y . This means for all
n ∈ N there exists yn ∈ Y such that |yn− y| < 2−n. Since f−1 is uniformly continuous we know
for all m ∈ N there exists k ∈ N such that if |y − x| < 1

k then |f−1(y) − f−1(x)| < 1
m . Fix m

and find k such that |y − x| < 1
k then |f−1(y) − f−1(x)| < 1

m . Pick n such that 2−n ≤ 1
k and

find yn such that |yn − y| ≤ 2−n ≤ 1
k . Then |f−1(yn) − f−1(y)| ≤ 1

m . So f−1(y) is a closure
point of X and thus f−1(x) ∈ X, so y ∈ Y .
Now we will show that Y is perfect. Pick any y ∈ Y and n ∈ N. Now find m ∈ N such that for
all x, y ∈ [0, 1] if |x− y| < 1

m then |f(x)− f(y)| < 1
n . Define x = f−1(y), then x ∈ X and thus

there exists x′ such that 0 < |x− x′| < 1
m . Now 0 < |y − f(x′)| < 1

n and f(x′) ∈ Y .
Lastly we will show that for each y ∈ Y we can not prove y ∈ W . Suppose y ∈ Y and suppose
y ∈ W . Consider f−1(y). f−1(y) ∈ X, but since y ∈ W , f−1(y) ∈ V , which we can not
prove.

Lemma 4.11. Suppose V,W ⊆ [0, 1] and suppose V ∼W . If there exists a sequence v1, v2, v3, · · · ∈
[0, 1] such that:

(i) For every i 6= j, vi 6= vj, and

(ii) for every i ∈ N we can not prove vi ∈ V

then there exists a sequence w1, w2, w3, · · · ∈ [0, 1] such that (i) and (ii) hold for W .

Proof. Find a uniformly continuous bijection f : [0, 1] → [0, 1] such that f(V ) = W and such
that its inverse f−1 is also uniformly continuous. Suppose there exists a sequence v1, v2, v3, · · · ∈
[0, 1] such that (i) and (ii) hold. Consider w1 = f(v1), w2 = f(v2), w3 = f(v3). Suppose
i 6= j ∈ N, then vi 6= vj so f(vi) 6= f(vj) since f is a bijection. Also, suppose we can find i ∈ N
such that we can prove wi ∈W . Then f−1(wi) = f−1(f(vi)) = vi ∈ V , which is a contradiction.
So for every i ∈ N we can not prove wi ∈W .

Lemma 4.12. Suppose V,W ⊆ [0, 1] and suppose V ∼W . Suppose there exists a set X ⊂ [0, 1]
which is dense in [0, 1] and such that for all x ∈ X we can not prove x ∈ V and such that for
all x, y ∈ X we have x = y or x#y. Then there exists a set Y ⊂ [0, 1] which is dense in [0, 1]
and such that for all y ∈ Y we can not prove y ∈ W and such that for all x, y ∈ Y we have
x = y or x#y.

Proof. Find a uniformly continuous bijection f : [0, 1] → [0, 1] such that f(V ) = W and such
that its inverse f−1 is also uniformly continuous. Suppose X ⊂ [0, 1] is dense in [0, 1] and such
that for all x ∈ X we can not prove x ∈ V and such that for all x, y ∈ X we have x = y or
x#y. Define Y := f(X). Suppose y ∈ Y and suppose we can prove y ∈ W then f−1(y) ∈ X
and f−1(y) ∈ V , which is a contradiction. Thus we can not prove y ∈ W . Suppose x, y ∈ Y .
Then f−1(x), f−1(y) ∈ X thus f−1(x) = f−1(y) or f−1(x)#f−1(y). Suppose f−1(x) = f−1(y)
then x = y. Suppose f−1(x)#f−1(y), then since f−1 is continuous x#y. Also, since f and
f−1 are continuous and bijections, by lemma 2.2.10 f and f−1 are monotone. Pick x, y ∈ [0, 1]
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such that x < y, then f−1(x) < f−1(y). Since X is dense in [0, 1] there exists z ∈ X such that
f−1(x) < z < f−1(y). Thus x < f(z) < y and f(z) ∈ Y , so Y is dense in [0, 1].
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5 Examples

In this chapter we will take a look at the examples Brouwer gives.

5.1 Example 1

Brouwer defines A to be the geometric type of all the sets to which a real number belongs if and
only if the law of the excluded middle is true. It is unclear here what Brouwer really means.
There are two possible interpretations for this geometric type, namely:

(i) A is the geometric type of H with H = {x | x ∈ [0, 1] | ∀ propositions P [P ∨ ¬P ]}

(ii) Every proposition P defines a geometric type AP . Suppose P is a proposition, then AP is
the geometric type of HP = {x | x ∈ [0, 1] | P ∨ ¬P}

We will consider these two options a bit more closely.
Suppose we would use option (i). For all x ∈ [0, 1] we have ¬x ∈ H, since, by lemma 2.2.8,
we know ¬∀x ∈ [0, 1] [(x = 0) ∨ ¬(x = 0)]. This gives us H = ∅. We can also consider the
complement of H. We then get [0, 1]\H = {x | x ∈ [0, 1] | ¬∀ propositions P [P ∨¬P ]} = [0, 1].
This shows us that Brouwer did not mean option (i), since he claims that the complement of
the set that he proposes can not contain any real number.
So we will assume he means option (ii) and work with this option from now on. Suppose for
P we take the proposition that π contains a block of nine consecutive nines in its decimal
expansion. So P = ∃n ∈ N[n = k1] as in definition 1.3.1. This means there are propositions
P for which we can not prove ∃x ∈ HP . Again, for every proposition P we can consider the
complement of HP :

[0, 1] \HP = {x | x ∈ [0, 1] | ¬(P ∨ ¬P )}
= { x | x ∈ [0, 1] | ¬P ∧ ¬¬P )}
= ∅.

Again, take P = ∃n ∈ N[n = k1]. Now suppose HP is measurable, then find k ∈ N such
that µ(HP ) = k. This means also [0, 1] \ HP is measurable and µ([0, 1] \ HP ) = 1 − k. But
[0, 1] \HP = ∅, so 1− k = 0. Thus k = 1, which means HP is almost full. By lemma 3.2.2 this
means there exists x ∈ HP , but we can not prove this. Thus there does not exists a measure of
HP . So, there are propositions P for which we can not prove that HP has a measure.

Lemma 5.1.1. For every proposition P , every representative of AP seems to coincide with
[0, 1].

Proof. Suppose P is a proposition. By lemma 4.2 it is sufficient to prove ¬¬
[
HP ≡ [0, 1]

]
.

Suppose P ∨ ¬P then HP = [0, 1], so HP ≡ [0, 1]. So if ¬[HP ≡ [0, 1]] then ¬(P ∨ ¬P ). Thus
if ¬¬(P ∨ ¬P ) then ¬¬[HP ≡ [0, 1]]. And since for every proposition Q, ¬¬(Q ∨ ¬Q), we have
¬¬(P ∨ ¬P ) so HP seems to coincide with [0, 1].
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5.2 Example 2

We define B1 to be the geometric type of I1
(2) and B2 to be the geometric type of I2

(3):

I1 = { x | x ∈ [0, 1] | x =

∞∑
n=1

an
2n
| ∀k ∈ N ∃m > k, n1 > m,n2 > m[am = an1 = 1, an2 = 0] }

= { x | x ∈ [0, 1] | x =
∞∑
n=1

an
2n
| ∀m ∈ N ∃n ∈ N [n > m ∧ am 6= an] }

I2 = { x | x ∈ [0, 1] | ∀q ∈ Q ∃m ∈ N |x− q| > 1/m}
= { x | x ∈ [0, 1] | ∀q ∈ Q [q # x]}

Lemma 5.2.1. I1 =
{
x | x ∈ [0, 1] | ∀q ∈ Q′ ∃m ∈ N |x− q| > 1/m} where

Q′ = { q ∈ Q | ∃m ∈ N[q =
∑m

n=1
an
2n with an ∈ {0, 1}] ∨ q = 1

}
.

Proof. Suppose x ∈ I1. Then x =
∑∞

n=1
an
2n s.t. ∀m ∈ N ∃n ∈ N with n > m and am 6= an.

Pick any q ∈ Q′. This means q =
∑m

n=1
bn
2n for some m ∈ N and with bn ∈ {0, 1}. Consider

x′ =
∑m

n=1
an
2n .

• Suppose x′ > q, then find k ∈ N such that |x′ − q| > 1
k ≥

1
2m . Since x ≥ x′ we have

|x− q| ≥ |x′ − q| > 1
k ≥

1
2m .

• Suppose x′ = q. Since for all m ∈ N there exists n ∈ N such that n > m and am 6= an we
can find k > m ∈ N such that ak = 1. This means |x− q| > 1

2k+1 .

• Suppose x′ < q. We know
∑∞

n=m+1
an
2n <

∑∞
n=m+1

1
2n = 1

2m , since we can find k > m such
that ak = 0. So |x− x′| =

∑∞
n=m+1

an
2n ≤ ( 1

2m −
1

2k+1
). Also we know |x′ − x|+ |x− q| ≥

|x′ − q| ≥ 1
2m . So we get |x− q| ≥ ( 1

2m −
∑∞

n=m+1
an
2n ) > 1

2m − ( 1
2m −

1
2k+1

) = 1
2k+1

.

Now suppose x ∈ [0, 1] and ∀q ∈ Q′∃m ∈ N|x− q| > 1
m . Because ∀q ∈ Q′∃m ∈ N|x− q| > 1

m we
can find a sequence (an)∞n=1 such that x =

∑∞
n=1

an
2n . We have to prove ∀m ∈ N ∃p ∈ N with p >

m and am 6= ap. Suppose m ∈ N. Define x′ =
∑m

n=1
an
2n .

• Suppose am = 0. x′ ∈ Q′, so find k ∈ N such that |x′ − x| =
∑∞

n=m+1
an
2n > 1

2k
> 0. So

there exists p > m ∈ N such that ap = 1.

• Suppose am = 1. Define x′′ = x′ +
∑∞

n=m+1
1

2n .
If there exists n ≤ m such that an = 0, define l = max{n ≤ m|an = 0}. So an = 1
for all n > l, which means x′′ =

∑l−1
n=1

an
2n + 1

2l
, so x′′ ∈ Q′. So find k ∈ N such that

|x−x′′| = | 1
2l
−
∑∞

n=l
an
2n | >

1
k > 0. So there exists p ≥ l such that ap = 0. But since l was

the biggest such that l ≤ m and such that al = 0 we know p > m.
If an = 1 for all n ≤ m, then x′′ = 1, so x′′ ∈ Q′. Find k ∈ N such |1 − x| ≥ 1

k > 0. So
there exists p ∈ N such that ap = 0. But since an = 1 for all n ≤ m we know p > m.

Even though Brouwer seems to suggest that B1 and B2 are of a different geometric type, we
claim they are the same geometric type. The following two lemmas prove this.

(2)This is G1 from example 2 of Brouwers article.
(3)In example 2 of Brouwers article this is called “der Spezies der positiv-irrationalen”.
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Lemma 5.2.2. Suppose (cn)∞n=1 and (dn)∞n=1 are countable sequences with:

• ∀n ∈ N[cn, dn ∈ [0, 1]]

• ∀n 6= m ∈ N[cn#cm ∧ dn#dm]

• The sequences (cn)∞n=1 and (dn)∞n=1 are dense in [0, 1].

• ∃n,m, k, l ∈ N[cn = dk = 0 ∧ cm = dl = 1

Also suppose g : (cn)∞n=1 → (dn)∞n=1 is an isomorphism, that is g is bijection and for all n,m ∈ N
if cn < cm then g(cn) < g(cm). Then g is uniformly continuous.

Proof. Pickm ∈ N. Split the interval [0, 1] in smaller intervals [dn0 , dn1 ], [dn1 , dn2 ], . . . , [dnk−1
, dnk ]

with dn0 = 0, dnk = 1, ni 6= nj for all i, j ≤ k and such that for all i < k, |dni − dni+1 | ≤ 2−m−1.
This is possible since (dn)∞n=1 is dense in [0, 1]. Now consider g−1(dn0), . . . , g−1(dnk). Since g
is order preserving we must have g−1(dn0) = 0 and g−1(dnk) = 1. Define δ := min{|g−1(dni)−
g−1(dni+1)|

∣∣i < k} and find n ∈ N such that 2−n ≤ δ. We claim: for all p, q ∈ N if |cp−cq| ≤ 2−n

then |g(cp) − g(cq)| ≤ 2−m. Now pick q, p ∈ N and suppose |cp − cq| ≤ 2−n. Then there exists
i < k − 1 such that g−1(dni) ≤ cp, cq ≤ g−1(dni+2). This gives, since g is order preserving,
dni ≤ g(cp), g(cq) ≤ dni+2 so |g(cp)− g(cq)| ≤ 2−m−1 + 2−m−1 = 2−m.

Lemma 5.2.3. Suppose c = (cn)∞n=1 and d = (dn)∞n=1 are countable sequences with:

• ∀n ∈ N[cn, dn ∈ [0, 1]]

• ∀n 6= m ∈ N[cn#cm ∧ dn#dm]

• The sequences (cn)∞n=1 and (dn)∞n=1 are dense in [0, 1]

• ∃n,m, k, l ∈ N[cn = dk = 0 ∧ cm = dl = 1

Define Ic = { x | x ∈ [0, 1] | ∀n ∈ N [x # cn]} and Id = { x | x ∈ [0, 1] | ∀n ∈ N [x # dn]}.
Then Ic ∼ Id and also Ic ∪ {ci|i ∈ N} ∼ Id ∪ {di|i ∈ N}.

Proof. We use the back-and-forth method to find an isomorphism g : (cn)∞n=1 → (dn)∞n=1. With
this isomorphism we will define a bijection f : [0, 1]→ [0, 1], such that f(Ic) = Id. Suppose x ∈
[0, 1]. Consider x(0), x(1), x(2), . . . . We will define f(x) = (f(x))(0), (f(x))(1), (f(x))(2), . . .
with induction. First we define (f(x))′(0) and (f(x))′′(0). Suppose x′(0) < 0. Define cx′(0) =
x′(0) and (f(x))′(0) = x′(0). Suppose x′(0) ≥ 0, then find n ∈ N such that cn ≤ x′(0). Define
cx′(0) := cn and (f(x))′(0) = g(cx′(0)). Now suppose x′′(0) > 1 then define cx′′(0) = x′′(0)
and (f(x))′′(0) = x′′(0). Suppose x′′(0) ≤ 1 then find m ∈ N such that x′′(0) ≤ cm. Define
cx′′(0) := cm and (f(x))′′(0) = g(cx′′(0)). Now suppose (f(x))(0), (f(x))(1), . . . , (f(x))(n) are
defined. Again, suppose x′(n + 1) < 0 then define cx′(n+1) := x′(n + 1) and (f(x))′(n + 1) =
x′(n + 1). Suppose x′(n + 1) ≥ 0 then find s ∈ N such that x′(n) < cs ≤ x′(n + 1). Define
cx′(n+1) := cs and (f(x))′(n + 1) = g(cx′(n+1)). Also, suppose x′′(n + 1) > 1 then define
cx′′(n+1) = x′′(n + 1) and (f(x))′′(n + 1) = x′′(n + 1). Suppose x′′(n + 1) ≤ 1 then find t ∈ N
such that x′′(n+1) ≤ ct < x′′(n). Define cx′′(n+1) := ct and (f(x))′′(n+1) = g(cx′′(n+1)). Proving
that (f(x))(0), (f(x))(1), (f(x))(2), . . . is a real number is very straightforward. Furthermore
we have to show the following:

(i) For every x#y ∈ [0, 1] we have f(x)#f(y).

(ii) For every y ∈ [0, 1] there exists x ∈ [0, 1] such that f(x) = y.
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(iii) f(Ic) = Id

We will now prove properties (i), (ii) and (iii).

(i) Pick x#y ∈ [0, 1], then there exists n,m ∈ N such that x′(n) > y′′(m) or x′′(n) <
y′(m). Suppose x′(n) > y′′(m). The other case is similar. x′(n) > 0 since y′′(m) > 0
so (f(x))′(n) = g(cx′(n)). Also y′′(m) < 1 since x′(n) < 1 so (f(y))′′(m) = g(cy′′(m).
Furthermore cx(n+1)′ > x′(n) > y′′(m) > cy(m+1)′′ so g(cx(n+1)′) > g(cy(m+1)′′) and thus
(f(x))(n+ 1)′ > (f(y))(m+ 1)′′.

