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Abstract. Many goods and services require the customer to be at home to receive the 
delivery. In the context of attended home delivery, customers can typically choose from a 
menu of delivery time slots. We consider the problem of dynamically managing the offered 
time slots and delivery bookings given the available fleet capacity. When multiple custo
mers interact with the online booking system at the same time, this can lead to conflicts. 
Although managing such concurrent interactions is an important challenge in attended 
home delivery systems, it has not yet been addressed in the literature. We present a concur
rency control strategy and several fast route planning approaches to manage time slots in 
real time. To combine fast response times with high quality slotting decisions, we introduce 
background procedures that use the time between successive order placements to improve 
the performance of the time slot offer and validation procedures. Our detailed computa
tional experiments based on realistic instances provide insights into the effectiveness of our 
background procedures and the complex trade-offs between waiting times, valid orders, 
and invalid orders. We also discuss several relevant new areas of research in concurrency 
control for time slot management.
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1. Introduction
Many services require the customer to be at home to 
facilitate their delivery. This is common for the delivery 
of groceries, furniture, and large appliances but also for 
home services such as repairs, technical support, and 
home care. If the customer is not at home, the service 
fails and the provider may have to return at a later 
time, unnecessarily generating additional vehicle miles 
and emissions. To avoid such failures, it is common for 
providers to allow customers to choose from a menu of 
appointment times or delivery windows. Amazon
Fresh, for example, allows customers to select a one- 
hour delivery window to receive their groceries. To 
book their attended home delivery, customers typically 
interact with an online booking system going through 
the following phases: (i) the customer provides a deliv
ery location, (ii) the system shows the customer an 
offer, that is, a set of time slot options, (iii) the customer 
selects one of the options or leaves, and (iv) the system 
processes the selection, if any. Customers can place 
orders up to a certain cutoff time after which a route 
plan is made in which all deliveries are scheduled. To 
ensure a smooth booking experience for the customer, 

it is important to limit the response times of the system, 
that is, the time between the arrival of the customer and 
offering the time slots.

There is a growing body of literature on managing 
incoming orders in attended home delivery through 
dynamic time slot management (DTSM) for a fixed 
vehicle fleet capacity (Fleckenstein, Klein, and Stein
hardt 2023; Waßmuth et al. 2023). A fundamental 
question is how to construct a valid time slot offer for 
a given customer, consisting of all time slots in which 
the customer can be served. Constructing a valid time 
slot offer is computationally challenging because it 
requires checking whether there exists a feasible 
delivery schedule for the arriving customer and all 
previously accepted customers. Conceptually, this is 
equivalent to finding a feasible solution to a vehicle 
routing problem with time windows (VRPTW). This 
makes it difficult to ensure fast response times, espe
cially when the number of customers, and the associ
ated VRPTW instances, is large. Therefore, most of the 
literature has primarily focused on designing fast and 
high-quality heuristics for the VRPTW to construct a 
time slot offer.
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However, in addition to the challenge of quickly 
determining a time slot offer, there is another challenge 
that is often overlooked in the literature. The concur
rent interaction of customers with the system intro
duces additional complexity. We identify the following 
complications arising from the simultaneous interac
tion of multiple customers with the system. First, a 
valid time slot offer may be invalidated by another cus
tomer’s selection. This can happen if the interarrival 
time between two customers is less than the sum of the 
response time and the selection time, that is, the time it 
takes a customer to select a time slot. For example, two 
customers that arrive around the same time may be 
offered the same time slot, even if only one more cus
tomer can be served in that time slot. A second issue is 
that concurrent decisions and system updates might 
lead to either data inconsistencies and an infeasible 
plan after the cutoff or additional waiting time experi
enced by the customer if a customer needs to wait for 
the system to respond to a previous customer. This 
means that evaluating the run times of time slot meth
ods for each single customer independently (as is typi
cally done in the current literature) only provides a 
lower bound on the actual waiting times. These issues 
relate to the concept of multiuser concurrency in com
puter science (Bernstein, Hadzilacos, and Goodman 
1987; Graefe 2019) and give rise to several tradeoffs in 
the design and control of the system.

With a growing number of customers, there are more 
customers interacting with the system simultaneously. 
For example, at Dutch e-grocer AH.nl, it is not uncom
mon to have more than 50 customers from the same 
region interacting with the online booking system at 
the same time. Peak traffic typically occurs in the eve
ning, when many customers are considering the same 
time slots for the next day’s delivery. We first encoun
tered the issues related to concurrent customer interac
tion when implementing a DTSM system at e-grocer 
AH.nl together with ORTEC, an international supplier 
of routing and scheduling optimization and advanced 
analytics software. To increase the utilization of their 
fulfilment capacity, AH.nl wanted an approach based 
on real-time routing to replace their previous approach 
which used fixed estimates of the number of orders 
that can be fulfilled per time slot per delivery vehicle. 
By reducing the slack in their route schedules, the con
sequences of ignoring concurrent customer interaction 
become more apparent. ORTEC experienced similar 
challenges related to concurrent customer interaction 
in various other DTSM implementation projects around 
the globe (G. Kant, Global Director Logistics Industry at 
ORTEC, personal communication, June 24, 2020). We 
have since learned that many companies are struggling 
with these challenges.

In this paper, we present a new model for DTSM that 
includes the time dimension in the different ordering 

phases. In particular, it incorporates the interarrival, 
response and selection times. Interestingly, although 
the interarrival and selection times can be modeled 
exogenously, for example, as random variables, the 
response time is dependent on the algorithm, imple
mentation, and computer used to construct a time slot 
offer. These solution times and their impact on the sys
tem dynamics are often ignored in the literature. Our 
results based on realistic, detailed, real-time simula
tions show that state-of-art methodology from the 
DTSM literature cannot be applied in this more realistic 
environment. This suggests the need for using control 
methods for concurrent interaction.

We present a concurrency control strategy in this 
paper to manage the concurrent interactions. To ensure 
consistency, we introduce an additional validation 
check that alerts the customer when the selected slot is 
no longer available. This means that we not only per
form an initial procedure to create a time slot offer but 
also a validation procedure. Each procedure needs to 
be performed almost instantaneously to ensure a 
smooth booking process. Coordinating the different 
steps for different customers creates an extra layer of 
complexity in time slot management. Moreover, as 
these processes are fundamentally interrelated, it is not 
possible to solve the associated problems by adding 
hardware capacity or performing computations in par
allel. This gives rise to a general tradeoff between the 
speed and quality of the procedures. Because the state- 
of-the-art methods as described in the literature would 
create prohibitively long response times if naively 
implemented within our framework, we propose the 
use of background procedures to allow constructing high 
quality time slot offers with low response times. The 
key idea of the background procedures is to use the 
periods without much traffic on the website to proac
tively run procedures to better prepare for the next 
arrivals.

The main contributions of this paper can be summa
rized as follows. (i) We are the first to identify a new 
problem in dynamic time slot management related to 
the concurrent interaction between multiple customers 
booking delivery services for attended home delivery. 
This is a key practical challenge that has thus far been 
ignored in the literature. (ii) To tackle the problem, we 
propose a concurrency control strategy for making 
time slot offers and for assessing the validity of cus
tomer selections. Within this framework, we adopt the 
state-of-the-art heuristic methods from the literature. 
Moreover, we introduce background procedures that 
use the time between subsequent order placements to 
improve the performance of the different procedures. 
(iii) In our extensive realistic numerical experiments with 
instances of up to 8,000 customers, we show the impact of 
different system parameters on the concurrency-related 
issues and show that complementing the state-of-the-art 
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methods with our background procedures allows for a 
higher number of valid orders without additional waiting 
times. (iv) Finally, we discuss several relevant new areas 
of research related to concurrency control in time slot 
management.

