# ERASMUS UNIVERSITY ROTTERDAM <br> Entrance examination Mathematics level 3 for Econometrics <br> <br> SAMPLE QUESTIONS 

 <br> <br> SAMPLE QUESTIONS}

General information concerning the entrance exam

A: The following information will be printed on the title page of your entry test:

- Available time: 3 hours ( 180 minutes).
- The use of a calculator is not permitted.
- In all your answers, give a complete solution where you show all the required steps, formulas, and substitutions that lead to your answer.
- A good or wrong answer is only a small part of the solution. The quality and completeness of your detailed solutions determine the points you will get. You should end an exercise with a conclusion or an answer.

B: Typically, the exam will start with two or three general questions concerning (systems of) equations, derivatives and/or integrals:

## Question 1

Solve the following equations:
(a) $\frac{6 x^{2}-12}{\left(x^{2}-1\right)^{2}}=\frac{4}{3}$
(b) $e^{4 x}-3 e^{x+1}=0$
(c) ${ }^{3} \log (x+2)=1-{ }^{3} \log (x)$

## Question 2

Determine the derivative of each of the following functions:
(a) $\quad f(x)=\left(x^{5}-3 x\right)^{3} \sin x$
(b) $f(x)=\ln (2 x+\cos (3 x))$
(c) $f(x)=\frac{x^{3} \ln x}{x^{2}-3}$

## Question 3

Calculate the following integrals:
(a) $\int \frac{x}{4-x^{2}} d x$
(b) $\int_{\frac{1}{2}}^{3 \frac{1}{2}} \frac{4}{\sqrt{4 x+2}} e^{\sqrt{4 x+2}} d x$
(c) $\quad \int_{0}^{1} f(x) d x$ under the following conditions: $f^{\prime}(x)=\frac{24}{(4-2 x)^{4}}$ and $f(0)=1$

C: the remainder of the exam will consist of three to five more elaborate problems. These problems, or subquestions of these problems, may resemble the following sample questions:

## Question 4

Consider the functions $f(x)=x^{3}$ and $g(x)=x \sqrt{x}+2$. For which values of $x$ is $f(x)<g(x)$ ?

## Question 5

For every $p \in \mathbb{R}$ consider the function $f_{p}(x)=e^{4 x-x^{2}+p x^{3}}$
(a) Assume $p=0$. Calculate the $x$-coordinates of the inflection points of the graph of $f_{0}(x)$.
(b) Determine all values of $p$ for which the function $f_{p}(x)$ has exactly two extremes.

## Question 6

Consider the functions $f(x)=2 \cos ^{2}(x)$ and $g(x)=\sin (2 x)-1$, both with domain $[0, \pi]$. The line $x=p$ intersects the graph of $f$ in point $A$ and the graph of $g$ in point $B$. Calculate the value of $p$ for which the length of segment $A B$ is maximal.

## Question 7

Calculate the exact value of $p$ for which the graphs of the functions $f(x)=2 \sqrt{x}$ and $g_{p}(x)=\frac{p}{x}$ intersect perpendicularly. Also, give the coordinates of the intersection point.

## Question 8

Consider the functions $f(x)={ }^{2} \log (x+3)$ and $g(x)=1+{ }^{\frac{1}{2}} \log (x)$. The line $y=p$ intersects the graph of $f$ in point $A$ and the graph of $g$ in point $B$. Give all the values of $p$ for which the section $A B$ is equal to 2 .

## Question 9

Calculate the area of the region enclosed by the graphs of $f(x)=x^{2}, g(x)=\sqrt{x}$ and $h(x)=$ $6-x$.

## Question 10

Consider the function $f(x)=x \cdot e^{-x^{3}}$
The region bounded by $f(x)$, the $x$-axis and the line $x=1$ is denoted by $R$.
Compute the volume of the solid generated by revolving region $R$ about the x -axis.