(ii) Suppose y ∈ [0, 1], then y ≡ dy where dy := (dy′(0), dy′′(0)), (dy′(1), dy′′(1)), . . . . Now con-
sider z := z(0), z(1), z(2), . . . where, for every i ∈ N, z′(i) = dy′(i) if dy′(i) < 0 and
z′(i) = g−1(dy′(i)) else, and z′′(i) = dy′′(i) if dy′′(i) > 1 and g−1(dy′′(i)) else. Then f(z) ≡ y.

(iii) Suppose x ∈ Ic then for every n ∈ N, x # cn. Pick n ∈ N. We want to show there
exists k, p ∈ N such that (f(x))′(p) > d′′n(k) or (f(x))′′(p) < d′n(k). Since x # g−1(dn) for
every n ∈ N we have there exists m ∈ N such that x′(m) > g−1(dn) or x′′(m) < g−1(dn).
Find this m, k and suppose x(m)′ > g−1(dn). The other case is similar. Since x(m)′ >
g−1(dn) we have x′(m) > 0 so (f(x))′(m) = g(cx′(m)). We have g−1(dn) < x(m)′ <
cx(m+1)′ < x(m + 1)′ < x(m + 1)′′ < cx(m+1)′′ < x(m)′′ and thus dn < g(cx(m+1)′) so
d′′n < (f(x))(m+ 1)′. So dn#f(x), thus f(x) ∈ Id.

This proves Ic ∼ Id. To prove Ic ∪ {ci|i ∈ N} ∼ Id ∪ {di|i ∈ N} we have to show f({ci|i ∈
N}) = {di|i ∈ N}. Suppose x ∈ {ci|i ∈ N} and x = x(0), x(1), x(2), . . . . Then x ≡ cx
where cx := (cx′(0), cx′′(0)), (cx′(1), cx′′(1)), . . . . So, for every n ∈ N we have cx′(n) < x < cx′′(n)

and thus for every n ∈ N we have g(cx′(n)) < g(x) < g(cx′′(n)) so f(x) ≡ g(x) and thus
f(x) ∈ {di|i ∈ N}.

From now on, we will call B the geometric type of I1 and I2.

Lemma 5.2.4. Every representative of B is of the form Ic := {x|x ∈ [0, 1]|∀n ∈ N[x # cn] }
for some countable sequence c = (cn)∞n=0 with:

(i) ∀n ∈ N[cn ∈ [0, 1]]

(ii) ∀n 6= m ∈ N[cn#cm]

(iii) (cn)∞n=0 is dense in [0, 1]

(iv) ∃n,m ∈ N[cn = 0 ∧ cm = 1]

Proof. Suppose B′ is a representative of B, then I2 ∼ B′. This means there exists a uni-
formly continuous bijection f : [0, 1] → [0, 1] such that f(I2) = B′. Now find an enumeration
q0, q1, q2, . . . of Q and consider c0 := f(q0), c1 := f(q1), c2 := f(q2), . . . . This sequence is a
sequence such that conditions (i)− (iv) are satisfied and such that B′ = Ic. We will now prove
this:

(i) Obviously, for all n ∈ N we have cn ∈ [0, 1].

(ii) Since for all n,m ∈ N we have qn#qm and f is a bijection we have f(qn)#f(qm) and thus
cn#cm.

(iii) f is a continuous bijection thus, by lemma 2.2.10, f is monotone. Now suppose y1 < y2 ∈
[0, 1] then there exists x1 < x2 ∈ [0, 1] such that f(x1) = y1 and f(x2) = y2. Also, there
exists qn ∈ Q such that x1 < qn < x2, and thus y1 < cn < y2.
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(iv) Since, by lemma 2.2.10, f is monotone we must have f(0) = 0 and f(1) = 1 or f(0) = 1
and f(1) = 0.

Now we will show f(I2) = Ic, which proves B′ = Ic. Suppose x ∈ I2 then for all n ∈ N, qn#x.
This means, since f is a bijection, for all n ∈ N, f(qn)#f(x) and thus f(x) ∈ Ic. So f(I2) ⊆ Ic.
Now suppose x ∈ Ic then for all n ∈ N, cn#x. This means, since f is bijection, for all n ∈ N,
f−1(cn)#f−1(x). Thus f−1(x) ∈ I2 and thus x ∈ f(I2). So Ic ⊆ f(I2).

Lemma 5.2.5. Every representative of B has measure 1.

Proof. Suppose B′ is a representative of B. By lemma 5.2.4 we know it is of the form Ic :=
{x|x ∈ [0, 1]|∀n ∈ N[x # cn] } for some countable sequence c = (cn)∞n=0 satisfying condition
(i), (ii), (iii) and (iv) of 5.2.4. Pick any n ∈ N. Define Xn to be the measurable region
R(αn(0), αn(1), αn(2)) where, for all i ∈ N, αn(i) = (ci − 1

2n+2+i , ci + 1
2n+2+i ). Then µ(Xn) ≤

∞∑
i=1

1

2n+1+i
≤ 1

2n
. Define vn to be the elementary set of rectangles defined by (vn)0, . . . , (vn)n,

where ∀i ≤ n ((vn)i)0 = ( i
n+1 ,

i+1
n+1) and ((vn)i)1 = (1− 1

2n , 1). Then Ar∗(vn) = n+1
2n(n+1) = 1

2n .

Pick any x ∈ [0, 1]. Suppose x /∈ Xn, then:

¬∃m ∈ N∃k ∈ N[αn(m)′ < x′(k) ≤ x′′(k) < αn(m)′′] =⇒
∀m ∈ N¬∃k ∈ N[αn(m)′ < x′(k) ≤ x′′(k) < αn(m)′′] =⇒
∀m ∈ N∀k ∈ N[αn(m)′ ≥ x′(k) ∨ x′′(k) ≥ αn(m)′′] =⇒

∀m ∈ N∀k ∈ N[cm −
1

2n+2+m
≥ x′(k) ∨ x′′(k) ≥ cm +

1

2n+2+m
]

We have to show:

(i) x ∈ dom(χIc). For this we show x ∈ Ic.

(ii) For all i < length(vn) [x ε0 ((vn)i)0 =⇒ χIc(x) ε0 ((vn)i)1].

First we will prove (i). For this we pick any ci. We have to show x#ci, so we need to find a
b ∈ N such that x′(b) > ci or x′′(b) < ci. Take a b ∈ N such that l(x(b)) < 1

2n+2+i . By the above,

we know x′(b) ≤ ci− 1
2n+2+i or x′′(b) ≥ ci+ 1

2n+2+i . First suppose x′(b) ≤ ci− 1
2n+2+i , this means

x′′(b) < ci. Now suppose x′′(b) ≥ ci + 1
2n+2+i , that means x′(b) > ci.

Now we will prove (ii). For this we pick any i < length(vn). We know, by the above, x ∈ Ic.
Thus χIc(x) = 1. Furthermore 1 ≤ 1 and 1− 1

n ≤ 1 and thus χIc(x) ε0 ((vn)i)1.

So Ic is measurable and the measure of Ic is lim
n→∞

I(vn) = lim
n→∞

length(vn)−1∑
i=0

(
n+ 1

n+ 1
) = 1.

Lemma 5.2.6. Every representative of B is apart from [0, 1].

Proof. By lemma 4.2 it is enough to show I1#[0, 1] to prove our claim. But this is trivial, since
for example 1

2#I1.

Lemma 5.2.7. For every representative B′ of B we have that functions, f : B′ → R are
continuous, but not necessarily uniformly continuous.

To prove the above lemma we will remember the spread σir from definition 2.1.6.

Lemma 5.2.8. We have the following properties for σir:

(i) For every real number x ∈ I2 there exists an α ∈ σir such that α ≡ x, and
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(ii) for every α ∈ σ, α ∈ I2.

Proof. First we will show (ii). Suppose α ∈ σir, then α ∈ σ, so α is a real number. Furthermore,
pick n ∈ N, then (qn < α′(n) ∨ qn > α′′(n)). Suppose, without loss of generality, (qn < α′(n).
Then |α− qn| > α′(n)− qn > 0.
Now we will show (i). Take any real number x ∈ I2. Since x is real number and by lemma
2.1.5 we find β ∈ σreg such that β ≡ x. We will then find our needed α by deleting some
rational segments of β. We know, since x ∈ I2, for every n ∈ N there exist m, k ∈ N such
that x′(k) − qn > 1

m or qn − x′′(k) > 1
m . Since for every k ∈ N there exists l ∈ N such that

β(l) v x(k) we know for every n ∈ N there exists an k ∈ N such that qn < β′(k) ∨ qn > β′′(k).
Now define α(0) to be the first β(m) ∈ N such that q0 < β′(m) ∨ q0 > β′′(m). Suppose we
defined α(0), α(1), . . . , α(n−1) then define α(n) to be the first β(m) such that β(m) @ α(n−1)
and such that qn < β′(m) ∨ qn > β′′(m). Now also α ≡ x and α ∈ σir.

Now we will prove lemma 5.2.7

Proof. By lemma 4.3 it is enough to show this for I2. Thus, we will show that functions
f : I2 → R are continuous. We will do this in a similar way as in the proof of theorem 2.1.11.
So suppose f : I2 → R is a function. We define a function f ′ : σir → σreg such that for every
α ∈ σir, f(α) ≡ f ′(α). For every α ∈ σir, define f ′(α) := Freg(f(α)). With f ′ we will prove that
f is continuous. Suppose x ∈ I2 and m ∈ N. We want to find n ∈ N such that for every y ∈ I2

if |x− y| < 1
n then |f(x)− f(y)| < 1

m .
Find α ∈ σir such that α ≡ x. Notice that for every α ∈ σir there exists k ∈ N such that
f ′(α)(m+1) = k. Thus we can find a p ∈ N such that for every β ∈ σir if β̄p = ᾱp then f ′(β)(m+
1) = f ′(α)(m+1). We have α(p) @ α(p−1). Define δ := min(α′(p)−α′(p−1), α′′(p−1)−α′′(p))
and find n ∈ N such that 1

n < δ. We claim this is the n we are looking for. Suppose y ∈ I2 and
|x−y| < 1

n . Find β ∈ σir such that β ≡ y and β̄p = ᾱp. This gives f ′(β)(m+1) = f ′(α)(m+1).
Since f ′(α) ∈ σreg we have l(f ′(α)(m + 1) ≤ 2−m−1, which is easily shown with induction.
Also f ′(α)′(m + 1) ≤ f ′(α) ≤ f ′(α)′′(m + 1) and f ′(α)′(m + 1) ≤ f ′(β) ≤ f ′(α)′′(m + 1) and
f ′(α) ≡ f(x) and f ′(β) ≡ f(y) so |f(x)−f(y)| ≤ 1

m . To show that not every function f : I2 → R
is uniformly continuous we consider the following counterexample: f(x) = 1/x.

5.3 Examples 3 and 4

Brouwer defines the geometric type of J1
(4) and the geometric type of J ′1

(5) as two different
types, where:

J1 = I2 ∪Q

J ′1 = I1 ∪Q′

Since, by lemma 5.2.3, they are actually of the same geometric type we define C1 the be the
geometric type of J1. Furthermore, we define C2 to be the geometric type of J2

(6), C3 to be
the geometric type of J3

(7) and C4 to be of the geometric type of J4
(8), where:

J2 = I2 ∪ ([0, 1] \ I2)

(4)This is I1 from example 4 of Brouwers article.
(5)This is H1 from example 3 of Brouwers article.
(6)This is H2 from example 3 of Brouwers article.
(7)This is I2 from example 4 of Brouwers article.
(8)This is I3 from example 4 of Brouwers article.
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J3 = Q ∪ ([0, 1] \Q)

= Q ∪ {x | x ∈ [0, 1] | ¬(x ∈ Q)}

J4 = ([0, 1] \Q) ∪ ([0, 1] \ ([0, 1] \Q))

= {x | x ∈ [0, 1] | ¬(x ∈ Q)} ∪ {x | x ∈ [0, 1] | ¬¬(x ∈ Q)}

In a sense, these examples all come from Q. Brouwer also studies similar examples constructed
with Q′, but by lemma 5.2.3 this is not necessary.

Lemma 5.3.1. J1 ⊆ J2, but we can not prove J2 ⊆ J1.

Proof. J1 ⊆ J2 is obvious. To show that we can not prove J2 ⊆ J1 we will use the real number
r. We can not prove that this number is rational nor that it is irrational but, by lemma 1.3.2,
we know ¬¬(r is rational). Thus we can not prove that 1

2 +r is rational nor that it is irrational,
but ¬¬(1

2 + r is rational). This means we can not prove 1
2 + r ∈ I2 and we can not prove

1
2 + r ∈ Q. Also, for every x ∈ [0, 1], if x is rational then ¬(x ∈ I2). So if ¬¬(x is rational) then
¬¬¬(x ∈ I2) so ¬(x ∈ I2) thus x ∈ ([0, 1] \ I2). So 1

2 + r ∈ ([0, 1] \ I2) thus 1
2 + r ∈ J2.

Recall, for every c = (cn)∞n=0, Ic = {x |x ∈ [0, 1]| ∀n ∈ N[x #cn]}.

Lemma 5.3.2. Every representative of C1 is of the form Ic ∪ {cn|n ∈ N} for some countable
sequence c = (cn)∞n=0 with:

(i) ∀n ∈ N[cn ∈ [0, 1]]

(ii) ∀n 6= m ∈ N[cn # cm]

(iii) (cn)∞n=0 is dense in [0, 1]

(iv) ∃n,m ∈ N[cn = 0 ∧ cm = 1]

Proof. Suppose C ′ is a representative of C1, then I2 ∪ Q ∼ C ′. This means there exists a
uniformly continuous bijection f : [0, 1] → [0, 1] such that f(I2 ∪ Q) = C ′. Now find an
enumeration q0, q1, q2, . . . of Q and consider c0 := f(q0), c1 := f(q1), c2 := f(q2), . . . . This
sequence is a sequence such that conditions (i) − (iv) and are satisfied and such that C ′ =
Ic ∪ {cn|n ∈ N}. In the proof of lemma 5.2.4 we can see that conditions (i)− (iv) are satisfied.
So we will now prove f(I2 ∪ Q) = Ic ∪ {cn|n ∈ N}, which proves C ′ = Ic ∪ {cn|n ∈ N}. But
f(I2 ∪ Q) = f(I2) ∪ f(Q). By the proof of lemma 5.2.4 we know f(I2) = Ic and obviously
f(Q) = {cn|n ∈ N}.

Lemma 5.3.3. Every representative of C2 is of the form Ic ∪ ([0, 1] \ Ic) for some countable
sequence c = (cn)∞n=0 with:

(i) ∀n ∈ N[cn ∈ [0, 1]]

(ii) ∀n 6= m ∈ N[cn # cm]

(iii) (cn)∞n=0 is dense in [0, 1]

(iv) ∃n,m ∈ N[cn = 0 ∧ cm = 1]
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Proof. Suppose C ′ is a representative of C2, then I2 ∪ ([0, 1] \ I2) ∼ C ′. This means there exists
a uniformly continuous bijection f : [0, 1] → [0, 1] such that f(I2 ∪ ([0, 1] \ I2)) = C ′. Now
find an enumeration q0, q1, q2, . . . of Q and consider c0 := f(q0), c1 := f(q1), c2 := f(q2), . . . .
This sequence is a sequence such that conditions (i) − (iv) are satisfied and such that C ′ =
Ic ∪ ([0, 1] \ Ic). In the proof of lemma 5.2.4 we can see that conditions (i) − (iv)are satisfied.
So we will now prove f(I2 ∪ ([0, 1] \ I2)) = Ic ∪ ([0, 1] \ Ic), which proves C ′ = Ic ∪ ([0, 1] \ Ic).
But f(I2 ∪ ([0, 1] \ Ic)) = f(I2) ∪ f([0, 1] \ Ic). By the proof of lemma 5.2.4 we know f(I2) = Ic
so obviously also f([0, 1] \ I2) = [0, 1] \ Ic.

Lemma 5.3.4. Every representative of either C1 or C2 has measure 1.