The remainder of this paper is structured as follows. 
In Section 2, we discuss the related literature. In Section 3, 
we provide a problem description, and in Section 4, we 
describe a concurrency control strategy that can be 
applied in our attended home delivery setting. In Section 
5, we describe the specific algorithms used within the 
various procedures for concurrency control, and in Sec
tion 6, we describe the background procedures. In Section 
7, we describe the instances that we generate for our 
numerical experiments, which are based on real-world 
data. We provide real-time simulation experiments in 
Section 8 to measure the performance of the system given 
different parameter settings. Finally, we provide conclud
ing remarks and a classification of new research direc
tions in Section 9.

2. Literature Review
Building on the early work of Campbell and Savels
bergh (2005), constructing a valid time slot offer in 
attended home delivery has recently received an 
increasing amount of attention in the scientific litera
ture (Ehmke and Campbell 2014; Köhler, Ehmke, and 
Campbell 2020). It is typically referred to as dynamic or 
operational time slot management or DTSM (Agatz 
et al. 2013; Fleckenstein, Klein, and Steinhardt 2023).

In contrast to more static and tactical approaches 
(Agatz et al. 2011), the dynamic setting focuses on the 
real-time management of time slot offers based on 
arriving and already accepted orders. This stream of lit
erature primarily focuses on maximizing the number of 
valid time slots offered for each arriving customer, by 
finding a solution to a vehicle routing problem with 
time windows (VRPTW) for every possible time slot. 
As determining whether a feasible solution to a 
VRPTW exists is computationally prohibitive in most 
real-world settings, the dominant approach is to use 
heuristics. One disadvantage of this is that we may fail 
to identify a feasible schedule even when one does 
exist, resulting in less time slots being offered and 
thereby potentially losing sales. There is generally a tra
deoff between the quality of the heuristic and the 
required run time.

Campbell and Savelsbergh (2005) are the first to 
study a DTSM problem. They present an insertion- 
based heuristic in which they first construct a new 
route plan for all accepted delivery requests and then 
try to insert the current delivery request under consider
ation. In Campbell and Savelsbergh (2006) the authors 
extend this approach by maintaining a set of multiple 
feasible schedules to increase the number of insertion 

options. The core idea of checking feasibility for a cer
tain time slot by inserting the new customer in one or 
more existing route plan for the already accepted cus
tomers is the most common method presented in time 
slot management (Ehmke and Campbell 2014; Köhler, 
Ehmke, and Campbell 2020; Agatz, Fan, and Stam 
2021).

Checking feasibility is a required first step in more 
sophisticated time slot management systems. Given a 
set of feasible slots, several papers have proposed 
dynamic pricing policies to determine incentives to 
steer customers to the most profitable time slots (Yang 
et al. 2016, Koch and Klein 2020). The work in this area 
typically focuses on estimating the (opportunity) costs 
to serve a specific customer in different time slots given 
the already accepted customers and forecasts of future 
demand (Yang and Strauss 2017, Abdollahi et al. 2023).

Although the concurrent interaction of customers 
with the system has thus far been ignored in the time 
slot management literature, there is a large body of lit
erature on concurrency control in multiuser informa
tion systems (Graefe 2019). Most closely related to our 
setting is the work on concurrency issues in transaction 
systems for e-commerce (Chen 2009, Khaing and Myint 
2017). In traditional booking systems, concurrency con
trol helps to prevent selling the same product or capac
ity unit, for example, a seat on a flight, to multiple 
customers (Lewandowski et al. 2007). Although the 
capacity in terms of the fleet and labor force is fixed in 
our setting, the number of orders that can be served 
depends on their sizes and locations. This gives rise to 
two additional complexities. (i) In addition to perform
ing concurrent read and write operations in a database 
to keep track of placed orders, we need to solve a time- 
consuming optimization problem to find out which 
time slots we can still offer, and (ii) the capacity con
sumption for different time slots are interrelated. This 
means that even finding out whether a conflict 
occurred is a time-consuming step.

We are only aware of one recent paper in the opera
tions management literature that considers concurrency- 
related issues, albeit without explicitly using the termi
nology. Ausseil, Pazour, and Ulmer (2022) focus on 
determining supplier menus in matching requests and 
service suppliers in a peer-to-peer transportation plat
form. This gives rise to a tradeoff between offering 
requests to different service suppliers sequentially (pes
simistic control) or simultaneously (optimistic control). 
However, most of the operations management literature 
has ignored concurrent system interactions. Further
more, the information systems literature has only 
scarcely addressed topics related to attended home 
delivery platforms. To bridge this gap, we introduce an 
attended home delivery model that incorporates concur
rent interactions.
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3. Problem Description
In this section, we provide a problem description. We 
describe the ordering process, including the four 
phases of a delivery request: customer arrival, time slot 
offer, selection, and validation. Furthermore, we pro
vide a description of a delivery schedule, which is 
required to serve the customers that have placed an 
order and determines the validity of a time slot offer or 
selection. Finally, we summarize the corresponding 
optimization problem.

The ordering process takes place during the time period 
[0, T], where T is the cutoff time. That is, during [0, T] cus
tomers arrive to make a delivery request, whereas after T, 
a delivery schedule is made and executed.

Let C be a collection of customers. At any moment in 
time, it is unknown which customers will request a 
delivery in the future. For any customer i ∈ C that 
makes a delivery request, let ti ∈ [0, T] be the time at 
which customer i arrives to make a delivery request of 
size qi ≥ 0, for example, the number of items to be deliv
ered, and required service duration ui ≥ 0, that is, the 
time required at the customer for delivery.

Next, a time slot offer is made. Let T be a set of time 
slots, where each time slot is an interval of time later 
than T. The time it takes to make a time slot offer T i ⊆

T is denoted by rtso
i and is referred to as a response 

time. This response time is at least as large as the deci
sion time dtso

i , which is the time it takes to construct the 
time slot offer, while the response time might also 
include an additional delay. Which time slots are 
included in the time slot offer is a decision which is part 
of the optimization problem. Therefore, we do not con
sider dtso

i and rtso
i as inputs to the problem but rather a 

result of the algorithm used to make this decision. At 
time ti + rtso

i the time slot offer is presented to the 
customer.

After a selection time of si, the customer selects a 
time slot from T i at time ti + rtso

i + si or may leave with
out selecting a time slot. Both the selection time and the 
preferred time slot are unknown, at least until the selec
tion is made.

If the customer does not leave, it has to be decided 
after time ti + rtso

i + si whether the selected time slot is 
valid. Let dval

i be the decision time of this validation and 
rval

i the resulting response time, which might include 
an additional delay. At time ti + rtso

i + si + rval
i the result 

of a customer having gone through the ordering pro
cess is either (i) a valid order, corresponding to a valid 
time slot selection, (ii) an invalid order, corresponding 
to an invalid time slot selection, or (iii) no order, when 
the customer leaves without selecting a time slot.

A new order is declared valid if a delivery schedule 
can be constructed that includes this order as well as all 
previously placed valid orders. We assume that custo
mers who place an order will be available to receive 

their order in their selected time slot. This is in line with 
current practice at our industry partner AH.nl. We do 
not schedule deliveries for invalid orders. Next, we 
define a delivery schedule.

