ERASMUS UNIVERSITY ROTTERDAM
Entrance examination Mathematics level 3 for Econometrics

SAMPLE QUESTIONS

General information concerning the entrance exam

A: The following information will be printed on the title page of your entry test:

- Available time: 3 hours (180 minutes).
- The use of a calculator is not permitted.
- In all your answers, give a complete solution where you show all the required steps, formulas, and substitutions that lead to your answer.
- A good or wrong answer is only a small part of the solution. The quality and completeness of your detailed solutions determine the points you will get. You should end an exercise with a conclusion or an answer.

B: Typically, the exam will start with two or three general questions concerning (systems of) equations, derivatives and/or integrals:

Question 1

Solve the following equations:

(a) \(\frac{6x^2 - 12}{(x^2 - 1)^2} = \frac{4}{3} \)
(b) \(e^{4x} - 3e^{x+1} = 0 \)
(c) \(3\log(x + 2) = 1 - 3\log(x) \)

Question 2

Determine the derivative of each of the following functions:

(a) \(f(x) = (x^5 - 3x)^3 \sin x \)
(b) \(f(x) = \ln(2x + \cos(3x)) \)
(c) \(f(x) = \frac{x^3 \ln x}{x^2 - 3} \)
Question 3

Calculate the following integrals:

(a) \[\int \frac{x}{4-x^2} \, dx \]

(b) \[\int_{\frac{1}{2}}^{3} \frac{4}{\sqrt{4x+2}} \, e^{\sqrt{4x+2}} \, dx \]

(c) \[\int_{0}^{1} f(x) \, dx \] under the following conditions: \(f'(x) = \frac{24}{(4-2x)^4} \) and \(f(0) = 1 \)

C: the remainder of the exam will consist of three to five more elaborate problems. These problems, or subquestions of these problems, may resemble the following sample questions:

Question 4

Consider the functions \(f(x) = x^3 \) and \(g(x) = x\sqrt{x} + 2 \). For which values of \(x \) is \(f(x) < g(x) \)?

Question 5

For every \(p \in \mathbb{R} \) consider the function \(f_p(x) = e^{4x-x^2+px^3} \)

(a) Assume \(p = 0 \). Calculate the \(x \)-coordinates of the inflection points of the graph of \(f_0(x) \).

(b) Determine all values of \(p \) for which the function \(f_p(x) \) has exactly two extremes.

Question 6

Consider the functions \(f(x) = 2\cos^2(x) \) and \(g(x) = \sin(2x) - 1 \), both with domain \([0, \pi]\). The line \(x = p \) intersects the graph of \(f \) in point \(A \) and the graph of \(g \) in point \(B \). Calculate the value of \(p \) for which the length of segment \(AB \) is maximal.
Question 7

Calculate the exact value of p for which the graphs of the functions $f(x) = 2\sqrt{x}$ and $g_p(x) = \frac{p}{x}$ intersect perpendicularly. Also, give the coordinates of the intersection point.

Question 8

Consider the functions $f(x) = 2\log(x + 3)$ and $g(x) = 1 + \frac{1}{2}\log(x)$. The line $y = p$ intersects the graph of f in point A and the graph of g in point B. Give all the values of p for which the section AB is equal to 2.

Question 9

Calculate the area of the region enclosed by the graphs of $f(x) = x^2$, $g(x) = \sqrt{x}$ and $h(x) = 6 - x$.

Question 10

Consider the function $f(x) = x \cdot e^{-x^3}$
The region bounded by $f(x)$, the x-axis and the line $x = 1$ is denoted by R.
Compute the volume of the solid generated by revolving region R about the x-axis.