Proof. Suppose C ′ is a representative of C1 or C2. By lemma 5.3.2 and 5.3.3 we know C ′ is of
the form Ic ∪ {cn|n ∈ N} or of the form Ic ∪ ([0, 1] \ Ic) for some c = (cn)∞n=0. Thus it is enough
to show Ic has measure 1. But we already showed this in the proof of lemma 5.2.5.

Lemma 5.3.5. Every representative of C3 is of the form {cn|n ∈ N}∪ ([0, 1] \ ({cn|n ∈ N}) for
some countable sequence c = (cn)∞n=0 with:

(i) ∀n ∈ N[cn ∈ [0, 1]]

(ii) ∀n 6= m ∈ N[cn # cm]

(iii) (cn)∞n=0 is dense in [0, 1]

(iv) ∃n,m ∈ N[cn = 0 ∧ cm = 1]

Proof. Suppose C ′ is a representative of C3, then Q∪ ([0, 1] \Q) ∼ C ′. This means there exists
a uniformly continuous bijection f : [0, 1] → [0, 1] such that f(Q ∪ ([0, 1] \Q)) = C ′. Now find
an enumeration q0, q1, q2, . . . of Q and consider c0 := f(q0), c1 := f(q1), c2 := f(q2), . . . . This
sequence is a sequence such that conditions (i)− (iv) are satisfied and such that C ′ = {cn|n ∈
N} ∪ ([0, 1] \ {cn|n ∈ N}). In the proof of lemma 5.2.4 we can see that conditions (i)− (iv) are
satisfied. So we will now prove f(Q∪([0, 1]\Q)) = {cn|n ∈ N}∪([0, 1]\{cn|n ∈ N}), which proves
C ′ = {cn|n ∈ N}∪ ([0, 1] \ {cn|n ∈ N}). But f(Q∪ ([0, 1] \Q)) = f(Q)∪ f([0, 1] \Q). Obviously
we have f(Q) = {cn|n ∈ N}. This immediately implies f([0, 1] \Q) = [0, 1] \ {cn|n ∈ N}.

Lemma 5.3.6. Every representative of C4 is of the form ([0, 1] \ {cn|n ∈ N}) ∪ ([0, 1] \ ([0, 1] \
({cn|n ∈ N})) for some countable sequence c = (cn)∞n=0 with:

(i) ∀n ∈ N[cn ∈ [0, 1]]

(ii) ∀n 6= m ∈ N[cn # cm]

(iii) (cn)∞n=0 is dense in [0, 1]

(iv) ∃n,m ∈ N[cn = 0 ∧ cm = 1]

Proof. Suppose C ′ is a representative of C4, then ([0, 1] \ Q) ∪ ([0, 1] \ ([0, 1] \ Q)) ∼ C ′. This
means there exists a uniformly continuous bijection f : [0, 1] → [0, 1] such that f(([0, 1] \
Q) ∪ ([0, 1] \ ([0, 1] \ Q))) = C ′. Now find an enumeration q0, q1, q2, . . . of Q and consider
c0 := f(q0), c1 := f(q1), c2 := f(q2), . . . . This sequence is a sequence such that conditions
(i)− (iv) are satisfied and such that C ′ = ([0, 1] \ {cn|n ∈ N})∪ ([0, 1] \ ([0, 1] \ {cn|n ∈ N})). In
the proof of lemma 5.2.4 we can see that conditions (i)− (iv) are satisfied. So we will now prove
f([0, 1]\Q∪ [0, 1]\ ([0, 1]\Q)) = ([0, 1]\{cn|n ∈ N})∪ ([0, 1]\ ([0, 1]\{cn|n ∈ N})), which proves
C ′ = ([0, 1]\{cn|n ∈ N})∪([0, 1]\([0, 1]\{cn|n ∈ N})). But f(([0, 1]\Q)∪([0, 1]\([0, 1]\Q))) =
f([0, 1] \ Q) ∪ f([0, 1] \ ([0, 1] \ Q)). Obviously we have f(Q) = {cn|n ∈ N}. This immediately
implies f([0, 1]\Q) = [0, 1]\{cn|n ∈ N} and f([0, 1]\([0, 1]\Q)) = [0, 1]\([0, 1]\{cn|n ∈ N}).
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Lemma 5.3.7. Every representative of C3 and C4 had measure 1.

Proof. Suppose C ′ is a representative of C3 or C4. By lemma 5.3.5 and 5.3.6 we know C ′ is of the
form {cn|n ∈ N}∪([0, 1]\{cn|n ∈ N}) or of the form ([0, 1]\{cn|n ∈ N})∪([0, 1]\([0, 1]\{cn|n ∈
N})). Thus it is enough to show that ([0, 1] \ {cn|n ∈ N}) has measure 1. Following almost the
same proof as the proof of lemma 5.2.5 we can prove this.

Lemma 5.3.8. (i) Every representative of C1, C2, C3 and C4 is not apart from [0, 1].

(ii) Every representative of C1, C2, C3 and C4 does not coincide with [0, 1].

(iii) Every representative of C2, C3 and C4 does not deviate from [0, 1].

Proof. By lemma 4.2 it is enough to show (i), (ii) and (iii) for J1, J2, J3 and J4.

(i) First we will prove ¬[J1 # [0, 1]]. Suppose there exists a j ∈ J1 such that j # [0, 1] or
there exists an x ∈ [0, 1] such that x # J1. Then there exists an x ∈ [0, 1] such that
x # J1, since J1 ⊆ [0, 1]. So there exists an x ∈ [0, 1] such that for every j ∈ J1 [x # j],
which means for every j ∈ Q′ [x # j], so x ∈ I2. Since also for every j ∈ I2[x # j] this
will give [x # x], which is a contradiction.
Secondly we will prove ¬[J2 # [0, 1]]. Suppose there exists aj ∈ J2 such that j # [0, 1]
or there exists an x ∈ [0, 1] such that x # J2. Then there exists an x ∈ [0, 1] such that
x # J2, since J2 ⊆ [0, 1]. So there exists an x ∈ [0, 1] such that for every j ∈ J2 [x # j],
which means for every j ∈ I1[x # j], so ¬(x ∈ I1) and thus x ∈ ([0, 1] \ I2). Since also for
every j ∈ ([0, 1] \ I2)[j # x] this will give [x # x], which is a contradiction.
Now we will prove ¬[J3 # [0, 1]]. Suppose there exists a j ∈ J3 such that j # [0, 1] or
there exists an x ∈ [0, 1] such that x # J3. Then there exists an x ∈ [0, 1] such that
x # J3, since J3 ⊆ [0, 1]. So there exists an x ∈ [0, 1] such that for every j ∈ J3, x # j,
which means for every j ∈ Q, x # j, so x /∈ Q so x ∈ ([0, 1] \ Q). Since also for every
j ∈ ([0, 1] \Q), x # j this will give x # x, which is a contradiction.
Lastly we will prove ¬[J4 # [0, 1]]. Suppose there exists a j ∈ J4 such that j # [0, 1] or
there exists an x ∈ [0, 1] such that x # J4. Then there exists an x ∈ [0, 1] such that x # J4,
since J4 ⊆ [0, 1]. So there exists an x ∈ [0, 1] such that for every j ∈ J4, x # j, which
means for every j ∈ ([0, 1] \Q), x # j, so x /∈ ([0, 1] \Q) so x ∈ ([0, 1] \ ([0, 1] \Q)). Since
also for every j ∈ ([0, 1] \ ([0, 1] \Q)), x # j this will give x # x, which is a contradiction.

(ii) This follows directly from lemma 2.2.8.

(iii) Firstly we prove ¬[J2 6≡ [0, 1]]. So we have to prove ¬
[
∃j ∈ J2 ¬[j ∈0 [0, 1]]

]
and ¬

[
∃x ∈

[0, 1] ¬[x ∈0 J2]
]
. First we will prove ¬

[
∃j ∈ J2 ¬[j ∈0 [0, 1]]

]
. This is trivial since

J2 ⊆ [0, 1], so for every j ∈ J2, j ∈0 [0, 1]. Now we will prove ¬
[
∃x ∈ [0, 1] ¬[x ∈0 J2]

]
.

Suppose there exists x ∈ [0, 1] such that ¬(x ∈0 J2, then ¬(x ∈0 I2) so ¬(x ∈ I2). This
means x ∈ ([0, 1] \ I2), but also ¬(x ∈0 ([0, 1] \ I2), which is a contradiction.
Secondly will prove ¬[J3 6≡ [0, 1]]. So we have to proof ¬

[
∃j ∈ J3 ¬[j ∈0 [0, 1]]

]
and

¬
[
∃x ∈ [0, 1] ¬[x ∈0 J3]

]
. First we will prove ¬

[
∃j ∈ J3 ¬[j ∈0 [0, 1]]

]
. This is trivial since

J3 ⊆ [0, 1], so ∀j ∈ J3 [j ∈0 [0, 1]]. Now we will prove ¬
[
∃x ∈ [0, 1] ¬[x ∈0 J3]

]
. Suppose[

∃x ∈ [0, 1] ¬[x ∈0 J3]
]
, then find this x. So ¬(x ∈0 J3]), thus ¬(x ∈ J3) so ¬(x ∈ Q)

which means x ∈ [0, 1] \Q. This means x ∈ J3 so x ∈0 J3, which is a contradiction.
Lastly we will prove ¬[J4 6≡ [0, 1]]. So we have to proof ¬

[
∃j ∈ J4 ¬[j ∈0 [0, 1]]

]
and

¬
[
∃x ∈ [0, 1] ¬[x ∈0 J4]

]
. First we will prove ¬

[
∃j ∈ J4 ¬[j ∈0 [0, 1]]

]
. This is trivial

since J4 ⊆ [0, 1], so ∀j ∈ J4 [j ∈0 [0, 1]]. Now we will prove ¬
[
∃x ∈ [0, 1] ¬[x ∈0 J4]

]
.
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Suppose
[
∃x ∈ [0, 1] ¬[x ∈0 J4]

]
, then find this x. So ¬(x ∈0 J4]), thus ¬(x ∈ J4) so

¬(x ∈ [0, 1] \Q) which means x ∈ [0, 1] \ ([0, 1] \Q). This means x ∈ J4 so x ∈0 J4, which
is a contradiction.

Lemma 5.3.9. For each representative C of C1 or C2 we can find a countable sequence
c1, c2, c3, · · · ∈ [0, 1] such that we can not prove c1, c2, c3, · · · ∈ C and such that ci 6= cj for
each i 6= j.

Proof. By lemma 4.11 it is enough to show this for J1 and J2. First we will show this for
J1. Define c1, c2, c3, . . . with ci = 2−i + r with r as above. Obviously ci 6= cj for all i 6= j.
Furthermore, pick i ∈ N. Since we can not prove r is rational we can not prove 2−i + r is
rational, so we can not prove 2−i + r ∈ Q. Also, we can not prove r is irrational so we can not
prove 2−i+r is irrational, so we can not prove 2−i+r ∈ I2. Thus we can not prove 2−i+r ∈ J1.
We can do something similar for J2, by taking a sequence b1, b2, b3, . . . of elements from I2 such
that bi 6= bj for every i 6= j and then define ci = bi + r for every i ∈ N.

Lemma 5.3.10. For each representative C of C1, C3 or C4 we can find an in [0, 1] dense set
X such that for all x ∈ X we can not prove x ∈ C and such that ∀x1, x2 ∈ X we have x1 = x2

or x1#x2.

Proof. By lemma 4.12 it is enough to show this for J1, J3 and J4. We define X1,3 = { x | x ∈
[0, 1] | x = a+ r , a ∈ Q} and X4 = { x | x ∈ [0, 1] | x = a+ πr , a ∈ Q}.

(i) X1,2 proves the claim for J1 and J3

(ii) X4 proves the claim for J4

We will now prove (i) and (ii).

(i) Since Q is dense in R we have X1,3 is dense in [0, 1]. Pick x 6= y ∈ X1,3, then x = a + r
and y = b+ r with a 6= b ∈ Q. So obviously x # y. Now suppose x ∈ X1,2, then x = a+ r
with a ∈ Q. Since we can not prove that r is rational or that r is irrational we can not
prove that a + r is rational or that a + r is irrational. Thus we can not prove a + r ∈ Q
and we can not prove a+ r ∈ ([0, 1] \Q). Also, suppose we prove a+ r ∈ I2 then we prove
a+ r # q for every q ∈ Q. This means a+ r /∈ Q, which we can not prove.

(ii) Since Q is dense in R we have X4 is dense in [0, 1]. Pick x 6= y ∈ X4, then x = a+ πr and
y = b + πr with a 6= b ∈ Q. So obviously x # y. Now suppose x ∈ X4, then x = a + πr
with a ∈ Q. Suppose we prove a+ πr ∈ ([0, 1] \Q) then we prove a+ pir is not rational.
This means we prove πr is not rational so we prove r 6= 0, but we can not prove that.
Suppose we prove a + πr ∈

(
[0, 1] \ ([0, 1] \ Q)

)
, then we prove ¬¬(a + πr is rational ).

This means we prove ¬¬(πr is rational ) so we prove r = 0, but we can not prove that.

Lemma 5.3.11. For every representative C of C1, C2, C3 or C4 there exists a function f : C →
R such that f is discontinuous.

Proof. By corollary 4.4 it is enough to show this for J1, J2, J3 and J4.
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(i) Define a function f : J1 → R by f(c) = 0 if c ∈ I2 and f(c) = 1 if c ∈ Q. To prove f
is discontinuous we consider any x ∈ I2 and n = 2. Since ∀q ∈ Q∃m ∈ N|x − q| ≥ 1

m we

can find a1, a2, a3, . . . such that x =

∞∑
n=1

an
2n

. Pick any m ∈ N and find k ∈ N such that

∞∑
n=k+1

1

2n
≤ 1

2m
. Define q =

k∑
n=1

an
2n
∈ Q. Then |q − x| ≤

∞∑
n=k+1

an
2n
≤

∞∑
n=k+1

1

2n
≤ 1

2m
but

|f(q)− f(x)| = 1 > 1
4 .

(ii) Define a function f : J2 → R by f(c) = 0 if c ∈ I2 and f(c) = 1 if c ∈ ([0, 1] \ I2). Since
Q ⊆ ([0, 1] \ I2) the proof of (i) also applies to this function.

(iii) Define a function f : J3 → R by f(c) = 0 if c ∈ Q and f(c) = 1 if c ∈ ([0, 1] \ Q). Since
I2 ⊆ ([0, 1] \Q) the proof of (i) also applies to this function.

(iv) Define a function f : J4 → R by f(c) = 0 if c ∈ ([0, 1] \ Q) and f(c) = 1 if c ∈ ([0, 1] \
([0, 1] \Q)). Since I2 ⊆ ([0, 1] \Q) and Q ⊆ ([0, 1] \ ([0, 1] \Q)) the proof of (i) also applies
to this function.

5.4 Example 5

We define E to be the geometric type of L (9), where L = L′ ∪ L′′ and:

L′ = { x
∣∣ x ∈ [0, 1]

∣∣ x =
∞∑
n=1

an
3n
∣∣ ∀n ∈ N[an ∈ {0, 2}] }

L′′ = { x
∣∣ x ∈ [0, 1]

∣∣ x =

∞∑
n=1

an
3n
∣∣ ∃m ∈ N

[
∀n < m[an ∈ {0, 2}] ∧ am = 1 ∧

∀n > m[an ∈ {0, 1, 2}] ∧
∃ p, q > m[ap 6= 0 ∧ aq 6= 2]

]
}

So L′ is the Cantor discontinuum and L′′ are all the x ∈ [0, 1] which we can write as
∞∑
n=1

an
3n

for some sequence a1, a2, a3, · · · ∈ {0, 1, 2} and which are in the union of open intervals in the
complement of the Cantor discontinuum. Brouwer seems to think that L′′ is the union of the all
the open intervals in the complement of the Cantor discontinuum, but this is not true. We can

not prove that we can write every x ∈ [0, 1] as

∞∑
n=1

an
3n

for some sequence a1, a2, a3, · · · ∈ {0, 1, 2}.

Lemma 5.4.1. L′ = [0, 1] \ L′′

Note that we can not prove L′′ = [0, 1] \ L′.