Let C′ be a set of customers for which a delivery 
schedule is made. Consider the complete directed 
graph G � (V, A) with arcs A and where the vertices 
V � C′∪D correspond to the customers C′ and a set of 
depots D. The set D could consist of multiple depots 
and each customer i ∈ C′ can receive its delivery from 
any of the depots in D. We denote by τij(t) the travel 
time function, which provides the time to traverse arc 
(i, j) ∈A when departing at time t. That is, the travel 
time is time dependent, which can for instance be used 
to model congestion. As is common (Ichoua, Gen
dreau, and Potvin 2003; Gendreau, Ghiani, and Guer
riero 2015), we assume that the time dependent travel 
time function is piecewise linear, continuous, and that 
the arrival time function αij(t) � t+ τij(t) is strictly 
increasing (first-in-first-out property). At each depot 
d ∈D, there are Kd vehicles available for making deliv
eries, each with a capacity Q. A delivery is made when 
a vehicle visits a customer along a route. We define a 
route as a pair (ρ, tρ), where ρ is a simple cycle in G that 
starts and ends at the same depot, and tρ is a vector 
containing the arrival time at each customer on ρ. The 
total demands qi, for all customers i visited on the 
route, may not exceed the vehicle capacity Q, and the 
duration of each route ρ, that is, arrival time minus 
departure time from the depot, may not exceed the 
limit S on the duration of a shift for a driver. Each 
depot d ∈D has a time window [ad, bd] between which 
routes from that depot must start and finish. Further
more, the time that service starts at a customer is 
required to be in the selected time slot. Vehicles arriv
ing early must wait. The vehicle can only depart from 
customer i after having spent the full-service duration 
of ui since the start of service. A delivery schedule is a 
set of at most K �

P
d∈DKd routes that visit all custo

mers while satisfying the capacity, time window and 
route duration constraints.

The problem consists of the following steps. (1) Con
struct a time slot offer at each customer arrival, (2) per
form a validation each time a time slot is selected by a 
customer, and (3) construct a delivery schedule after 
the cutoff time. The objective is to maximize the 
expected number of valid orders. This objective is com
mon in practice as many online retailers focus on gain
ing market share by serving as many customer orders 
as possible, that is, maximizing the number of valid 
orders.

4. Concurrency Control
In this section, we describe our concurrency control 
strategy for the ordering process. If multiple customers 
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select time slots, there may not exist a delivery schedule 
accommodating all customers. Conceptually, the litera
ture distinguishes between two general strategies to 
prevent concurrency-related conflicts, that is, (1) pessi
mistic and (2) optimistic strategies (Bernstein, Hadzila
cos, and Goodman 1987). In the terminology of our 
application, pessimistic strategies prevent conflicts in 
the delivery schedule a priori, that is, before a customer 
selects their preferred option. Optimistic strategies do 
not necessarily prevent all conflicts, and if a conflict 
occurs, this has to be repaired a posteriori.

A pessimistic concurrency control strategy for DTSM 
is obtained by enforcing that we do not concurrently 
interact with more customers than can be accommo
dated by the available capacity. A simple and natural 
example of a pessimistic strategy would let customers 
interact with the system one by one, where a new cus
tomer must wait until the previous customer has made 
a selection. In the context of e-grocery delivery, where 
the selection time is typically much longer than the 
interarrival time, this would create large waiting times 
and would severely limit the throughput of the system, 
that is, the total number of customers that the system 
can process. For example, with customers entering the 
system every second and selection times of 30 seconds, 
in eight hours only 960 customers can be processed, 
and the waiting time rises to nearly eight hours. There
fore, this option is not viable in many applications, 
including ours. For an optimistic control strategy, con
flicts may arise a posteriori, that is, after the customer 
selects their preferred option. This means we must 
introduce an additional step to evaluate whether the 
selection is still valid. The disadvantage of an optimistic 
strategy is that we only find out afterward that a 
selected time slot was no longer valid.

In this paper, we develop an optimistic concurrency 
control strategy for the time slotting context. We elabo
rate on possible pessimistic strategies in our future 
research section. In particular, we make use of two pro
cedures: one for making the time slot offer and one for 
validation. We store a list of valid orders in memory. 
Additionally, a delivery schedule for the current valid 
orders can be stored in memory to aid the two proce
dures. For ease of writing, we refer to both the list and a 
delivery schedule as a schedule in memory. It is impor
tant to distinguish between two types of operations 
that are performed on the schedule in memory: read 
operations are used to access the schedule in memory, 
whereas write operations are used to replace or update 
the schedule in memory. In particular, the time slot 
offer procedure performs a read operation and does 
not perform a write operation on the schedule in mem
ory. The validation procedure also performs a read 
operation, required to check whether the selected time 
slot can still be offered. Furthermore, if the selection is 

declared valid, a write operation is performed to 
include the new valid order in the schedule in memory.

Although read operations do not affect other proce
dures, write operations may create conflicts. Consider 
an example in which a validation procedure for order i 
is still running, when already starting in parallel a sec
ond validation procedure for order j. The procedures 
check whether a delivery schedule exists in which all 
current valid orders are satisfied and i or j, respectively. 
If both orders are individually declared valid, it might 
still happen that no delivery schedule exists that satis
fies both i and j.

Therefore, we perform the validation procedures 
sequentially. That is, we block new validation procedures 
and put them in a queue, if another validation procedure 
is still running. After a validation procedure terminates, 
we start the validation procedure from the queue, if any 
remain, which has the earliest enqueue time.

Because time slot offer procedures do not perform 
write operations, we run them parallel to any other pro
cedure that is still running, and we do not let them 
block any other procedure. Moreover, a new time slot 
offer procedure is started immediately on a customer 
arrival if there are no validation procedures currently 
running. If a validation procedure is running, deciding 
whether to start a time slot offer procedure gives rise to 
a tradeoff between the number of invalid orders and 
waiting time. When starting a time slot offer procedure 
while a validation procedure is running, it could be 
that the ensuing time slot offer becomes invalid when 
the validation terminates. For that reason, one might 
wait for the current validation procedure, or even all 
validation procedures in the queue, to terminate. This 
gives a lower likelihood of the time slot offer becoming 
invalid at the cost of increased response time, experi
enced as waiting time by the customer. In this paper, 
we let the time slot offer procedure wait for a single 
current validation procedure to terminate, but we do 
not let it wait for the rest of the queue as preliminary 
tests show that this could lead to unreasonably long 
waiting times.

To illustrate the interaction between the different 
procedures, Figure 1 provides a small example with 
five customers. The five customers arrive at times 
(t1, t2, t3, t4, t5) � (1, 2, 3, 4, 9), and each customer takes 
three time units for their selection.

Customer 1 arrives at t1 � 1 and a time slot offer is 
constructed (TSO). The customer receives the time slot 
offer after a response time of rtso

1 � 2. After s1 � 3 units 
of selection time, customer 1 picks a time slot, at which 
point the validation procedure (Val) is run. After rval

1 � 2 
units of time, the selected time slot of customer 1 is 
declared valid. This triggers a write operation.

Customer 2 arrives at time 2, which is during the time 
slot offer procedure for customer 1. We immediately start 
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a time slot offer procedure in parallel, since there are no 
validation procedures currently running. After the selec
tion time of customer 2, the validation procedure must be 
run. However, the validation procedure for customer 1 is 
still running, so execution is blocked until the previous 
validation procedure terminates. The response time is the 
actual decision time of the procedure plus the waiting 
time incurred by being blocked. In case of customer 2, the 
response time is three time units, whereas the decision 
time is only two time units. As can be seen by the 
response times of customers 3 and 4, the waiting can 
increase when many validation procedures are blocked, 
even if the decision times are all the same: The response 
time for customer 4 is five time units. Customer 5 arrives 
during the validation procedure of customer 2, and the 
time slot offer procedure is therefore blocked until that 
single validation procedure has terminated.