Proof. Suppose x =
∑∞

n=1
an
3n ∈ L

′. This means ∀n ∈ N [an ∈ {0, 2}]. So ¬
[
∃m ∈ N [am = 1]

]
,

so x ∈ [0, 1] \ L′′.
Suppose x =

∑∞
n=1

an
3n ∈ [0, 1] \ L′′. This means there does not exists an m ∈ N such that

(9)This is J from example 5 of Brouwers article.
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am = 1 or there exists m ∈ N such that am = 1 but there does not exists p, g > m such that
ap 6= 0 and aq 6= 2. Suppose there does not exists an m ∈ N such that am = 1, then clearly for
all n ∈ N, an ∈ {0, 2}. Suppose there exists m ∈ N such that am = 1 but there does not exists
p, q > m such that ap 6= 0 and aq 6= 2. This means for all p > m, ap 6= 1. Find m ∈ N such
that am = 1 and consider m+ 1. Suppose am+1 = 0 (the case where am+1 = 2 is similar), then
there exists q > m such that aq 6= 2 and thus there does not exists a p > m such that ap 6= 0.
This means for all p > m, ap = 0. Then x =

∑∞
n=1

bn
3n with bn = an for all n < m, bm = 0 and

bn = 2 for all n > m.

Lemma 5.4.2. Every representative of E is of the form X ′ ∪X ′′ for some X ′, X ′′ ⊆ [0, 1] such
that X ′ = [0, 1] \X ′′.

Proof. Suppose E′ is a representative of E then L′ ∪ L′′ ∼ E′. So there exists a uniformly
continuous bijection f : [0, 1]→ [0, 1] such that f(L′∪L′′) = E′. But f(L′∪L′′) = f(L′)∪f(L′′).
Define X ′ = f(L′) and X ′′ = f(L′′). Now suppose x ∈ X ′, then f−1(x) ∈ L′ so f−1(x) /∈ L′′
thus x /∈ X ′′. Suppose x /∈ X ′′ then f−1(x) /∈ L′′ so f−1(x) ∈ L′ thus x ∈ X ′.

We will prove that L′ is measurable and the measure of L′ is 0. This means L′′ is measurable
and µ(L′′) = 1.

Lemma 5.4.3. L′ is measurable and µ(L′) = 0.

Proof. We will prove that χL′ is measurable. We will define an infinite sequence X0, X1, X2, . . .
of measurable regions and an infinite sequence v0, v1, v2, . . . of elementary sets of rectangles
such that they satisfy (i) and (ii) of definition 3.3.1.
First, for every m ≥ 1 we will define a measurable region Ym. We select a subsequence of the
sequence Y1, Y2, Y3, . . . to define our sequence X0, X1, X2, . . . .

Pick m ≥ 1 and define Lm := {x ∈ [0, 1] | x =
m∑
n=1

an
3n
| ∀n ≤ m[an ∈ {0, 2}]}. The

number of elements in Lm is 2m. We enumerate Lm with qm0 , q
m
1 , . . . , q

m
2m−1. Now define

Ym := R(αm(0), αm(1), αm(2), . . . ) where αm(i) = (qmi −
1
2

3m−1 , q
m
i +

1
2

3m−1 ) for all i < 2m

and αm(i) = (qm2m−1 −
1
2

3m−1 , q
m
2m−1 +

1
2

3m−1 ) for all i ≥ 2m.
We will prove, for every x ∈ [0, 1], if x /∈ Ym then x ∈ [0, 1] \ L′ ⊆ dom(χL′). Suppose

x ∈ [0, 1] and suppose x /∈ Ym. Also suppose x ∈ L′, then x =

∞∑
n=1

an
3n

with an ∈ {0, 2} for

all n ≥ 1. Consider q =

m∑
n=1

an
3n

. Then q ∈ Lm and x ≥ q which means x > q −
1
2

3m−1 . Also

x ≤ q+ 1
3m < q+

1
2

3m−1 . So x ε1 (q−
1
2

3m−1 , q+
1
2

3m−1 ) which means x ∈ Ym. This is a contradiction,

so x ∈ [0, 1] \ L′. Also, µ(Ym) ≤ 2m

3m−1 = 3(2
3)m.

Now, for every n ∈ N, find m ∈ N such that 3(2
3)m ≤ 1

2n and define Xn = Ym. So, for every
n ∈ N, µ(Yn) ≤ 1

2n and if x /∈ Yn then x ∈ dom(χL′).
Now pick n ∈ N. We define vn = (vn)0, (vn)1, . . . , (vn)n with ((vn)i)0 = ( i

n+1 ,
i+1
n+1) and

((vn)i)1 = (0, 1
2n ) for every i ≤ n. Clearly Ar∗(vn) ≤ 1

2n . Now suppose x /∈ Xn. By the
above we know x ∈ [0, 1] \ L′ so χL′(x) = 0. Furthermore 0 ≤ 0 ≤ 1

2n so χL′(x) ε0 ((vn)i)1. So

L′ is measurable and µ(L′) = lim
n→∞

length(vn)−1∑
i=0

0 = 0.

The next lemma will prove that every measurable representative of E has measure 1. After
that we will give a representative L2 of E for which we can not prove it is measurable. This
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representative was not given by Brouwer, but we add it to show there exist representatives of
E for which we can not show they are measurable.

Lemma 5.4.4. Every measurable representative of E has measure 1.

Proof. Suppose E′ is a measurable representative of E. By lemma 5.4.2 E′ is of the form X ′∪X ′′
for some X ′, X ′′ ⊆ [0, 1] such that X ′ = [0, 1]\X ′′. Since X ′∪X ′′ is measurable, by lemma 3.3.10,
(X ′∪X ′′)∪ ([0, 1]\ (X ′∪X ′′)) is almost full. But (X ′∪X ′′)∪ ([0, 1]\ (X ′∪X ′′)) = ([0, 1]\X ′′)∪
X ′′∪{x ∈ [0, 1]|x /∈ [0, 1]\X ′′ and x /∈ X ′′} = ([0, 1]\X ′′)∪X ′′. So ([0, 1]\X ′′)∪X ′′ = dom(χX′′)
is almost full. Also χX′′ is bounded, so by theorem 3.3.4, X ′′ is measurable. Suppose µ(X ′′) = k.
By theorem 3.3.15, ([0, 1] \ X ′′) is measurable and µ([0, 1] \ X ′′) = 1 − k. Also, by part 2. of
the proof of theorem 3.3.15, µ(X ′′ ∪ ([0, 1] \X ′′)) = µ(X ′′ ∪X ′) = 1.

Before we define a representative of E for which we can not prove it is measurable we need to
define a representative L1 of E which is measurable. This representative was also not given by
Brouwer. We define L1 = L′1 ∪ L′′1, where:

L′1 = { x | x ∈ [0, 1] | x =
∞∑
n=1

an
6n
| ∀n ∈ N[an ∈ {0,

3n + 5

2
}] }

L′′1 = { x
∣∣ x ∈ [0, 1]

∣∣ x =
k∑

n=1

an
6n

+
2

6k

∞∑
m=1

bm
3m

∣∣ ∀n < k[ak ∈ {0,
3n + 5

2
}] ∧

ak =
3k + 1

2
∧

∀m ∈ N[bm ∈ {0, 1, 2}]
∧ ∃p, q ∈ N[bp 6= 0 ∧ bq 6= 2]

]
}

So L′1 is an alternative discontinuum and L′′1 are all the x ∈ [0, 1] which we can write as

∞∑
n=1

an
3n

for some sequence a1, a2, a3, · · · ∈ {0, 1, 2} and which are in the union of the open intervals in
the complement of L′1. Intuitively, for L′1 we first ‘delete’ the middle interval of size 2

6 . Then,
for every interval that is left (which are two intervals), we ‘delete’ the middle interval of size 2

62
.

Then, for every interval that is left (which are four intervals), we ‘delete’ the middle interval of
size 2

63
, etc. This means we first delete intervals of total size 1

3 , then intervals of total size 1
9 ,

then of total size 1
27 , etc. See figure 6.

10

1
3

2
3

5
36

7
36

29
36

31
36

Figure 6: Alternative discontinuum.

We will now show L1 is a representative of E.

Lemma 5.4.5. L1 ∼ L
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Proof. We will define a total bijection f : [0, 1]→ [0, 1]. For this we define two sets Q,Q′ ⊆ [0, 1]
with:

Q := {x ∈ [0, 1] | ∃m ∈ N
[
x =

m∑
n=1

an
3n
∧ ∀n ≤ m[an ∈ {0, 1, 2}]

]
}

Q′ :={x ∈ [0, 1] | ∃m ∈ N
[
x =

m∑
n=1

an
6n
∧ ∀n ≤ m[an ∈ {0,

3n + 5

2
}]
]
} ∪

{x ∈ [0, 1] | ∃k, l ∈ N
[
x =

k∑
n=1

an
6n

+
2

6k

l−k∑
m=1

bm
3m
∧

∀n < k[an ∈ {0,
3n + 5

2
}] ∧ ak =

3k + 1

2
∧

∀m ≤ l − k[am ∈ {0, 1, 2}]
]
}

So Q are all the elements from L which we can write as a finite sum and Q′ are all the elements
from L1 which we can write as a finite sum. We define a bijection g : Q → Q′ and use this
bijection to define f .

For every q =
l∑

n=1

an
3n
∈ Q, define:

g(q) =


l∑

n=1

bn
6n

if ∀n ≤ l[an 6= 1]

k∑
n=1

bn
6n

+
2

6k

l−k∑
m=1

cm
3m

if ∃k ≤ l[ak = 1]

with, if ∀n ≤ l[an 6= 1] then, for all n ≤ l, bn = 0 if an = 0 and bn = 3n+5
2 if an = 2 and if

∃k ≤ l[ak = 1] then, for all n < k, bn = 0 if an = 0 and bn = 3n+5
2 if an = 2, bk = 3k+1

2 and
∀m ≤ l − k, cm = am+k.

We will prove g is a bijection. Take q =

l∑
n=1

an
3n
, q′ =

l′∑
n=1

a′n
3n
∈ Q and decide l ≥ l′ or l′ < l. Sup-

pose, without loss of generality, l ≥ l′. Then define q′ =

l∑
n=1

a′n
3n

with a′n = 0 for all l′ < n ≤ l.

Suppose q 6= q′. Find the smallest k ≤ l such that ak 6= a′k. Suppose ak = 0 and a′k = 2.

Then g(q) < k−1
n=1

an
6n

+
3k+1

2

6k
and g(q′) ≥ k−1

n=1

an
6n

+
3k+5

2

6k
. Suppose ak = 1 and a′k = 2. Then

g(q) <
∑
n=1

k − 1
an
6n

+
3k+1

2

6k
+

2

6k
and g(q′) ≥ g(q) <

∑
n=1

k − 1
an
6n

+
3k+5

2

6k
. Suppose ak = 1 and

a′k = 0. Then g(q) ≥
k−1∑
n=1

an
6n

+
3k+1

2

6k
and g(q′) <

k−1∑
n=1

an
6n

+
3k+1

2

6k
.

Now we can define f .
For every x ∈ [0, 1] there exists yx ∈ [0, 1] such that yx ≡ x and yx = yx(0), yx(1), yx(2), . . . with,
for every i ∈ N, y′x(i), y′′x(i) ∈ Q. Pick x ∈ [0, 1] and find yx. Define f(x) = (g(y′x(0)), g(y′′x(0))), (g(y′x(1)), g(y′′x(1))), (g(y′x(2)), g((y′′x(2))), . . . .
Clearly, f is a uniformly continuous function. We will prove f is a bijection. Also, we will prove
f(L) = L1. This will prove L1 ∼ L.
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First we will prove f is a bijection. Suppose x, x′ ∈ [0, 1] and x # x′. Find yx, yx′ . Then
yx # yx′ so there exists k ∈ N such that y′′x(k) < y′x′(k) or y′′x′(k) < y′x(k). Suppose, with-
out loss of generality, y′′x(k) < y′x′(k) then g(y′′x(k)) < g(y′x′(k)) so f(x)′′(k) < f(x′)′(k)
which means f(x) # f(x′). Now suppose y ∈ [0, 1], then there exist zy ∈ [0, 1] such that
zy ≡ y and zy = zy(0), zy(1), zy(2), . . . with, for every i ∈ N, z′y(i), z

′′
y (i) ∈ Q′. Now con-

sider x = (g−1(z′y(0)), g−1(z′′y (0))), (g−1(z′y(1)), g−1(z′′y (1))), (g−1(z′y(2)), g−1((z′′y (2))), . . . . Then
f(x) = zy so f(x) ≡ y, so f(x) = y.
Now we will prove f(L) = L1. Suppose x ∈ L, then x ∈ L′ or x ∈ L′′. Suppose x ∈ L′. First we

note that g({x | x ∈ Q | x ∈ L′}) = {x | x ∈ Q′| x ∈ L′1}. Now, x =
∞∑
n=1

an
3n

such that ∀n ∈ N,

an ∈ {0, 2}. Also lim
m→∞

m∑
n=1

an
3n

= x. So, for all k ∈ N exists m ∈ N such that |x−
m∑
n=1

an
3n
| ≤ 1

2k
.

Pick l ∈ N and find k ∈ N such that for all x, y ∈ [0, 1] if |x− y| ≤ 1
2k

then |f(x)− f(y)| ≤ 1
2l

.

Find m ∈ N such that |x−
m∑
n=1

an
3n
| ≤ 1

2k
. Then |f(x)−f(

m∑
n=1

an
3n

)| = |f(x)−g(
m∑
n=1

an
3n

)| ≤ 1

2k
. So

lim
m→∞

g(

m∑
n=1

an
3n

) = f(x), so f(x) ∈ L′1. A similar argument proves if x ∈ L′′ then f(x) ∈ L′′1.

Lemma 5.4.6. L′1 is measurable and µ(L′1) = 1
2 .

Proof. We will define a measurable region X with µ(X) = 1
2 and prove [0, 1] \X = L′1.

Pick M > 1. Define LM := {x ∈ [0, 1] | x =
M−1∑
n=1

an
6n
| ∀n ≤ M − 1[an ∈ {0,

3n + 5

2
}]}. Also,

define L1 = {0}. Define XM =
⋃

x∈LM

(
x +

3M+1
2

6M
, x +

3M+5
2

6M

)
. Now define X =

⋃
M≥1

XM . So

X are actually all the open intervals in the complement of L′1. This means L′′1 ⊆ X. Since
we can not prove, for every x ∈ [0, 1] there exists a sequence a0, a1, a2, · · · ∈ {0, 1, 2} such that

x =
∞∑
n=1

an
3n

, we can not prove X ⊆ L′′1. But we can prove L′1 = [0, 1] \X.

We will prove:

(i) L′1 ⊆ [0, 1] \X

(ii) [0, 1] \X ⊆ L′1

(iii) X is measurable and µ(X) = 1
2

With (i) and (ii) we prove L′1 = [0, 1] \X. Combining this with (iii) we prove L′1 is measurable
and µ(L′1) = 1

2 . We will now prove (i), (ii) and (iii).

(i) Suppose x ∈ L′1. Then x =
∞∑
n=1

an
6n

with an ∈ {0, 3n+5
2 } for all n ≥ 1. Now suppose

x ∈ X. Then find M ≥ 1 and y =

M−1∑
n=1

bn
6n
∈ LM such that x ε1

(
y +

3M+1
2

6M
, y +

3M+5
2

6M

)
.

This means y +
3M+5

2

6M
− x < 2

6M
. Now suppose ∃m < M such that am 6= bm. Find the

smallest such m and suppose am = 0 and bm = 3m+5
2 . Then x ≤

m−1∑
n=1

bn
6n

+
3m+1

2

6m
and
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y +
3M+5

2

6M
≥ y ≥

m−1∑
n=1

bn
6n

+
3m+5

2

6m
. This means |x− y| ≥ 2

6M
. So, for all m < M , am = bm.

Now suppose aM = 0 then x ≤ y +
3M+1

2

6M
, which is a contradiction. Suppose aM = 2 then

x ≥ y +
3M+5

2

6M
, which is a contradiction. So aM = 1, which is a contradiction. So x /∈ X.