5. Time Slot Offer and 
Validation Procedures

In this section, we describe the algorithms for the time 
slot offer and validation procedures that we use in our 
numerical experiments. The algorithms used for the 
individual procedures are based on the state-of-the-art 
in the DTSM literature. The key feature of the algo
rithms is that they are very fast.

The strategy used by these procedures could be char
acterized as myopically offering as many time slots as 
possible to every new customer. This increases the like
lihood of an individual customer to place an order. 
This strategy serves as a heuristic for our optimization 
problem. To maximize the expected number of custo
mers, it may sometimes be better to not offer all possi
ble time slots to a customer, see Liu, Van De Ven, and 
Zhang (2019). However, such considerations require 
the anticipation of future customers, which we consider 
beyond the scope of this paper.

5.1. Time Slot Offer Procedures
A valid time slot offer to a customer, which is con
structed by the online booking system at a particular 
time, is a menu of time slots such that for each time slot, 
should it be selected, a delivery schedule exists for the 
corresponding order and all valid orders that have 
been placed prior. The algorithm that creates it, is 

referred to as a time slot offer procedure. We empha
size that a valid time slot offer does not guarantee that 
each time slot selection results in a valid order. During 
the response and selection time other valid orders 
might be placed that makes the time slot offer invalid.

We consider two different algorithms for construct
ing valid time slot offers. The main difference between 
these two algorithms is that one builds on an existing 
delivery schedule in memory, whereas the other builds 
a new schedule from scratch. We use (i) a first-insert 
search that is similar to the cheapest insert search of 
Campbell and Savelsbergh (2006), Yang et al. (2016), 
and Köhler, Ehmke, and Campbell (2020) and (ii) a 
greedy construction heuristic that resembles the approach 
used by Campbell and Savelsbergh (2005) without their 
use of randomness. Our greedy construction heuristic dif
fers slightly from the approach used by Ehmke and Camp
bell (2014) and Cleophas and Ehmke (2014) and constructs 
a schedule including the newly arriving customer for each 
possible time slot. It will be obvious from our numerical 
experiments that running multiple greedy construction 
heuristics in this fashion does not seem a realistic option in 
terms of response time, at least not when run on a single 
thread.

5.1.1. First-Insert Search. For first-insert search, a 
delivery schedule for the current valid orders needs to 
be available in memory. This delivery schedule does 
not yet contain a visit to the current customer under 
consideration. Initially, the delivery schedule is empty. 
For each time slot, we iteratively consider all routes 
and all positions on these routes in which a visit might 
be inserted to the new customer during the considered 
time slot. Here, we first go over the empty routes and 
then the nonempty routes. When a feasible insert posi
tion is found, the search immediately terminates, and 
the selected time slot is included in the time slot offer. 
For checking feasibility, the forward/backward algo
rithm of Visser and Spliet (2020) is used, which is the 
fastest known algorithm when both time-dependent 
travel times and route duration constraints are present. 
The time complexity is O( |T |n2p), where |T | is the 
number of time slots, n is the number of valid orders, 
and p is the highest number of breakpoints among the 
time-dependent travel time functions. For each time 
slot in T , the algorithm needs at most O(np) time to 
check a single insertion position. In the worst case, no 
feasible insert position can be found, and all n insert 
positions must be considered.

5.1.2. Greedy Construction Heuristic. Next, we explain 
the greedy construction heuristic. In this case, instead 
of using a delivery schedule from memory, a new 
delivery schedule for the current valid orders is con
structed from scratch at the start of the time slot offer 
procedure. Then, the first-insert search as described 

Figure 1. Concurrency Control Example 
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above is applied to this schedule instead of to a sched
ule in memory. We initialize with an empty route for 
every vehicle. Next, iteratively, for every customer that 
is not yet inserted on a route, a feasible insert position 
in the schedule that yields the smallest cost increase is 
found by considering all possible insert positions. The 
cheapest insert among all customers is performed, that 
is, the customer is inserted at that position. This proce
dure is repeated until all customers are scheduled, or 
no feasible insert position can be found.

The construction heuristic makes use of a cost crite
rion to compare different delivery schedules. We aim 
to find a delivery schedule that maximizes the expected 
number of accepted customers. We cannot directly 
compare schedules with respect to this objective, as any 
feasible insert position would have the same value. 
Therefore, we use a costs criterion for which we expect 
a schedule with lower costs to allow for the inclusion of 
more additional customers than a schedule with higher 
costs. In particular, we use the average travel time on 
an arc as its cost and define the cost of a delivery sched
ule as the total costs of the used arcs.

The greedy construction heuristic creates a completely 
new delivery schedule each time. As a result, the deci
sion time is expected to be higher than that of the first- 
insert search, as evidenced by the larger time complexity 
O(n4p+ |T |n2p). Indeed, iteratively finding the cheapest 
insert among all O(n) customers will in the worst case 
result in O(n3) overall insertion positions to be checked, 
each requiring a worst case of O(np) time to check feasi
bility, resulting in O(n4p). After this, the first-insert 
search on the resulting schedule requires worst-case 
O( |T |n2p) time. Greedy construction has larger time 
complexity than the first-insert search. However, if the 
quality of the schedule in memory used by first-insert 
search is low, the greedy construction heuristic might be 
more successful in finding a feasible delivery schedule.

5.2. Validation Procedures
A validation procedure takes as input a time slot selec
tion from a customer and checks whether a correspond
ing feasible delivery schedule can be found. If so, the 
corresponding order is declared valid and the schedule 
in memory is updated, otherwise the order is declared 
invalid, and the customer is not considered any further. 
Also, for this procedure, we consider two different 
approaches in our experiments, of which one requires a 
delivery schedule in memory, whereas the other does 
not. They are (i) a cheapest insert search like Campbell 
and Savelsbergh (2006), Yang et al. (2016), and Köhler, 
Ehmke, and Campbell (2020) and (ii) a greedy con
struction heuristic as is used for the time slot offer 
procedure.

The cheapest insert search uses a delivery schedule 
stored in memory. We go over the delivery schedule in 
memory until the cheapest feasible insert position is 

found, where the costs are defined like before by the 
average travel times per arc. If no feasible insert posi
tion is found, the selection is declared invalid. Other
wise, the cheapest insert is performed and the delivery 
schedule in memory is updated. The time complexity 
of this procedure is O(n2p), as in the worst-case O(n)
insert positions must be checked of which each cost 
O(np) time. It is not always necessary to wait until the 
cheapest insert search is completed before confirming 
that the selection is valid. To limit the response time, 
this could already be confirmed when the first feasible 
insert position is found. In this way, the response time 
may be lower than the decision time of the procedure. 
Therefore, in this paper when presenting response 
times we only include the first feasible insert time, 
although the decision time of course represents the 
computation time of the entire cheapest insert search.

Second, we can also apply the greedy construction 
heuristic provided in Section 5.1 as a validation proce
dure. Now, only the selected time slot is considered 
instead of all potential time slots in T , and the resulting 
time complexity is O(n4p+ n2p)�O(n4p). If the con
struction heuristic is unsuccessful, the selection is 
declared invalid. Otherwise, the corresponding order is 
declared valid and the delivery schedule in memory (if 
any) is replaced by the newly constructed delivery 
schedule. In this case, a confirmation of validity can 
only be given after the heuristic has terminated.

6. Background Procedures
The algorithms that we use as time slot offer and vali
dation procedures are used because of their low com
putation times. However, the delivery schedules 
produced by these algorithms might not be of high 
quality resulting in a low number of valid orders. 
Observe that some of the algorithms which we have 
presented rely on a delivery schedule that is stored in 
memory. Therefore, improving the delivery schedule 
in memory might result in more valid orders. To 
achieve this, we run an additional procedure in the 
background.

A background procedure performs a read operation 
to access the delivery schedule in memory. It then 
attempts to find a better delivery schedule, where the 
quality is defined by the sum of the average travel 
times per arc as before. Only if upon termination a bet
ter delivery schedule is found, a write operation is per
formed to replace the delivery schedule in memory.

We maintain concurrency control by avoiding con
flicting write operations as follows. A write operation is 
postponed until the entire queue of validation proce
dures is empty. Moreover, the write operation is not 
performed at all if since the start of the background 
procedure a new valid order has been placed. In that 
case, the improved delivery schedule is simply wasted. 
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Note that it might sometimes be possible to repair the 
result of a background procedure, to update the result
ing schedule with the new valid orders. However, we 
consider such repair schemes beyond the scope of this 
paper. In our numerical experiments, we only run one 
background procedure at any time, although multiple 
could be run in parallel. A background procedure is 
first started when a valid order is placed. When a back
ground procedure terminates, a new background pro
cedure is started at the earliest time that the validation 
procedure queue is empty.

Next, we present two algorithms that can be used as 
background procedures, a greedy randomized adap
tive search and a neighborhood search.

6.1. Greedy Randomized Adaptive Search
The greedy randomized adaptive search (GRASP) 
works almost identically to the greedy construction 
heuristic described in Section 5.1. However, instead of 
identifying the single cheapest feasible insert position 
in each iteration, the l cheapest feasible insert positions 
are found. Next, one of those l options is randomly 
selected and performed, each with equal probability. 
This algorithm has time complexity O(n4p+ n3 log l), 
with the first term representing the time complexity of 
the greedy construction heuristic and the second term 
representing the time needed to keep the list of l best 
insert positions. Observe that for l � 1, GRASP is equiv
alent to the greedy construction heuristic.

The GRASP is designed to provide different delivery 
schedules at every run. Therefore, by continually run
ning GRASP as a background procedure, a diverse 
range of delivery schedules is explored. This approach 
strongly resembles the GRASP approaches used in 
Campbell and Savelsbergh (2005) and Campbell and 
Savelsbergh (2006), where GRASP is run a fixed num
ber of times between each customer placement. Clearly, 
a fixed number of runs is not a natural stopping crite
rion in our model. The GRASP of Yang et al. (2016) 
selects customers at random rather than selecting from 
a list of best insertions.

6.2. Neighborhood Search
Second, we propose a neighborhood search approach 
which uses a lexicographic k-exchange (Kindervater 
and Savelsbergh 1997). The background procedure 
performs one neighborhood search iteration on the 
delivery schedule in memory. This consists of evaluat
ing all schedules that can be obtained by performing a 
move on the delivery schedule. The best feasible move 
is executed. In a k-exchange neighborhood, a move 
consists of the exchange of a segment of customers of 
length up to k in one route with a segment of custo
mers of length up to k in another route. We use the lex
icographic k-exchange with ready-time function tree 
and forward/backward data structures (TREE+F/B) 

as described in Visser and Spliet (2020), which has 
time complexity O(n3k2p). In short, this complexity 
arises from worst-case checking O(n2k2) possible 
exchange moves each costing O(np) time to check.

7. Data and Instances
For our numerical experiments, we build instances 
based on real-world online retail data provided by 
Ortec BV. To test our solution and approaches in differ
ent possible environments, we present a number of com
puter simulations in Section 8 for different instances. In 
particular, our instances consist of a sequence of cus
tomer arrivals. We randomly draw different numbers of 
customers from a service region which includes the four 
largest cities in the Netherlands (Amsterdam, Rotter
dam, The Hague, and Utrecht), various surrounding 
urban satellite cities and towns, and rural areas. There 
are four depots, each located with easy highway access 
near a major city, and each with a fleet of identical vehi
cles. One depot is a so-called fulfilment center, which is 
the main warehouse facility where orders are picked 
and where vehicles are stationed. The three other depots 
are hub locations, which are not warehouses but transfer 
locations. There are also vehicles stationed at each hub. 
Figure 2 illustrates the locations of the depots, as well as 
4,000 customers for an example instance.

We consider a morning shift with a depot time win
dow of [0600, 1500]. The set of time slots is T � {[0700, 
0800], [0800, 1400], [0800, 1000], [0900, 1100], [1000, 
1200], [1100, 1300], [1200, 1400]}. These time slots are 
overlapping and include three different lengths. We 
assume that all customers arrive before the cutoff time. 
As the online grocery retailer in our specific case uses 
different time slot prices to balance demand over time, 
we assume that all time slots are equally popular. In 
particular, we model customer preferences as follows. 
Each customer has an ordered set of time slot prefer
ences T

p
i containing |T p

i | � 2 time slots, which are 
drawn uniformly from the set of time slots T . Because 
of the overlap and different widths among the time 
slots, this popularity is not evenly spread over time 
across the planning horizon [0600, 1500]. We only 
model the initial time slot choice and do not explicitly 
model what happens if the customer learns after vali
dation that the selected time slot is invalid. One inter
pretation of this is that we make the conservative 
assumption that a customer leaves if his or her pre
ferred time slot choice turns out to be invalid. The ser
vice duration per customer is randomly generated 
according to an empirical distribution.

We use a standard procedure, like in Ichoua, Gen
dreau, and Potvin (2003), to model time-dependent 
travel times. We obtain a nominal travel time on each 
arc using OSRM, an open-source routing service for 
openstreetmap, which represents the travel time at a 
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nominal speed and which we round to minutes. Fur
thermore, we use the following speed profiles: nominal 
speed at times in [0600, 0700], half speed in [0700, 1000], 
and nominal speed again in [1000, 1500]. This speed 
profile models a congestion period in between free 
flow. The same speed profile is used for all arcs in our 
network.

We model the preferences of customers for time slots 
by using a general nonparametric rank-based choice 
model (van Ryzin and Vulcano 2014). This means that 
we assume a customer has an ordered set of preferred 
time slots T p

i ⊆ T , and it selects the first time slot in T p
i 

that is also in T i. If T p
i ∩ T i � ∅, the customer leaves 

without selecting a time slot.
Figure 3 shows the empirical arrival time distribu

tion. In Figure 3(a), a histogram is shown that provides 
the fraction of the total number of customers that 
placed an order over time. In Figure 3(a), we show the 
cumulative percentage of arrivals over time. Customers 
that did not place an order are not included in this 
figure. Figure 3(a) demonstrates that roughly half of all 
the orders are placed in a very short amount of time. 
From the figure, it can also be inferred that the 

interarrival time decreases toward the cutoff time. This 
can be explained because it is convenient for most cus
tomers to place their order as late as possible. Typically, 
the number of accepted orders also increases over time 
and is highest around the cutoff time. This means that 
the decision times are also longer because the underly
ing routing problems we need to solve to check the 
capacity are larger. As a result, we observe a combina
tion of unfavorable circumstances near the cutoff time: 
customers arrive with short interarrival times, whereas 
capacity is scarce, and the decision times are high. This 
suggests that most waiting time and invalid orders are 
likely to occur in this period. This means that in testing 
our methods it is mostly relevant to look at what hap
pens in these (final) peak periods.