(ii) Suppose x /∈ X. Now suppose x ∈ L′′1 then find k, p, q ∈ N such that x =

k∑
n=1

an
6n

+

2

6k

∞∑
m=1

bm
3m

with for all n < k, an ∈ {0, 3n+5
2 }, ak = 3m+1

2 , bp 6= 0 and bq 6= 2. Consider

y =
k−1∑
n=1

an
6n

. Then, since x /∈ X we have x ≤ y +
3k+1

2

6k
or x ≥ y +

3k+5
2

6k
. Suppose

x ≤ y +
3k+1

2

6k
, then bm = 0 for all m ∈ N, which is a contradiction. Suppose x ≥ y +

3k+5
2

6k

then bm = 2 for all m ∈ N, which is a contradiction. So x /∈ L′′ so x ∈ L′.

(iii) We will prove X is a measurable region and µ(X) = 1
2 . X =

⋃
M≥1

XM where XM =

⋃
x∈LM

(
x +

3M+1
2

6M
, x +

3M+5
2

6M

)
. Define an enumeration α(1), α(2), α(3) . . . of the intervals

in X with α(i) is an interval of Xb2 log(i)+1c. X = R(α).

We will prove lim
n→∞

µ(ᾱn) =
1

2
. For every i ∈ N, l(α(i)) = 2

6b2 log(i)+1c . Also, for every

i 6= j ∈ N, α(i) and α(j) are disjoint. So µ(ᾱ2i − 1) =
2i−1∑
n=1

2

6b2 log(i)+1c =
i∑

n=1

2n

6n
. So

lim
i→∞

µ(ᾱ2i − 1) = lim
i→∞

i∑
n=1

2n

6n
=

1

2
.

Now we can define the representative L2 of E for which we can not prove it is measurable. We
define L2 = L′2 ∪ L′′2, where:

L′2 =
{
x
∣∣x ∈ [0, 1]

∣∣x =

k1∑
n=1

an
6n

+
3k1+1

2

6k1

∞∑
m=1

bm
3m∣∣∀n ≤ k1

[
an ∈ {0,

3n + 5

2
}
]
∧ ∀m ∈ N

[
bm ∈ {0, 2}

]}
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L′′2 =
{
x
∣∣x ∈ [0, 1]

∣∣ ∃l ∈ N
[
l ≤ k1 =⇒

[
x =

l∑
n=1

an
6n

+
2

6l

∞∑
m=1

bm
3m
∧

∀n < l[an ∈ {0,
3n + 5

2
}] ∧ al =

3l + 1

2
∧

∀m ∈ N[bm ∈ {0, 1, 2}] ∧
∃p, q ∈ N[bp 6= 0 ∧ bq 6= 2]

]
∧

l > k1 =⇒
[
x =

k1∑
n=1

an
6n

+
3k1+1

2

6k1

∞∑
m=1

bm
3m
∧

∀n ≤ k1[an ∈ {0,
3n + 5

2
}] ∧

∀m ≤ l[am ∈ {0, 2}] ∧ al = 1 ∧
∀m > l[bm ∈ {0, 1, 2}] ∧

∃p, q > l[bp 6= 0 ∧ bq 6= 2]
]]}

So if ¬∃n ∈ N[n = k1] then L′2 = L′1 and L′′2 = L′′1. If ∃n ∈ N[n = k1] then L′2 are ‘small
Cantor discontinua’ inside the intervals left at step k1 and L′′2 are again all the real numbers in

the union of the open intervals in the complement of L′2 such that x =
∞∑
n=1

an
3n

for a sequence

a1, a2, a2, · · · ∈ {0, 1, 2}.
First we will show L2 is a representative of E.

Lemma 5.4.7. L2 ∼ L1

Proof. This will be similar to the proof of lemma 5.4.5.
We will define a total bijection f : [0, 1]→ [0, 1]. For this we define two sets Q,Q′ ⊆ [0, 1] with:

Q :={x ∈ [0, 1] | ∃m ∈ N
[
x =

m∑
n=1

an
6n
∧ ∀n ≤ m[an ∈ {0,

3n + 5

2
}]
]
} ∪

{x ∈ [0, 1] | ∃k, l ∈ N
[
x =

k∑
n=1

an
6n

+
2

6k

l−k∑
m=1

bm
3m
∧

∀n < k[an ∈ {0,
3n + 5

2
}] ∧ ak =

3k + 1

2
∧

∀m ≤ l − k[am ∈ {0, 1, 2}]
]
}
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Q′ :=
{
x
∣∣x ∈ [0, 1]

∣∣∃l ∈ N[x =

k1∑
n=1

an
6n

+
3k1+1

2

6k1

l−k1∑
m=1

bm
3m

]

∣∣∀n ≤ k1

[
an ∈ {0,

3n + 5

2
}
]
∧ ∀m ≤ l − k1

[
bm ∈ {0, 2}

]}
∪{

x
∣∣x ∈ [0, 1]

∣∣∃l ∈ N∃l′ ≤ l
[
l′ ≤ k1 =⇒

[
x =

l′∑
n=1

an
6n

+
2

6l′

l−l′∑
m=1

bm
3m
∧

∀n < l′[an ∈ {0,
3n + 5

2
}] ∧ al′ =

3l
′
+ 1

2
∧

∀m ≤ l − l′[bm ∈ {0, 1, 2}]
]
∧

l′ > k1 =⇒
[
x =

k1∑
n=1

an
6n

+
3k1+1

2

6k1

l−k1∑
m=1

bm
3m
∧

∀n ≤ k1[an ∈ {0,
3n + 5

2
}] ∧

∀m < l′ − k1[am ∈ {0, 2}] ∧ al′−k1 = 1 ∧

∀m > l′ − k1[bm ∈ {0, 1, 2}]
}

So Q are all the elements from L1 which we can write as a finite sum and Q′ are all the elements
from L2 which we can write as a finite sum. We define a bijection g : Q → Q′ and use this
bijection to define f .

Suppose q ∈ Q and suppose exists l ∈ N with q =

l∑
n=1

an
6n

with an ∈ {0, 3n+5
3 } for all n ≤ l, then

define g(q) =

k1∑
n=1

an
6n

+
3k1+1

2

6k1

l−k1∑
m=1

bm
3m

with bm = 0 if ak1+m = 0 and bm = 2 if ak1+m = 3k1+m+5
2 .

Suppose q ∈ Q and suppose exists k, l ∈ N with q =

k∑
n=1

an
6n

+
2

6k

l−k∑
m=1

bm
3m

such that for all n < k,

an ∈ {0, 3n+5
2 }, ak = 3k+1

2 and for all m ≤ l − k, am ∈ {0, 1, 2}, then:

g(q) =


q if k ≤ k1
k1∑
n=1

an
6n

+
3k1+1

2

6k1

l−k∑
m=1

bm
3m

if k > k1

with, for all m ≤ k, bm = 0 if am = 0 and bm = 2 if am = 3m+5
2 .

Similar, but a bit more complicated, to the proof of 5.4.5 we can prove g is a bijection. Now we
can define f .
For every x ∈ [0, 1] there exists yx ∈ [0, 1] such that yx ≡ x and yx = yx(0), yx(1), yx(2), . . . with,
for every i ∈ N, y′x(i), y′′x(i) ∈ Q. Pick x ∈ [0, 1] and find yx. Define f(x) = (g(y′x(0)), g(y′′x(0))), (g(y′x(1)), g(y′′x(1))), (g(y′x(2)), g((y′′x(2))), . . . .
Clearly, f is a total function. This means, by the uniform continuity theorem, f is uniformly
continuous. We will prove f is a bijection. Also, we will prove f(L1) = L2. This will prove
L1 ∼ L2.
First we will prove f is a bijection. Suppose x, x′ ∈ [0, 1] and x # x′. Find yx, yx′ . Then
yx # yx′ so there exists k ∈ N such that y′′x(k) < y′x′(k) or y′′x′(k) < y′x(k). Suppose, with-
out loss of generality, y′′x(k) < y′x′(k) then g(y′′x(k)) < g(y′x′(k)) so f(x)′′(k) < f(x′)′(k)
which means f(x) # f(x′). Now suppose y ∈ [0, 1], then there exist zy ∈ [0, 1] such that
zy ≡ y and zy = zy(0), zy(1), zy(2), . . . with, for every i ∈ N, z′y(i), z

′′
y (i) ∈ Q′. Now con-

sider x = (g−1(z′y(0)), g−1(z′′y (0))), (g−1(z′y(1)), g−1(z′′y (1))), (g−1(z′y(2)), g−1((z′′y (2))), . . . . Then
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f(x) = zy so f(x) ≡ y, so f(x) = y.
Now we will prove f(L1) = L2. Suppose x ∈ L1, then x ∈ L′1 or x ∈ L′′1. Suppose x ∈ L′1.

First we note that g({x | x ∈ Q | x ∈ L′1}) = {x | x ∈ Q′| x ∈ L′2}. Now, x =

∞∑
n=1

an
6n

such that ∀n ∈ N, an ∈ {0, 3n+5
2 }. Also lim

m→∞

m∑
n=1

an
6n

= x. So, for all k ∈ N exists m ∈ N

such that |x −
m∑
n=1

an
6n
| ≤ 1

2k
. Pick l ∈ N and find k ∈ N such that for all x, y ∈ [0, 1] if

|x − y| ≤ 1
2k

then |f(x) − f(y)| ≤ 1
2l

. Find m ∈ N such that |x −
m∑
n=1

an
6n
| ≤ 1

2k
. Then

|f(x) − f(
m∑
n=1

an
6n

)| = |f(x) − g(
m∑
n=1

an
6n

)| ≤ 1

2k
. So lim

m→∞
g(

m∑
n=1

an
6n

) = f(x), so f(x) ∈ L′2. A

similar argument proves if x ∈ L′′1 then f(x) ∈ L′′2.

Lemma 5.4.8. We can not prove L2 is measurable.

Proof. Suppose L2 would be measurable. Then, as in the proof of lemma 5.4, L′′2 would be
measurable and, since L′2 = [0, 1] \L′′2, also L′2 would be measurable. Suppose ¬∃n ∈ N[n = k1]
then L′2 = L′1 so µ(L′2) = 1

2 . Suppose ∃n ∈ N[n = k1] then µ(L′2) = 0. This can be proven
similar to the proof of lemma 5.4.3. Since 0 < 1

2 we know, either µ(L′2) > 0 or µ(L′2) < 1
2 .

Suppose µ(L′2) > 0 then ¬∃n ∈ N[n = k1]. Suppose µ(L′2) < 1
2 then ¬¬∃n ∈ N[n = k1]. This

means we can not prove that L2 is measurable.

Lemma 5.4.9. (i) Every representative of E is not apart from [0, 1].

(ii) Every representative of E does not deviate from [0, 1]

(iii) Every representative of E does not coincide with [0, 1]

Proof. By lemma 4.2 it is enough to show (i), (ii) and (iii) for L.

(i) We will prove ¬[L # [0, 1]]. Suppose there exists a l ∈ L such that l # [0, 1] or there
exists an x ∈ [0, 1] such that x # L. Then there exists an x ∈ [0, 1] such that x # L, since
L ⊆ [0, 1]. So there exists an x ∈ [0, 1] such that for every l ∈ L [x # l], which means for
every l ∈ L′′ [x # l], so x /∈ L′′ so x ∈ L′. Since also for every l ∈ L′′[x # l] this will give
[x # x], which is a contradiction.

(ii) We will prove ¬[L 6≡ [0, 1]]. So we have to proof ¬
[
∃l ∈ L ¬[l ∈0 [0, 1]]

]
and ¬

[
∃x ∈

[0, 1] ¬[x ∈0 L]
]
. First we will prove ¬

[
∃l ∈ L ¬[l ∈0 [0, 1]]

]
. This is trivial since

L ⊆ [0, 1], so ∀l ∈ L [l ∈0 [0, 1]]. Now we will prove ¬
[
∃x ∈ [0, 1] ¬[x ∈0 L]

]
. Suppose[

∃x ∈ [0, 1] ¬[x ∈0 L]
]
, find this x. Then ¬(x ∈0 L), so ¬(x ∈0 L

′′) so ¬(x ∈ L′′) thus
x ∈ L′. But also ¬(x ∈0 L

′, which is a contradiction.

(iii) This follows directly from 2.2.8.

Furthermore we can, for each representative E′ of E find a totally bounded perfect set X such
that for each x ∈ X we can not prove x ∈ E′.

Lemma 5.4.10. For every representative E′ of E we can find a totally bounded perfect set X
such that for each x ∈ X we can not prove x ∈ E′.
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Proof. By lemma 4.10 we can prove our claim by proving it for L. Consider

X = { x | x ∈ [0, 1] | x =

∞∑
n=1

an
3n
| ak1 = ak1+1 = 1 ∧ ai ∈ {0, 2} ∀ i /∈ {k1, k1 + 1}}

where k1 is as in definition 1.3.1. We claim that X is a totally bounded perfect set and for each
x ∈ X we can not prove x ∈ L.
We will first show that X is totally bounded. Pick any m ∈ N. Find the smallest l ∈ N such
that 3l ≥ m. We take n = 2l. We consider three options:

1. m ≤ 3k1−1

2. 3k1−1 < m ≤ 3k1+1

3. m > 3k1+1

1. We define p0, p1, . . . , pn−1 ∈ X with pi =
∑∞

n=1
an
3n such that aj = 2 ∗ ij for each j ≤ l and

aj = 0 for each j > l where i1, i2, . . . , il is the binary notation of i.

2. We define p0, p1, . . . , p2k1−1 ∈ X with pi =
∑∞

n=1
an
3n such that aj = 2∗ij for each j ≤ k1−1

and ak1 = ak1+1 = 1 and aj = 0 for each j > k1 − 1 where i1, i2, . . . , ik1−1 is the binary
notation of i.

3. First define the smallest number b ∈ N such thatm ≤ 3k1+b+1. Now we define p0, p1, . . . , p2k1−1+b ∈
X with pi =

∑∞
n=1

an
3n such that aj = 2 ∗ ij for each j ≤ k1 − 1 and ak1 = ak1+1 = 1

and aj = i′j−(k1+1) for each j ≤ k1 + b + 1 and aj = 0 for each j > k1 + b + 1 where

i1, i2, . . . , ik1−1 is the binary notation for b i
2b
c and where i′1, i

′
2, . . . , i

′
k1−1 is the binary

notation for i modulo 2b

We will now prove that X is closed. For this we need to show:

(i) ∀x ∈ X ∃x′ ∈ X̄ such that x ≡ x′

(ii) ∀x′ ∈ X̄ ∃x ∈ X such that x ≡ x′

Since X ⊆ X̄ (i) is clear. Now take x′ ∈ X̄. We will construct x =
∑∞

n=1
bn
3n ∈ X by defining

an for every n ∈ N. Pick n ∈ N and find yn =
∞∑
k=1

(an)k
3k

∈ X such that |yn − x′| < 1
3n+1 . Define

bn = (an)n. We will show, for every n ∈ N, |x− x′| ≤ 1
3n , so by lemma 1.2.6 x ≡ x′. By lemma

1.1.7 it is sufficient to prove |x − yn+1| ≤ 1
3n+1 and |yn+1 − x′| ≤ 1

3n+2 . By definition of yn+1

we already know |yn+1 − x′| ≤ 1
3n+2 . Thus we will prove |x− yn+1| ≤ 1

3n+1 . With the following
claim we see it will be sufficient to prove b1 = (an+1)1, . . . bn+1 = (an+1)n+1.
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Claim. For y =

∞∑
n=1

cn
3n
, y′ =

∞∑
n=1

c′n
3n
∈ X if c1 = c′1, . . . , ck = c′k then |y′−y| ≤ 1

3k
and

if |y′ − y| < 1
3k

then c1 = c′1, . . . , ck = c′k.

Proof. Suppose y =
∞∑
n=1

cn
3n
, y′ =

∞∑
n=1

c′n
3n
∈ X. Suppose c1 = c′1, . . . , ck = c′k then

|y − y′| = |
∞∑

n=k+1

cn
3n
−

∞∑
n=k+1

c′n
3n
| ≤ 1

3k
. Now suppose |y′ − y| < 1

3k
and suppose there

exists m ≤ k such that cm 6= c′m. Find the smallest m ≤ k such that cm 6= c′m. Decide
m < k1,m ∈ {k1, k1 + 1} or m > k1 + 1. Suppose m < k1 then cm, c

′
m ∈ {0, 2}.