To disentangle the effects of the different individual 
drivers, we first present a set of controlled experiments 
in which we control the interarrival and selection times. 
For a given experiment, we fix the parameter to a par
ticular constant value. By varying the different parame
ter values one at a time while reducing random 
stochastic noise, we can get more insights into the 
impact of each parameter. For the same reason we also 

Figure 2. (Color online) Locations of an Instance with 4,000 Customers 
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fix the demand per customer to a constant. One inter
pretation of this setup is that we specifically focus on 
the interarrival times around the peak times at the end 
of the booking period, which can be considered fairly 
constant. In Section 8.6, we also present experiments in 
which we use varying interarrival times, demand and 
selection times per customer, which are randomly gen
erated according to realistic distributions. We want to 
emphasize that using the empirical distributions, we 
can see very low interarrival times for these realistic 
instances. For example, in realistic instance 1, the mini
mum interarrival time is 3.5 ms, and there is a substan
tial number of arrivals with interarrival times in the 
range of 10–100 ms. As explained previously, these low 
interarrival times occur at a crucial period of time with 
limited remaining capacity and high decision times.

We generated 10 instance sets with 2,000, 4,000, and 
8,000 arriving customers, which gives a total of 30 
instance sets. The demands of all customers are equal, 
and each vehicle has a capacity that allows it to carry 
the demand of 33 customers. In Table 1, we summarize 
the number of vehicles stationed at the fulfillment cen
ters and hubs for the different instance sizes. Within 
each instance set, we consider the following constant 
interarrival times ∆: 1 ms, 1 ms, 10 ms, 100 ms, 1 second, 
and 10 seconds. As stated previously, for the empirical 
arrival time distributions, interarrival times in the order 
of 1 ms and upward are observed. Furthermore, pre
liminary experiments show that our decision times, 
and therefore also the response times, can be very 
low, that is, less than 1 ms. We highlight here that 
in absolute terms, our response times are perhaps 

Figure 3. (Color online) Histogram of Arrivals (a) and Cumulative Fraction of Arrived Customers (b) 
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underestimates of real-life response times, because these 
also include, for example, time for communication over 
the Internet. Hence, relatively speaking, 1 ms represents 
the case that interarrival times are lower than response 
times, which is not unrealistic. Finally, we consider an 
arbitrarily large interarrival time, larger than the sum of 
the selection and response time, referred to as ∆ �∞. 
This represents the scenario in which no invalid orders 
can occur. Furthermore, we consider two cases of cus
tomer selection times: (i) each customer has a selection 
time of 30seconds, and (ii) each customer has a selection 
time of 0seconds, which means the customer immedi
ately selects a time slot or leaves after the time slot offer 
is presented.

8. Computational Experiments
In this section, we present the results of our computa
tional experiments. In Section 8.1, we report on the 
decision and response times of our algorithms. Simi
larly, we report the number of valid and invalid orders 
for these instances in Section 8.2. In these sections we 
demonstrate the effects that interarrival, response and 
selection times have on the number of valid and invalid 
orders. The placement of invalid orders does not occur 
throughout the entire ordering process but rather at 
times where the capacity limits are almost reached. We 
illustrate this with an example in Section 8.3, which has 
implications for the number of invalid orders that can 
be expected for larger instances. In Section 8.4, we 
report on the number of valid and invalid orders, and 
response times for larger instances. Finally, we provide 
the results of our experiments on instances in which 
also the interarrival times, selection times and demands 
vary stochastically in Section 8.6.

We report the decision and response times of the var
ious algorithms presented in this paper, and the num
ber of valid orders achieved by these algorithms. In our 
experiments, we focus on five configurations of the 
algorithms used for concurrency control. Observe that 
there are two algorithms for the time slot, validation 
and background procedures, whereas for the back
ground procedure, there is a third option of not using 
any algorithm. One might also combine options. In par
ticular, in our experiments we consider a validation 
procedure that first performs a cheapest insertion and 
afterward performs a greedy construction. Table 2

provides a summary of the configurations that we use. 
The first column provides the name of each configura
tion, and the other columns provide the algorithm 
selected for each of the procedures.

We use the following parameters for the background 
procedures. The GRASP used within INS+GR selects 
from l � 3 possible moves. Each time a new valid order 
is placed, the first new GRASP run uses l � 1, rather 
than l � 3, and therefore resembles a (deterministic) 
greedy construction algorithm. The INS+NS searches a 
k-exchange neighborhood. We set k � 33, which is an 
upper bound on the number of customers that fit in one 
route. All possible segments of length 1 up to 33 custo
mers are tried for exchange. In the case of a sufficiently 
large interarrival time, the INS+GR and INS+NS back
ground procedures are limited to 10 and 100 successive 
runs between customer arrivals, respectively. In our 
experiments, a maximum number of 100 successive 
runs for INS+NS is not limiting because a local opti
mum is typically reached in less iterations.

We use a discrete event simulator to simulate the 
ordering process using our configurations, which is 
coded in C++11 and compiled using GCC version 6.3. 
All simulation runs are executed as a single thread on 
an Intel XeonVR E5-2650 v2 with 2.6 GHz (Turbo Boost 
up to 3.6 GHz) and 64 GB of RAM running Debian 
Linux version 9. All CPU times were measured using 
std::chrono::high_resolution_clock, a high- 
resolution wall-clock timer and were used with micro
second precision inside the simulations. The DTSM 
configurations are essentially multithreaded, but our cus
tom discrete event simulator allows us to simulate a multi
threaded configuration using only one thread. This way, 
we avoid the CPU time measurements to include possible 
overhead that is specific to a multithreaded/parallel 
implementation and the used CPU architecture. Only this 
one thread was run at any time on the CPU.

8.1. Decision and Response Times
In this section, we report on the decision and response 
times of applying the configurations CON, INS, and 
INSCON to the instance sets consisting of 2,000 arriv
ing customers with a selection time of 30 seconds. 
These times can be interpreted as waiting times experi
enced by a customer, but also affects the number of 
time slot offers that become invalid. As running the 
background procedure has no direct impact on the 
decision and response times, we do not consider INS+GR 
and INS+NS in this section.

We report the maximum times, which is a more 
insightful statistic than the often-used average times, 
for the following reason. Observe that the computa
tional effort required to find a delivery schedule 
increases with the number of valid orders, hence so 
does the decision time of any procedure. As a result, 
the decision time is low at the start of the simulation, 

Table 1. Number of Vehicles Available and Total Capacity 
in Number of Customers

n

No. of vehicles
Total capacity 

(no. of customers)Total Fulfillment Hub

2,000 50 20 10 1,650
4,000 100 40 20 3,300
8,000 200 80 40 6,600
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and increases as more valid orders are placed, accord
ing to the time complexity of the used algorithm. The 
maximum times determine the applicability of a config
uration and are typically observed at the end of the 
ordering process.

Table 3 shows the maximum decision and response 
times for the different time slot offer procedures and 
validation procedures, averaged over 10 instances. The 
column Interarrival provides the interarrival time ∆

between consecutive customers. Recall that we denote 
a sufficiently large interarrival time by ∞. All times in 
the table are reported as minutes:seconds:milliseconds.

Overall, we observe that the time slot offer proce
dures take little time, indeed the average maximum 
decision times are less than a second. As expected, we 
also see that CON takes substantially more time than 
INS and INSCON. The average maximum response 
times of the time slot offer procedures are longer than 
the decision times, as additional waiting times are 
incurred due to being blocked by a validation proce
dure. This difference can be observed for interarrival 
times of 100 ms and longer. For shorter interarrival 
times, the average maximum response times of all time 
slot offer procedures are equal to their decision times. 
Moreover, these times are short, 0.2 ms or less. The rea
son is that in this case, all customers have arrived 
before the first customer has made a selection. Hence, 
no valid order has been placed and the time slot offer 
consisting of all possible time slots is easy to compute.

Similar effects also apply to the decision times of a 
validation procedure. One difference is that for the 
short interarrival times of 10 ms or less, valid orders 
will have been placed, making the validation procedure 

for these instances computationally more demanding 
than the time slot offer procedure. However, validation 
procedures are put in a queue. Therefore, unlike the 
time slot offer procedure, validation procedures are 
blocked until all previously enqueued validation proce
dures are run. As a result, although the decision times 
are comparable to those of the time slot offer proce
dures, the response times increase substantially. For 
example, for an interarrival time of 100 ms, the average 
maximum response time for CON is almost nine min
utes, for INSCON it is almost three minutes, whereas 
the INS configurations still only requires 0.2 ms. In prac
tice, it might be crucial to confirm validity in a short 
amount of time, for instance, when a customer is made 
to wait for confirmation of a placed order. It seems that 
in such a situation CON and INSCON are less suitable 
than INS.

8.2. Number of Valid and Invalid Orders
Next, we present the number of valid and invalid 
orders that result from applying CON, INS, INSCON, 
INS+GR, and INS+NS to the instance sets consisting of 
2,000 arriving customers. Table 4 shows the number of 
valid and invalid orders, averaged over the instance 
sets. The column Sel. provides the selection time, that 
is, 0 or 30 seconds. Again, the column Interarrival 
provides the interarrival time ∆ between consecutive 
customers. These results are based on a detailed 
simulation of the interaction between decision times, 
interarrival times, and selection times. Preliminary 
experiments showed the relevance of explicitly taking 
the decision times into account, even when the selec
tion times are relatively long. Comparing the results 

Table 2. Configurations Investigated in This Paper

Configuration Time slot offer Validation Background

CON Greedy construction Greedy construction No
INS First insertion Cheapest insertion No
INSCON First insertion Cheapest insertion and greedy construction No
INS+GR First insertion Cheapest insertion GRASP
INS+NS First insertion Cheapest insertion Neighborhood search

Table 3. Decision and Response Times (min:s:ms) for Instances with 2,000 Customers and a Selection Time of 30 Seconds

Interarrival time 
(s:ms)

Time slot offer Validation

Max. decision Max. response Max. decision Max. response

CON INS INSCON CON INS INSCON CON INS INSCON CON INS INSCON

0.001 0.2 0.0 0.0 0.2 0.0 0.0 612.5 0.5 1:162.1 13:19:572.6 181.7 4:43:202.8
1 0.2 0.0 0.0 0.2 0.0 0.0 622.9 0.5 1:144.4 13:19:382.8 0.3 4:37:178.1
10 0.2 0.0 0.1 0.2 0.0 0.1 617.3 0.5 1:158.5 13:02:296.1 0.2 4:22:187.3
100 586.4 0.8 0.2 1:091.1 0.8 992.7 612.9 0.5 1:147.4 8:56:632.6 0.2 2:57:381.6
1:000 618.2 0.9 0.8 716.0 0.9 258.1 569.3 0.5 1:152.8 569.3 0.2 257.8
10:000 611.6 0.7 0.8 611.6 0.7 0.8 553.3 0.4 1:170.6 553.3 0.2 0.2
∞ 602.8 1.0 0.7 602.8 1.0 0.7 533.9 0.5 1:165.3 533.9 0.2 0.1
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with and without decision times, we found that the 
realistic decision times have a significant impact on the 
results in terms of invalid orders.

We first comment on the number of valid orders. For 
the configurations without the background procedures, 
that is, CON, INS, and INSCON, Table 4 shows that the 
interarrival and selection times do not have a large 
effect on the number of valid orders. As expected, we 
see that CON leads to more valid orders than INS. The 
configuration INSCON leads to even more valid 
orders, which is due to the larger search space of the 
validation procedure. Looking at the configurations 
that use the background procedures, that is, INS+GR 
and INS+NS, we see that they yield more valid orders 
when the interarrival time increases. This is because 
longer interarrival times allow the background proce
dure more time to find better delivery schedules. For 
sufficiently large interarrival times, the number of valid 
orders of INS+GR is comparable to that of INSCON, 
which does not use the background procedure. More
over, INS+NS has the highest number of valid orders 
when the interarrival times are 100 ms or more. The 
configuration INS+NS seems to outperform the other 
methods in terms of response time and number of valid 
orders when the interarrival time is sufficiently large. 
We observe that the number of valid orders is not 
affected by selection time.

The number of invalid orders, due to concurrency 
conflicts, is substantially affected by interarrival and 
selection times for all configurations. We observe that 
the number of invalid orders decreases with an increas
ing interarrival time. Indeed, for an interarrival time of 
0.001 ms, we see a substantial number of invalid orders, 
which decreases until there are no invalid orders when 
the interarrival time is sufficiently large. Even when the 
selection time is 0 seconds, we see invalid orders. In 
particular, we see invalid orders for all configurations 
when the interarrival time is 0.001 ms. For 1 ms, 10 ms, 

and 100 ms, this also occurs for CON and INSCON due 
to their higher response times. For INS, INS+GR, and 
INS+NS, there are no invalid orders for interarrival 
times of 1 ms or more because the response time plus 
the selection time is lower than the interarrival time in 
this case. When the selection time is 30 seconds, and the 
interarrival time is 10 ms or less, all customers arrive 
before the first customer has made a selection. This is 
why the number of invalid orders is the same for inter
arrival times of 1 and 10 ms for the configurations 
CON, INS, and INSCON. When the interarrival time is 
0.001 ms, we observe slight deviations in the number of 
invalid orders. This is because, due to slight variations 
in the response time, the sequence in which customers 
receive their time slot offer is not necessarily the same 
as their sequence of arrival, so neither is their sequence 
of making a selection.

Table 4 shows that an increase in selection time 
affects the number of invalid orders when considering 
interarrival times of 100 ms and more. Among the five 
configurations and these three interarrival times, only 
in one case does the number of invalid orders go down 
as the selection time is increased from 0 to 30 seconds, 
whereas in the other 14 cases, a substantial increase is 
observed.

8.3. Invalid Orders over Time
Invalid orders occur when a time slot is selected that 
can no longer be accommodated. Roughly stated, this 
happens when during the response and selection time, 
one or more other customers use up the remaining 
capacity. This means that a feasible delivery schedule 
can be found at the time of making the time slot offer 
but not at the time that the customer chooses a time 
slot.