Suppose without loss of generality cm = 0 and c′m = 2. Then y ≤
m−1∑
n=1

cn
3n

+
1

3m

and y′ ≥
m−1∑
n=1

cn
3n

+
2

3m
so |y − y′| ≥ 1

3m ≥
1
3k

which is a contradiction. Suppose

m ∈ {k1, k1 + 1}, then cm = c′m = 1, which is a contradiction. Suppose m > k1 + 1
then then cm, c

′
m ∈ {0, 2}. Suppose without loss of generality cm = 0 and c′m = 2.

Then y ≤
m−1∑
n=1

cn
3n

+
1

3m
and y′ ≥

m−1∑
n=1

cn
3n

+
2

3m
so |y − y′| ≥ 1

3m ≥
1
3k

which is a

contradiction. So not there exists m ≤ k such that cm 6= c′m which means cm = c′m for
all m ≤ k.

We will prove b1 = (an+1)1, . . . bn+1 = (an+1)n+1 with induction, by using the above claim.
By definition b1 = (a1)1. Now suppose we know b1 = (an)1, . . . , bn = (an)n. Then, since
|yn − x′| ≤ 1

3n+1 and |x′ − yn+1| ≤ 1
3n+2 , by lemma 1.1.7, |yn − yn+1| ≤ 1

3n . So, by the
above claim, (an)1 = (an+1)1, . . . (an)n = (an+1)n, so b1 = (an+1)1, . . . bn+1 = (an+1)n and by
definition bn+1 = (an+1)n+1.

Moreover, Brouwer claims we can construct a representative E′ of E for which we can define a
set X of positive measure such that for each x ∈ X we can not prove x ∈ E′. For this purpose
Brouwer defines a set E1, but we will show that we can not prove that E1 is a representative of
E.
We will define the set E1 by first defining sets Uv and Tv for every v ≥ 2, Uω and Tω and Uk1
and Tk1 . We note that, in defining these sets, Brouwers makes some mistakes. He defines the
sets Tv, Tω and Tk1 and then defines the sets Uv, Uω and Uk1 as their complements. With the
definition of Tv, Tω and Tk1 it would not be clear what Uv, Uω and Uk1 would be. Also, he
claims that the sets Tv, Tω and Tk1 are closed and the sets Uv, Uω and Uk1 are regions, but it is
not always the case that the complement of a closed set is a region. This is why we define the
sets Uv, Uω and Uk1 and then define Tv, Tω and Tk1 as their complements.
Following the style of Brouwer, we first define, for every v ≥ 2 a set U ′v. For this, we define a

function, σ : N≥1 → N with σ(v) = (v−1)(v+2)
2 . So σ(1) = 0, σ(2) = 2, σ(3) = 5, σ(4) = 9, etc.

Also define, for every v ≥ 1, Xv := { n
3σ(v)
|n < 3σ(v)}. Now:

U ′v =
⋃
q∈Xv

{x | x ∈ [0, 1] | x = q +
( 1

3σ(v)

∞∑
n=1

an
3n
)
| ∃m ∈ N

[
∀n < m[an ∈ {0, 2}] ∧ am = 1 ∧

∀n > m[an ∈ {0, 1, 2}] ∧
∃ p, q > m[ap 6= 0 ∧ aq 6= 2]

]
}
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So, for every v ≥ 2, U ′v are all the x ∈ [0, 1] which we can write as q +
(

1
3σ(v)

∞∑
n=1

an
3n

) and which

are in the union of open intervals in the complement of small Cantor discontinua inside the

intervals [0, 1
3σ(v)

], . . . , [3σ(v)−1
3σv , 1].

Again, Brouwer seems to make the assumption that for every x ∈ [0, 1] we can find a sequence

a1, a2, a3, · · · ∈ {0, 2} such that x =
∞∑
n=1

an
3n

. With the above definition for U ′v it is not possible to

prove that, for every v ≥ 2, U ′v is a region. So we change the definition a little more. For this we

define for every M > 1, similar as in the proof of 5.4.6, EM1 := {x ∈ [0, 1] | x =
M−1∑
n=1

an
3n
| ∀n ≤

M − 1[an ∈ {0, 2}]}. Now define UMv =
⋃

x∈EM1

(
x +

1

3M−1
, x +

2

3M
) and U :=

⋃
M>1

UMv . With

this we define, for every v ≥ 2,

Uv =
⋃
q∈Xv

{x ∈ [0, 1] | x =
1

3σ(v)
y + q |y ∈ U}

So Uv is really the union of all the open intervals in the complement of small Cantor discontinua

inside the intervals [0, 1
3σ(v)

], . . . , [3σ(v)−1
3σ(v)

, 1].
Since, for every v ≥ 2, both U ′v and Uv give the same complement we choose to use Uv.

Lemma 5.4.11. For every v ≥ 2, ([0, 1] \ U ′v) = ([0, 1] \ Uv).

Proof. We will not prove this is detail but refer to similar proofs.

As in the proof of lemma 5.4.1 we see that, for every v ≥ 2, ([0, 1]\U ′v) =
⋃
q∈Xv

{x | x ∈ [0, 1] | x =

q +
( 1

3σ(v)

∞∑
n=1

an
3n
)
| ∀n ∈ N[an ∈ {0, 2}] } = T ′v. With a similar argument as in the proof of

lemma 5.4.6 we can prove, for every v ≥ 2:

(i) T ′v ⊆ ([0, 1] \ Uv)

(ii) ([0, 1] \ Uv) ⊆ T ′v

This shows ([0, 1] \ U ′v) = ([0, 1] \ Uv).

We now also define Uω and Uk1 :

Uω =
⋃
v≥1

( ⋃
q∈Xv

(
q +

∑v
n=0 3n

3σ(v+1)
, q +

1 +
∑v

n=0 3n

3σ(v+1)

))

Uk1 = { x | x ∈ [0, 1] | ∃v ∈ N [v = k1 ∧ x ∈ Uv] }

Furthermore, we define Tv, Tω respectively Tk1 to be the complements of Uv, Uω respectively
Uk1 . For Tk1 this gives Tk1 = { x | x ∈ [0, 1] | ∀v ∈ N [v = k1 → x ∈ Tv] }. Also, note the
following: suppose ∃v ∈ N [v = k1] then Tk1 = Tv and Uk1 = Uv. Now suppose ¬∃v ∈ N [v = k1]
then Tk1 = [0, 1] and Uk1 = ∅.
We will now prove a number of lemma’s about the sets constructed above.

Lemma 5.4.12. The sets Uv, Uw and Uk1 are regions.
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Proof. Clearly, for every v ≥ 2, Uv is a region. Also, clearly Uω is a region. Now define
α = α(0), α(1), α(2), . . . with α(i) = (0, 0) if i < k1 and α(i) = ( k1−i

3σ(k1)
, k1−i+1

3σ(k1)
) for every

k1 ≤ i < k1 + 3σ(k1) and α(i) = αk1 for all i ≥ k1 + 3σ(k1). Uk1 = R(α) so Uk1 is a region.

Lemma 5.4.13. For each v ≥ 2, Uv is measurable and µ(Uv) = 1.

Proof. Pick v ≥ 2. Then the number of elements inXv is 3σ(v). We have µ(Uv) = µ(
⋃
q∈Xv

(
q, q+

1
3σ(v)

)
) =

3σ(v)−1∑
n=0

1

3σ(v)
= 1.

Lemma 5.4.14. µ(Tω) ≥ 5
6 .

Proof. We will prove µ(Uω) ≤ 1
6 . Uω is a measurable region since, for every m ∈ N there

exists v ∈ N such that for all n ≥ v, µ
( ⋃
q∈Xn

(q +

∑n
k=0 3k

3σ(n+1)
, q +

1 +
∑n

k=0 3k

3σ(n+1)
)
)
≤ 1

m
. Now

µ(Uω) = µ(
⋃
v≥1

(⋃
q∈Xv

(
q +

∑v
n=0 3n

3σ(v+1) , q +
1+

∑v
n=0 3n

3σ(v+1)

))
) ≤

∞∑
n=1

3σ(v)

3σ(v+1
=

∞∑
n=1

3σ(v)−σ(v+1) =

∞∑
n=1

1

3v+1
=

1

6
.

Here the first inequality again holds since, for every v ≥ 1 the number of elements of Xv is
3σ(v).
We define the set E1 as the union of Tk1 and Uk1 , so E1 = Tk1 ∪ Uk1 . We define X as the
intersection of Tω, U2, U3, . . . , so X = Tω ∩ (

⋂∞
v=2 Uv).

Lemma 5.4.15. X has a positive measure (i.e. there exists an n ∈ N with |µ(X) − 0| > 1
n)

and for every x ∈ X we can not prove x ∈ E1.

Proof. Since for every v ≥ 2, µ(Uv) = 1 we have µ(
⋂∞
v=2 Uv) = 1. This means µ(X) ≥ 5

6 . Also,
suppose x ∈ X and suppose we prove x ∈ E1, then we prove x ∈ Uk1 or we prove x ∈ Tk1 .

• Suppose we prove x ∈ Tk1 and also suppose ∃v ∈ N [v = k1]. Find v ∈ N such that v = k1,
then x ∈ Tv. By definition of Tv, x /∈ Uv. But then x /∈ X. So we have ¬∃v ∈ N [v = k1].
We can not prove this, so we can not prove x ∈ Tk1 .

• Suppose x ∈ Uk1 then Uk1 6= ∅ so ¬¬∃v ∈ N [v = k1]. We can not prove this, so we can
not prove x ∈ Uk1 .

So, for every x ∈ X we can not prove x ∈ E1.

Now we will show that we can not prove that E1 is a representative of E.

Lemma 5.4.16. We can not prove L ∼ E1.

Proof. Suppose we prove L ∼ E1, then there would exists a uniformly continuous bijection f :
[0, 1]→ [0, 1] such that f(L) = E1 and such that it’s inverse f−1 is uniformly continuous as well.
Now suppose ¬∃v ∈ N [v = k1], then E1 = [0, 1]. But then L = f−1(E1) = f−1([0, 1]) = [0, 1].
So ¬¬∃v ∈ N [v = k1]. So we can not prove such an f exists.

Lastly, we will show, for every representative E′ of E there exists discontinuous functions
f : E′ → R.
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Lemma 5.4.17. For every representative E′ of E there exists discontinuous functions f : E′ →
R.

Proof. By lemma 4.3 it is enough to prove this for L. Now define f : L → R with f(x) = 0
if x ∈ L′ and f(x) = 1 if x ∈ L′′. To prove f is discontinuous we consider any x ∈ L′ and

n = 2. Since x ∈ L′ we can find a sequence a1, a2, a3, · · · ∈ {0, 2} such that x =

infty∑
n=1

an
3n

. Pick

any m ∈ N and find k ∈ N such that

∞∑
n=k+1

2

3n
≤ 1

2m
. Define y =

∞∑
n=1

bn
3n

with bn = an for

all n ≤ k and bk+n = 1 for all n ≥ 1. Then y ∈ L′′. We have |x − y| ≤
∞∑

n=k+1

2

3n
≤ 1

2m
but

|f(x)− f(y)| = 1 > 1
4 .

5.5 Example 6

We define F to be the geometric type of M (10), where M = M ′ ∪M ′′ and:

M ′ = { x | x ∈ [0, 1] | x =
∞∑
n=1

an
3n
| ∃m ∈ N∀n > m[an 6= 1]}

M ′′ = { x | x ∈ [0, 1] | x =
∞∑
n=1

an
3n
| ∀m ∈ N∃n ∈ N[an = 1]}

Lemma 5.5.1. M ′ ⊆ ([0, 1] \M ′′) and M ′′ ⊆ ([0, 1] \M ′ so M ′ ∩M ′′ = ∅.

Proof. Suppose x ∈ M ′ then x =
∑∞

n=1
an
3n and we can find m ∈ N such that for all n > m,

an 6= 1. Suppose x ∈ M ′′ then for all k ∈ N there exists n > k such that an = 1. Now find
n > m such that an = 1. This is a contradiction so x /∈M ′′.
Now suppose x ∈ M ′′ and suppose x ∈ M ′, then by the above we get a contradiction. So
x /∈M ′.

Corollary 5.5.2. For every representative F ′ of F we have F ′ is of the form X ′ ∪ X ′′ such
that X ′ ∩X ′′ = ∅.

Proof. Suppose F ′ is a representative of F , then there exists a uniformly continuous bijection
f : [0, 1] → [0, 1] such that f(M) = F ′ and such that f−1 is uniformly continuous. But
f(M) = f(M ′ ∪M ′′) = f(M ′) ∪ f(M ′′) = F ′. So define X ′ = f(M ′) and X ′′ = f(M ′′). Now
suppose there exists x ∈ (X ′ ∩X ′′) then x ∈ X ′ so x ∈ f(M ′) which means f−1(x) ∈M ′. This
means f−1(x) /∈M ′′ so x /∈ X ′′. This is a contradiction so X = ∅.

Lemma 5.5.3. 1. Every representative of F is not apart from [0, 1].

2. Every representative of F does not coincide with [0, 1].

Proof. By lemma 4.2 it is enough to show (i), (ii) and (iii) for M .

(10)This is K from example 6 of Brouwers article.
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(i) Suppose M # [0, 1]. Then, there exists x ∈ [0, 1] such that [x # M ] or there exists
x ∈ M such that [x # [0, 1]]. Since M ⊆ [0, 1] we know there exists x ∈ [0, 1] such
that [x # M ]. Find x ∈ [0, 1] such that x # M . Then x # M ′. We define, for all

k ∈ N, M ′k :=
{ ∞∑
n=1

an
3n
|
∞∑
n=1

an
3n
∈ M ′ | ∃l ≤ k

[
∃n1 6= · · · 6= nl

[
∀i ≤ l[ani = 1] ∧ ∀n /∈

{n1, . . . , nl}[an 6= 1]
]]}

. So M ′k is the set which consist of all x ∈M ′ that contain at most

k terms where the nominator equals 1. Then M ′ =
⋃
k∈N

M ′k. Now, for every k ∈ N, M ′k

is a fan and ∀z ∈ M ′k∃n ∈ N[x′(n) > z ∨ x′′(n) < z]. So, by the fan theorem, for every
k ∈ N∃Nk∀z ∈ M ′k∃n ≤ Nk[x

′(n) > z ∨ x′′(n) < z]. We will prove there exists w ∈ M ′′
with x ≡ w. Since [x # M ′′] this is a contradiction, so ¬[M # [0, 1]]. For this, we will
prove the following:

(1) There exists a sequence a1, a2, a3, · · · ∈ {0, 1, 2} such that lim
k→∞

k∑
n=1

an
3n
≡ x.

(2)
∞∑
n=1

an
3n
∈M ′′.

(1) Define (an)∞n=1 with induction and such that, for every k ∈ N,

k∑
n=1

an
3n

< x <

k∑
n=1

an
3n

+

1

3k
. For k = 1, decide x < 1

3 or x > 1
3 . This is possible since x # M ′. If x < 1

3 then

a1 = 0. If x > 1
3 then decide x < 2

3 or x > 2
3 . If x < 2

3 then a1 = 1. If x > 2
3 then

a1 = 2. This means

1∑
n=1

an
3n

< x <

1∑
n=1

an
3n

+
1

3
. Now suppose we defined a1, a2, . . . , ak.

Then decide x <

k∑
n=1

an
3n

+
1

3k+1
of x >

k∑
n=1

an
3n

+
1

3k
. If x <

k∑
n=1

an
3n

+
1

3k+1
then

ak+1 = 0, else decide x <

k∑
n=1

an
3n

+
2

3k+1
or x >

k∑
n=1

an
3n

+
2

3k+1
. If x <

k∑
n=1

an
3n

+
2

3k+1
,

then ak+1 = 1, else ak+1 = 2. Clearly, for every n ∈ N there exists k ∈ N such that

|
∞∑
n=0

−x| ≤ 1

n
. So, by lemma 1.2.6, lim

k→∞

k∑
n=1

an
3n

=
∞∑
n=1

an
3n
≡ x.

(2) To show
∞∑
n=1

an
3n

we have to define a real number y = y(0), y(1), y(2), . . . with y′(k) =

k+1∑
n=1

an
3n
− 1

3k
and y′′(k) =

k+1∑
n=1

an
3n

+
1

3k
. With y we will prove for all m ∈ N there exists

n > m such that an = 1.

Pick k ∈ N, then x′(k) < x <
k∑

n=1

an
3n

+
1

3k
< y′′(k) and y′(k) =

k+1∑
n=1

an
3n
− 1

3k
≤ x <

x′′(k), so x ≡ y. We will now prove, with induction,
∞∑
n=1

an
3n
∈M ′′.

Since y ≡ x we have, for every k ∈ N∃Nk∀z ∈ M ′k∃n ≤ Nk[x
′(n) > z ∨ x′′(n) < z].
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Find N0. Consider

N0∑
n=1

an
3n

and suppose for all n ≤ N0, an ∈ {0, 2}. Then

N0∑
n=1

an
3n
∈M ′0,

so y′′(N0) <

N0∑
n=1

an
3n

or y′(N0) >

N0∑
n=1

an
3n

. But y′′(N0) =

N0+1∑
n=1

an
3n

+
1

3N0
≥

N0∑
n=1

an
3n

and

y′(N0) =

N0+1∑
n=1

an
3n
− 1

3N0
<

N0+1∑
n=1

an
3n
− 2

3N0+1
≤

N0+1∑
n=1

an
3n

. This means ∃n ≤ N0 such

that an = 1. Now suppose we have proven ∃n1 6= · · · 6= nk ≤ max(N0, . . . , Nk) such
that ani = 1 for all i ≤ k and an 6= 1 for all n /∈ {n1, . . . , nk}. Then find Nk+1 and

m = max(N0, . . . , Nk+1). Consider

m∑
n=1

an
3n

and suppose ∃n1 6= · · · 6= nk ≤ m such

that ani = 1 for all i ≤ k and an 6= 1 for all n /∈ {n1, . . . , nk}. Then

m∑
n=1

an
3n
∈ M ′k.

So y′′(Nk) <

m∑
n=1

an
3n

or y′(Nk) >

N0∑
n=1

an
3n

. But y′′(Nk) =

Nk+1∑
n=1

an
3n

+
1

3Nk
≥

Nk∑
n=1

an
3n

+

∞∑
n=Nk+2

2

3n
≥

m∑
n=1

an
3n

and y′(Nk) =

Nk+1∑
n=1

an
3n
− 1

3Nk
<

m∑
n=1

an
3n
− 2

3N0+1
≤

m∑
n=1

an
3n

. This

means ∃n1 6= · · · 6= nk+1 ≤ m such that ani = 1 for all i ≤ k + 1. With induction, we

see
∞∑
n=1

an
3n
∈M ′′.

(ii) This follows directly from lemma 2.2.8.

Lemma 5.5.4. M is measurable and µ(M) = 1.

Proof. We will prove M ′′ is measurable and µ(M ′′) = 1, then also M is measurable and µ(M) =
1.
To prove M ′′ is measurable we have to proof χM ′′ is measurable. We will define a set YM :={
x | x ∈ [0, 1] | ∃l ∈ N

[
x =

l∑
n=1

an
3n
∧ ∀n ≤ l[an ∈ {0, 1, 2}]

]}
. Since for every x ∈ YM , x ∈ Q

we can enumerate YM with q0, q1, q2, . . . .
Now define an infinite sequence of measurable regions X0, X1, X2, . . . such that, for each n ∈ N,
Xn = R(αn(0), αn(1), αn(2), . . . ) with αn(i) = (qi − 1

2n+i+2 , qi + 1
2n+i+2 ) for every i ∈ N. Then

µ(Xn) ≤ 1
2n for every n ∈ N. Pick x ∈ [0, 1] and suppose x /∈ Xn then ∀m ∈ N∀k ∈ N[qm −

1
2n+m+2 ≥ x′(k) ∨ x′′(k) ≥ qm + 1

2n+m+2 ]. Similar to the proof of lemma 5.5.3 we can prove
x ∈M ′′.
Now define, for every n ∈ N, (vn)0, . . . , (vn)n with ((vn)i)0 = ( i

n+1 ,
i+1
n+1) and ((vn)i)1 = (1 −

1
2n , 1). Then Ar∗ = n+1

2n(n+1) = 1
2n .

Suppose x ∈ [0, 1] and suppose x /∈ Xn, then by the above x ∈ M ′′ which means χM ′′(x) = 1.

Also 1− 1
2n ≤ 1 ≤ 1 so χM ′′(x) ∈ ((vn)i)1. This gives µ(M ′′) = lim

n→∞

n+ 1

n+ 1
= 1.

Corollary 5.5.5. M ′ is measurable and µ(M ′) = 0.

Proof. Since M is measurable and M = M ′ ∪M ′′ such that M ′ ∩M ′′ = ∅ we know, by lemma
3.3.12, both M ′ and M ′′ are measurable. Also, since µ(M ′′) = 1 we have µ([0, 1] \M ′′) = 0.
Since M ′ ⊆ ([0, 1] \M ′′) we know µ(M ′) = 0.
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Lemma 5.5.6. Every measurable representative of F has measure 1.

Proof. Suppose F ′ is a representative of F and suppose F ′ is measurable. Suppose µ(F ′) < 1.
This means µ([0, 1] \ F ′) > 0 and thus, by lemma 3.3.11, we know ∃x ∈ ([0, 1] \ F ′) such that
x # F ′. By lemma 5.5.3 this is not possible, so µ(F ′) = 1.

So every measurable representative of F has measure 1, but there exist representatives of F for
which we can not prove they are measurable. We will show this with the set M2. To define M2

we first have to define a measurable representative of F , M1. Brouwer did not mention these
representatives, but we give them to show that we can not prove that every representative of F
is measurable.
We define M1 = M ′1 ∪M ′′1 where M ′1 = L′1 ∪M ′′′ and:

M ′′′ :=
{
x | x ∈ [0, 1] | x =

k∑
n=1

an
6n

+
2

6k

∞∑
m=1

bm
3m

| ∀n < k[ak ∈ {0,
3n + 5

2
}] ∧ ak =

3k + 1

2
∧

∃l ∈ N∀m > l[bm 6= 1]
}

M ′′1 =
{
x | x ∈ [0, 1] | x =

k∑
n=1

an
6n

+
2

6k

∞∑
m=1

bm
3m

| ∀n < k[ak ∈ {0,
3n + 5

2
}] ∧ ak =

3k + 1

2
∧

∀l ∈ N∃m > l[bm = 1]
}

We will first prove that M1 is a representative of F and then prove that M1 is measurable.

Lemma 5.5.7. M ∼M1

Proof. This is very similar to the proof of 5.4.5. We will define a total bijection f : [0, 1]→ [0, 1].
For this we define two sets Q,Q′ ⊆ [0, 1] with:

Q := {x ∈ [0, 1] | ∃m ∈ N
[
x =

m∑
n=1

an
3n
∧ ∀n ≤ m[an ∈ {0, 1, 2}]

]
}

Q′ :={x ∈ [0, 1] | ∃m ∈ N
[
x =

m∑
n=1

an
6n
∧ ∀n ≤ m[an ∈ {0,

3n + 5

2
}]
]
} ∪

{x ∈ [0, 1] | ∃k, l ∈ N
[
x =

k∑
n=1

an
6n

+
2

6k

l−k∑
m=1

bm
3m
∧

∀n < k[an ∈ {0,
3n + 5

2
}] ∧ ak =

3k + 1

2
∧

∀m ≤ l − k[am ∈ {0, 1, 2}]
]
}

So Q are all the elements from M which we can write as a finite sum and Q′ are all the elements
from M1 which we can write as a finite sum. We define a bijection g : Q → Q′ and use this
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bijection to define f .

For every q =
l∑

n=1

an
3n
∈ Q, define:

g(q) =


l∑

n=1

bn
6n

if ∀n ≤ l[an 6= 1]

k∑
n=1

bn
6n

+
2

6k

l−k∑
m=1

cm
3m

if ∃k ≤ l[ak = 1]

with, if ∀n ≤ l[an 6= 1] then, for all n ≤ l, bn = 0 if an = 0 and bn = 3n+5
2 if an = 2 and if

∃k ≤ l[ak = 1] then, for all n < k, bn = 0 if an = 0 and bn = 3n+5
2 if an = 2, bk = 3k+1

2 and
∀m ≤ l − k, cm = am+k.

We will prove g is a bijection. Take q =

l∑
n=1

an
3n
, q′ =

l′∑
n=1

a′n
3n
∈ Q and decide l ≥ l′ or l′ < l. Sup-

pose, without loss of generality, l ≥ l′. Then define q′ =

l∑
n=1

a′n
3n

with a′n = 0 for all l′ < n ≤ l.

Suppose q 6= q′. Find the smallest k ≤ l such that ak 6= a′k. Suppose ak = 0 and a′k = 2.

Then g(q) < k−1
n=1

an
6n

+
3k+1

2

6k
and g(q′) ≥ k−1

n=1

an
6n

+
3k+5

2

6k
. Suppose ak = 1 and a′k = 2. Then

g(q) <
∑
n=1

k − 1
an
6n

+
3k+1

2

6k
+

2

6k
and g(q′) ≥ g(q) <

∑
n=1

k − 1
an
6n

+
3k+5

2

6k
. Suppose ak = 1 and

a′k = 0. Then g(q) ≥
k−1∑
n=1

an
6n

+
3k+1

2

6k
and g(q′) <

k−1∑
n=1

an
6n

+
3k+1

2

6k
.

Now we can define f .
For every x ∈ [0, 1] there exists yx ∈ [0, 1] such that yx ≡ x and yx = yx(0), yx(1), yx(2), . . . with,
for every i ∈ N, y′x(i), y′′x(i) ∈ Q. Pick x ∈ [0, 1] and find yx. Define f(x) = (g(y′x(0)), g(y′′x(0))), (g(y′x(1)), g(y′′x(1))), (g(y′x(2)), g((y′′x(2))), . . . .
Clearly, f is a total function. This means, by the uniform continuity theorem, f is uniformly
continuous. We will prove f is a bijection. Also, we will prove f(M) = M1. This will prove
M1 ∼M .
First we will prove f is a bijection. Suppose x, x′ ∈ [0, 1] and x # x′. Find yx, yx′ . Then
yx # yx′ so there exists k ∈ N such that y′′x(k) < y′x′(k) or y′′x′(k) < y′x(k). Suppose, with-
out loss of generality, y′′x(k) < y′x′(k) then g(y′′x(k)) < g(y′x′(k)) so f(x)′′(k) < f(x′)′(k)
which means f(x) # f(x′). Now suppose y ∈ [0, 1], then there exist zy ∈ [0, 1] such that
zy ≡ y and zy = zy(0), zy(1), zy(2), . . . with, for every i ∈ N, z′y(i), z

′′
y (i) ∈ Q′. Now con-

sider x = (g−1(z′y(0)), g−1(z′′y (0))), (g−1(z′y(1)), g−1(z′′y (1))), (g−1(z′y(2)), g−1((z′′y (2))), . . . . Then
f(x) = zy so f(x) ≡ y, so f(x) = y.
Now we will prove f(M) = M1. Suppose x ∈M , then x ∈M ′ or x ∈M ′′. Suppose x ∈M ′ and

first suppose x ∈ L′. Then x =

∞∑
n=1

an
3n

with ∀n ∈ N[an 6= 1]. Also lim
m→∞

m∑
n=1

an
3n

= x. So, for all

k ∈ N exists m ∈ N such that |x −
m∑
n=1

an
3n
| ≤ 1

2k
. Pick l ∈ N and find k ∈ N such that for all

x, y ∈ [0, 1] if |x − y| ≤ 1
2k

then |f(x) − f(y)| ≤ 1
2l

. Find m ∈ N such that |x −
m∑
n=1

an
3n
| ≤ 1

2k
.

Then |f(x)− f(
m∑
n=1

an
3n

)| = |f(x)− g(

m∑
n=1

an
3n

)| ≤ 1

2k
. So lim

m→∞
g(

m∑
n=1

an
3n

) = lim
m→∞

m∑
n=1

bn
6n

= f(x).
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Since, for all n ∈ N, an 6= 1 we have, for all m ∈ N for all n ≤ m, bn 6= 3n+1
2 . So f(x) ∈ L′1.

Now suppose x =

∞∑
n=1

an
3n
∈ M ′ and there exists m ∈ N such that am = 1. Also, find p ∈ N

such that for all n > p, an 6= 1. Now, with the same argument as above, but starting at m,

we get lim
k→∞

g(

k∑
n=1

an
3n

) = lim
k→∞

m∑
n=1

bn
6n

+
2

6m

k−m∑
l=1

cl
3l

= f(x). Pick k ∈ N. Since am = 1 we have

bm = 3m+1
2 and for all l ≤ k −m we have cm = am+k. So, for all m ≥ k − p, cm 6= 1. This

means f(x) ∈M ′1.
A similar argument proves if x ∈M ′′ then f(x) ∈M ′′1 .

Lemma 5.5.8. M ′1 is measurable and µ(M ′1) = 1
2 .

Proof. We first define Q0 = {0} and, for each k ≥ 1, Qk = {x | x ∈ L′1 |x =
k∑

n=1

an
3n
}. Now

define Q =
⋃
k∈NQk. So all the elements from Q are all the elements from L′1 which we can

write like a finite sum. Enumerate, for all k ∈ N, Qk with qk1 , . . . , q
k
2k
, . . . . Pick k ≥ 2 and

i ≤ 2k−1 and consider qk−1
i =

k−1∑
n=1

an
6n

. Then consider (qk−1
i +

3k+1
2

6k
, qk−1
i +

3k+5
2

6k
). In M ′1 we

actually make a ‘small version’ of M ′ in every interval of the form (qk−1
i +

3k+1
2

6k
, qk−1
i +

3k+5
2

6k
)

for some qk−1
i ∈ Q. All of these ‘small versions’ have measure 0 so M ′1 has measure 0.

We will now define this ‘small version’ of M ′ in (qk−1
i +

3k+1
2

6k
, qk−1
i +

3k+5
2

6k
) with Wqk−1

i
. So

Wqk−1
i

= { x | x ∈ M ′1 | x = qk−1
i +

3k+1
2

6k
+ 2

6k

∞∑
m=1

bm
3m
| ∃l ∈ N∀m > l[bm 6= 1]}. Then

Wqk−1
i
⊆ (qk−1

i +
3k+1

2

6k
, qk−1
i +

3k+5
2

6k
) ⊆ [0, 1].

Furthermore µ(M ′) = µ({ x | x ∈ [0, 1] | x =
∞∑
m=1

bm
3m
| ∃l ∈ N∀m > l[bm 6= l]}) = 0, so, by

lemma 3.3.13 µ({ x | x ∈ [0, 1] | x = 2
6k

∞∑
m=1

bm
3m
| ∃l ∈ N∀m > l[bm 6= l]}) = 0 and µ(Wqi) = 0.

Also M ′′′ =
⋃
k≥1(

⋃
i≤2k−1 Wqk−1

i
) so µ(M ′′′) =

∞∑
k=1

(
2k−1∑
i=1

µ(W k−1
qi ) =

∞∑
k=1

0 = 0. . Since M ′1 is a

union of two disjoint sets we have µ(M ′1) = µ(L′1) + µ(M ′′′) = 1
2 .

Lemma 5.5.9. M ′′1 is measurable and µ(M ′′1 ) = 1
2 .

Proof. We first define Q0 = {0} and, for each k ≥ 1, Qk = {x | x ∈ L′1 |x =

k∑
n=1

an
3n
}. Now

define Q =
⋃
k∈NQk. So all the elements from Q are all the elements from L′1 which we can

write like a finite sum. Enumerate, for all k ∈ N, Qk with qk1 , . . . , q
k
2k
, . . . . Pick k ≥ 2 and

i ≤ 2k−1 and consider qk−1
i =

k−1∑
n=1

an
6n

. Then consider (qk−1
i +

3k+1
2

6k
, qk−1
i +

3k+5
2

6k
). In M ′′1 we

actually make a ‘small version’ of M ′′ in every interval of the form (qk−1
i +

3k+1
2

6k
, qk−1
i +

3k+5
2

6k
)

for some qk−1
i ∈ Q. All of these ‘small versions’ have measure 2

6k
.
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We will now define this ‘small version’ of M ′′ in (qk−1
i +

3k+1
2

6k
, qk−1
i +

3k+5
2

6k
) with Wqk−1

i
. So

Wqk−1
i

= { x | x ∈ M ′1 | x = qk−1
i +

3k+1
2

6k
+ 2

6k

∞∑
m=1

bm
3m
| ∀l ∈ N∃m > l[bm = 1]}. Then

Wqk−1
i
⊆ (qk−1

i +
3k+1

2

6k
, qk−1
i +

3k+5
2

6k
) ⊆ [0, 1].

Furthermore µ(M ′′) = µ({ x | x ∈ [0, 1] | x =
∞∑
m=1

bm
3m
| ∀l ∈ N∃m > l[bm = l]}) = 1, so

by lemma 3.3.13 µ({ x | x ∈ [0, 1] | x = 2
6k

∞∑
m=1

bm
3m
| ∃l ∈ N∀m > l[bm 6= l]}) =

2

6k
and

µ(Wqk−1
i

) = 2
6k

.

Also M ′′1 =
⋃
k≥1(

⋃
i≤2k−1 Wqk−1

i
) so µ(M ′′1 ) =

∞∑
k=1

(
2k−1∑
i=1

µ(W k−1
qi ) =

∞∑
k=1

2k

6k
=

1

2
.

Corollary 5.5.10. M1 is measurable and µ(M1) = 1.

Proof. Since M ′1 and M ′′1 are measurable we have M1 measurable, so µ(M1) = 1.

We will now define the representative M2 of F for which we can not prove M2 is measurable.
We define M2 = M ′2 ∪M ′′2 , where M ′2 = L′2 ∪M ′′′′ and:

M ′′′′ :=
{
x | x ∈ [0, 1] |∃l ∈ N

[
l ≤ k1 =⇒

[
x =

l∑
n=1

an
6n

+
2

6k

∞∑
m=1

bm
3m
∧

∀n < l[an ∈ {0,
3n + 5

2
}] ∧ al =

3k + 1

2
∧

∃l′ ∈ N∀m > l′[bm 6= 1]
]
∧

l > k1 =⇒
[
x =

k1∑
n=1

an
6n

+

3k1
2

6k1

∞∑
m=1

bm
3m
∧

∀n ≤ k1[an ∈ {0,
3n + 5

2
}]∧

∀m ≤ l[bm ∈ {0, 2}] ∧ bl = 1 ∧
∃l′ ≥ l∀m > l′[bm 6= 1]

]}

M ′′2 =
{
x | x ∈ [0, 1] |∃l ∈ N

[
l ≤ k1 =⇒

[
x =

l∑
n=1

an
6n

+
2

6k

∞∑
m=1

bm
3m
∧

∀n < l[an ∈ {0,
3n + 5

2
}] ∧ al =

3k + 1

2
∧

∀l′ ∈ N∃m > l′[bm = 1]
]
∧

l > k1 =⇒
[
x =

k1∑
n=1

an
6n

+

3k1
2

6k1

∞∑
m=1

bm
3m
∧

∀n ≤ k1[an ∈ {0,
3n + 5

2
}]∧

∀m ≤ l[bm ∈ {0, 2}] ∧ bl = 1 ∧
∀l′ ≥ l∃m > l′[bm = 1]

]}
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First we will prove that M2 is a representative of F and then we will show that we can not
prove that M2 is measurable.

Lemma 5.5.11. M1 ∼M2.

Proof. This will, again, be very similar to the proof of 5.4.5 and we will not give a detailed
proof again.

Lemma 5.5.12. We can not prove that M2 is measurable.

Proof. By lemma 3.3.12 it is enough to prove that M ′2 is not measurable. Suppose ¬∃n ∈ N[n =
k1] then M ′2 = M ′1 so µ(M ′2) = 1

2 . Suppose ∃n ∈ N[n = k1] then µ(M ′2) = µ(L′2) + µ(M ′′′′) =
0+0 = 0. But 0 < 1

2 so if M ′2 is measurable then µ(M ′2) > 0 or µ(M2) < 1
2 . Suppose µ(M ′2) > 0

then ¬∃n ∈ N[n = k1], but we can not prove this so we can not prove µ(M ′2) > 0. Suppose
µ(M ′2) < 1

2 then ¬¬∃n ∈ N[n = k1], but we can not prove this so we can not prove µ(M ′2) > 1
2 .

This means we can not prove M ′2 is measurable.

Furthermore we can, again, for each representative F ′ of F find a totally bounded perfect set
X such that for each x ∈ X we can not prove x ∈ F ′.

Lemma 5.5.13. For every representative F ′ of F we can find a totally bounded perfect set X
such that for each x ∈ X we can not prove x ∈ F ′.

Proof. By lemma 4.10 it is enough to show it for M . Consider

X = { x | x ∈ [0, 1] | x =
∞∑
n=1

an
3n
|∀n > k1[an = 1] ∧ ∀n ≤ k1[an ∈ {0, 2}] }

We will first show that X is totally bounded. Pick any m ∈ N. Suppose m < k1. We define
p0, p1, . . . , p2m−1−1 with pi =

∑∞
n=1

an
3n such that an = 2 ∗ in for each n ≤ m− 1, an = 0 for each

m ≤ n ≤ k1 and an = 1 for each n > k1 where i1, . . . , im−1 is the binary notation of i.
Suppose m ≥ k1. We define p0, p1, . . . , p2k1−1 with pi =

∑∞
n=1

an
3n such that an = 2 ∗ in for each

n ≤ k1 and an = 1 for each n > k1 where i1, . . . , im−1 is the binary notation of i.
Now we will prove that X is closed. For this we need to show:

(i) ∀x ∈ X ∃x′ ∈ X̄ such that x ≡ x′

(ii) ∀x′ ∈ X̄ ∃x ∈ X such that x ≡ x′

Since X ⊆ X̄ (i) is clear. Now take x′ ∈ X̄. We will construct x =
∑∞

n=1
bn
3n ∈ X by defining

an for every n ∈ N. Pick n ∈ N and find yn =
∞∑
k=1

(an)k
3k

∈ X such that |yn − x′| < 1
3n+1 . Define

bn = (an)n. We will show, for every n ∈ N, |x− x′| ≤ 1
3n , so by lemma 1.2.6 x ≡ x′. By lemma

1.1.7 it is sufficient to prove |x − yn+1| ≤ 1
3n+1 and |yn+1 − x′| ≤ 1

3n+2 . By definition of yn+1

we already know |yn+1 − x′| ≤ 1
3n+2 . Thus we will prove |x− yn+1| ≤ 1

3n+1 . With the following
claim we see it will be sufficient to prove b1 = (an+1)1, . . . , bn+1 = (an+1)n+1.
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Claim. For y =

∞∑
n=1

cn
3n
, y′ =

∞∑
n=1

c′n
3n
∈ X if c1 = c′1, . . . , ck = c′k then |y′−y| ≤ 1

3k
and

if |y′ − y| < 1
3k

then c1 = c′1, . . . , ck = c′k.

Proof. Suppose y =
∞∑
n=1

cn
3n
, y′ =

∞∑
n=1

c′n
3n
∈ X. Suppose c1 = c′1, . . . , ck = c′k then

|y − y′| = |
∞∑

n=k+1

cn
3n
−

∞∑
n=k+1

c′n
3n
| ≤ 1

3k
. Now suppose |y′ − y| < 1

3k
and suppose there

exists m ≤ k such that cm 6= c′m. Find the smallest m ≤ k such that cm 6= c′m. Decide
m ≤ k1 or m > k1. Suppose m ≤ k1 then cm, c

′
m ∈ {0, 2}. Suppose without loss of

generality cm = 0 and c′m = 2. Then y ≤
m−1∑
n=1

cn
3n

+
1

3m
and y′ ≥

m−1∑
n=1

cn
3n

+
2

3m
so

|y − y′| ≥ 1
3 ≥

1
3k

, which is a contradiction. Suppose m < k1, then cm = c′m = 1,
which is a contradiction. So not there exists m ≤ k such that cm 6= c′m which means
cm = c′m for all m ≤ k.

We will prove b1 = (an+1)1, . . . bn+1 = (an+1)n+1 with induction, by using the above claim.
By definition b1 = (a1)1. Now suppose we know b1 = (an)1, . . . , bn = (an)n. Then, since
|yn−x′| ≤ 1

3n+1 and |x′−yn+1| ≤ 1
3n+2 , by lemma 1.1.7 |yn−yn+1| ≤ 1

3n . So, by the above claim,
(an)1 = (an+1)1, . . . (an)n = (an+1)n, so b1 = (an+1)1, . . . bn+1 = (an+1)n and by definition
bn+1 = (an+1)n+1.

Moreover, Brouwer again claims we can construct a representative F1 of F for which we can
define a set X such that for each x ∈ X we can not prove x ∈ F1 and such that the measure
of X is 1. Brouwer here gives a number of definitions of sets which are composed to a set F1

and a set X. For us it is not clear what he tries to define, so we will not cover this construction
in this thesis. Lastly, we will show, for every representative F ′ of F there exists discontinuous
functions f : F ′ → R.

Lemma 5.5.14. For every representative F ′ of F there exists discontinuous functions f : F ′ →
R.

Proof. By lemma 4.3 it is enough to prove this for M . Now define f : M → R with f(x) = 0
if x ∈ M ′ and f(x) = 1 if x ∈ M ′′. To prove f is discontinuous we consider any x ∈ M ′ and

n = 2. Since x ∈M ′ we can find a sequence a1, a2, a3, · · · ∈ {0, 1, 2} such that x =

infty∑
n=1

an
3n

and

such that there exist p ∈ N such that for all n > p, an 6= 1. Pick any m ∈ N and find k ∈ N

such that
∞∑

n=k+1

2

3n
≤ 1

2m
. Define y =

∞∑
n=1

bn
3n

with bn = an for all n ≤ k and bk+n = 1 for all

n ≥ 1. Then y ∈M ′′. We have |x− y| ≤
∞∑

n=k+1

2

3n
≤ 1

2m
but |f(x)− f(y)| = 1 > 1

4 .

5.6 Example 7

We define G to be the geometric type of N (11), where N = M ′ ∪ [0, 1] \M ′.

Lemma 5.6.1. N is measurable and µ(N) = 1.

(11)This is K0 from example 7 of Brouwers article.
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Proof. We already know M ′ is measurable and µ(M ′) = 0. This means [0, 1]\M ′ is measurable
and µ([0, 1] \M ′) = 1. So N is measurable and µ(N) = 1.

Lemma 5.6.2. Every representative of G is of the form X ′ ∪X ′′ for some X ′, X ′′ ⊆ [0, 1] such
that X ′′ = [0, 1] \X ′.

Proof. Suppose G′ is a representative of G then M ′ ∪ ([0, 1] \ M ′) ∼ G′. So there exists a
uniformly continuous bijection f : [0, 1] → [0, 1] such that f(M ′ ∪ ([0, 1] \ M ′)) = E′. But
f(M ′ ∪ ([0, 1] \M ′)) = f(M ′)∪ f([0, 1] \M ′). Define X ′ = f(M ′) and X ′′ = f([0, 1] \M ′). Now
suppose x ∈ X ′′, then f−1(x) ∈ [0, 1] \M ′ so f−1(x) /∈ M ′ thus x /∈ X ′. Suppose x /∈ X ′ then
f−1(x) /∈M ′ so f−1(x) ∈ [0, 1] \M ′ thus x ∈ X ′′.

Lemma 5.6.3. Every measurable representative of G has measure 1.

Proof. Suppose G′ is a measurable representative of G, then G′ is of the form X ′ ∪X ′′ for some
X ′, X ′′ ⊆ [0, 1] such that X ′′ = [0, 1] \ X ′. Since X ′ ∪ X ′′ is measurable, by lemma 3.3.10,
(X ′∪X ′′)∪ ([0, 1]\ (X ′∪X ′′)) is almost full. But (X ′∪X ′′)∪ ([0, 1]\ (X ′∪X ′′)) = ([0, 1]\X ′)∪
X ′ ∪ {x ∈ [0, 1]|x /∈ [0, 1] \X ′ and x /∈ X ′} = ([0, 1] \X ′)∪X ′. So ([0, 1] \X ′)∪X ′ = dom(χX′)
is almost full. Also χX′ is bounded, so by theorem 3.3.4, X ′ is measurable. Suppose µ(X ′) = k.
By theorem 3.3.15 [0, 1] \X ′ is measurable and µ([0, 1] \X ′) = 1 − k. Also, by part 2. of the
proof of theorem 3.3.15, µ(X ′ ∪ ([0, 1] \X ′)) = µ(X ′ ∪X ′′) = 1.

We will also show that there exists a representative N2 of G which is not measurable. To define
this representative we first have to define the measurable representative N1.
We define N1 = M ′1 ∪ ([0, 1] \M ′1). This is clearly a representative of G since we already saw
M ′ ∼M ′1 so ([0, 1] \M ′) ∼ ([0, 1] \M ′1) so N ∼ N1. Also, clearly N1 is measurable since M ′1 is
measurable with µ(M ′1) = 1

2 .
Now we define N2 = M ′2∪([0, 1]\M ′2). Again, clearly this is a representative of G since M ′2 ∼M .
Also M ′2 is not measurable so ([0, 1] \M ′2) is not measurable, thus by lemma 3.3.12 N2 is not
measurable.

Lemma 5.6.4. For every representative G′ of G we have:

(i) G′ is not apart from [0, 1]

(ii) G′ does not deviate from [0, 1]

(iii) G′ does not coincide with [0, 1]

Proof. By lemma 4.2 it is enough to prove (i), (ii) and (iii) for N .

(i) Suppose N # [0, 1] then ∃x ∈ [0, 1][x # N ] or ∃x ∈ N [x # [0, 1]. Since N ⊆ [0, 1] we must
have ∃x ∈ [0, 1][x # N ]. Find this x. Then x # M ′ so x /∈ M ′ so x ∈ ([0, 1] \M ′). But
x # [0, 1] \M ′, which is a contradiction. This means ¬[N # [0, 1].

(ii) Suppose N 6≡ [0, 1] then ∃x ∈ [0, 1]¬[x ∈0 N ] or existsx ∈ N¬[x ∈0 [0, 1]. Since N ⊆ [0, 1]
we must have ∃x ∈ [0, 1]¬[x ∈0 L]. Find this x. Then ¬x ∈0 M ′ so x /∈ M ′ so x ∈
([0, 1] \M ′). But ¬x ∈0 ([0, 1] \M ′), which is a contradiction. This means ¬[N 6≡ [0, 1]].

(iii) This follows directly from lemma 2.2.8
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Again, Brouwer claims we can construct a representative G1 of G for which we can define a
set X such that for each x ∈ X we can not prove x /∈ G1 and such that X is measurable and
µ(X) = 1. To construct this representative he uses the representative F1. Since for us it is not
clear what F1 is, it is also not clear what G1 is.
Lastly, we will show, for every representative G′ of G there exists discontinuous functions
f : G′ → R.

Lemma 5.6.5. For every representative G′ of G there exists discontinuous functions f : G′ →
R.

Proof. By lemma 4.3 it is enough to prove this for N . Now define f : N → R with f(x) = 0 if
x ∈M ′ and f(x) = 1 if x /∈M ′. Since M ′′ ⊆ ([0, 1] \M ′) the proof of lemma 5.5.14 also proves
that this function is discontinuous.
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6 Conclusion

Brouwers goal was to find a pseudofull subset of [0, 1] which is very much ‘alike’ [0, 1] such that
functions defined on these pseudofull domains are not necessarily (uniformly) continuous. He
tries to find a property, which from a classical point of view, means they coincide with [0, 1]. In
the first example we see that if we have X ⊆ [0, 1] such that X seems to coincide with [0, 1] we
can not guarantee that there exists an element in X. This shows that, even with the strongest
form of being ‘alike’, only this property is not enough for a pseudofull subset of [0, 1] and we
also need our pseudofull domain to be almost full. By the continuity principle we can even
conclude that it is too much to state that these pseudofull domains should seem to coincide
with [0, 1], since then we exclude all sets which are the union of two disjoint sets which both
contain at least one element. This is why Brouwer concludes that the properties for being ‘alike’
[0, 1] should be that a pseudofull domain does not deviate from [0, 1].
We also see in example 2 that only the property of being almost full is not enough, since every
representative of B is apart from [0, 1] and function defined on any representative of B are
continuous. This why Brouwer concludes that the pseudofull subsets of [0, 1] should not deviate
from [0, 1] and should be almost full.
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