At the start of the ordering process there is often 
ample capacity available to accommodate new custo
mers and no invalid orders will occur. However, when 

Table 4. Number of Valid and Invalid Orders for Instances with 2,000 Customers

Sel. (s)
Interarrival time 

(s:ms)

No. of valid orders No. of invalid orders

CON INS INSCON INS+GR INS+NS CON INS INSCON INS+GR INS+NS

0 0.001 739.5 684.2 925.9 693.3 686.7 1,260.5 1,315.8 1,074.1 1,306.7 1,313.3
1 742.7 689.4 927.4 684.3 691.4 1,257.3 0.0 1,072.6 0.0 0.0
10 740.9 689.4 926.1 902.8 825.8 1,259.1 0.0 1,073.9 0.0 0.0
100 742.3 689.4 925.5 951.8 1,117.7 798.1 0.0 1,070.8 0.0 0.0

1:000 742.5 689.4 930.4 926.3 1,174.5 0.4 0.0 0.0 0.0 0.0
10:000 742.5 689.4 930.4 930.3 1,176.8 0.0 0.0 0.0 0.0 0.0

30 0.001 741.6 676.6 936.7 681.3 674.2 1,258.4 1,323.4 1,063.3 1,318.7 1,325.8
1 742.4 689.5 933.1 689.2 696.5 1,257.6 1,310.5 1,066.9 1,310.8 1,303.5
10 742.4 689.5 933.1 905.2 800.8 1,257.6 1,310.5 1,066.9 1,094.8 1,199.2
100 739.6 692.5 933.8 944.1 1,085.3 1,057.0 342.9 1,065.7 371.9 486.2

1:000 742.4 688.6 931.8 925.9 1,180.0 30.7 42.2 37.0 40.4 51.1
10:000 742.0 688.8 931.1 932.1 1,173.3 3.5 4.8 4.4 4.2 6.0
∞ 742.5 689.4 930.4 934.4 1,176.8 0.0 0.0 0.0 0.0 0.0
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the limits of capacity are reached, time slot offers can 
become invalid. This means that there is only a limited 
amount of time during which the system is at risk for 
getting invalid orders. The number of invalid orders 
during this time depends on the interarrival, response, 
and selection times, as explained before.

To illustrate the dynamics over time, we consider a 
single instance from our set, with 2,000 arriving custo
mers and a selection time of 30 seconds. For the interar
rival times of 10 ms, 100 ms, 1 second, and 10 seconds, 
Figure 4 shows graphs of the number of invalid orders 
after each customer is processed. The graphs show that 
there are no invalid orders among the first 500 delivery 
requests, because the capacity limits are not yet reached. 
As soon as the remaining capacity becomes limited, 
invalid orders start occurring. As the different config
urations produce different delivery schedules and valid 
orders, we see that the first invalid orders occur at differ
ent points in time.

In case of an interarrival time of 10 ms in Figure 4(a), 
we observe a steady increase in the number of invalid 
orders until all customers are processed. For the other 
interarrival times, and almost all configurations, the 
number of invalid orders stops increasing at some 
point. This happens when it is evident that the capacity 

limit has been reached, and new customers are not 
offered any time slots. From that moment onward, new 
customers arrivals result in no order, instead of an inva
lid order. This demonstrates that there is a limited time 
range during which invalid orders occur.

As the configurations that use a background proce
dure, that is, INS+GR and INS+NS, improve the sched
ule in memory, it may be possible that after a period in 
which no time slots are offered, the time slots would 
again be offered. This means that after a period of no 
orders, we see new valid orders again and also new 
invalid orders. This effect can most clearly be seen in 
Figure 4(d) for INS+NS.

8.4. Impact of the Number of Customers
Next, we present the results for the configurations INS, 
INS+GR, and INS+NS to the larger instance sets con
taining 4,000 and 8,000 arriving customers and a selec
tion time of 30 seconds. We do not include CON and 
INSCON, because the response times are prohibitively 
large. We report the response times and number of 
valid and invalid orders for these larger instances. As 
shown in Table 1, not only the number of customers is 
larger in these instance sets, the capacity is also propor
tionally larger.

Figure 4. (Color online) Number of Invalid Orders for an Instance with 2,000 Customers with Interarrival Times 

(a) (b)

(c) (d)

Note. (a) 10 ms, (b) 100 ms, (c) 1 second, and (d) 10 seconds.
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Table 5 shows the average number of valid and inva
lid orders, as well as the average maximum response 
time of the time slot offer procedure in milliseconds, 
TSO max response (ms). Column |C | provides the 
amount of arriving customers, and once more, column 
Interarrival provides the interarrival time ∆ between 
consecutive customers.

First, we observe that the average maximum response 
times of the time slot offer procedures are less than 
6.6 ms in all cases, even for instances with 8,000 arriving 
customers. The response times of the validation proce
dures are larger than those of the time slot offer proce
dures. Although we do not report the average maximum 
response times of the validation procedure in Table 5, the 
largest value is observed for instances with 8,000 cus
tomers and interarrival times of 0.001 ms, which is 
three seconds for all configurations. This may still be 
acceptable, even if a customer is kept waiting for a 
confirmation.

Although the response times increase with the num
ber of customers, this is not necessarily the case for the 
number of invalid orders. As illustrated in Section 8.3, 
invalid orders only occur for the duration of time when 
nearing the capacity limits. This duration is primarily 
dependent on the response, selection and interarrival 
times. For instances with an interarrival time of 100 ms 
or more, the simulation encompasses this full duration. 
As a result, it can be observed from Tables 4 and 5 that 
the number of invalid orders using the configuration 
INS is roughly the same for all instances. That is, it is 
independent of the instance size.

However, for the configurations INS+GR and 
INS+NS, which use a background procedure, the num
ber of invalid orders is higher for the instances with 
4,000 and 8,000 customers than for the instances with 
2,000 customers. Because the ordering process spans a 
longer time, the improvement procedure potentially 
replaces the schedule in memory at more separate 
moments. Although this can have a positive effect on 
the number of valid orders as explained in Section 8.3

and demonstrated in Table 5, there is also a downside. 
Now, the system is more often in the situation of being 
close to the capacity limit. As a result, the number of 
invalid orders also increases.

8.5. Impact of Background Procedures on the 
Route Schedules

Our background procedures can significantly reduce 
the decision times and response times as reported in 
Table 3 and increase the number of valid orders as seen 
in Table 4. In addition to these benefits, we can also 
improve the quality of the route schedules in memory 
by using the background procedures. This relates to the 
travel distances per order as these are associated with 
fulfilment costs, fuel consumption, and emissions. The 
quality of the route schedule at the end of the order 
intake period is especially relevant when the retailer 
wants to start order picking and execution based on 
this schedule immediately after the cutoff time. Table 6
provides an overview of the average number of kilo
meters per order, averaged over the instances in the 
instance set. As before we only include INS, INS+GR, 
and INS+NS. For illustrative purposes we present the 
results for an interarrival time of one second. The 
results show that the background procedures create 
route schedules with substantially lower travel dis
tances per order.

8.6. Realistic Instances
Next, we present the results of our experiments on the 
realistic instances, in which demand, interarrival times, 
and selection times are stochastic. We use 10 instances 
with n � 4,000 customers for this purpose, which are 
generated as described in Section 7. We assume a 
capacity of 60 vehicles at the fulfilment center and 20 
vehicles at each hub. We use an empirical distribution 
for demand per customer, for the service duration per 
customer, and for the customer arrival process as 
shown in Figure 3. These data are only available for 
customers that actually placed a valid order. This 

Table 5. Results for the Large Instance Sets with 30-Second Interarrival Time

|C | Interarr. (s:ms)

No. of valid orders No. of invalid orders TSO max. response (ms)

INS INS+GR INS+NS INS INS+GR INS+NS INS INS+GR INS+NS

4,000 0.001 1,498.9 1,513.4 1,497.0 2,501.1 2,486.6 2,503.0 0.1 0.1 0.1
1 1,503.0 1,512.4 1,532.2 2,497.0 2,487.6 2,467.8 0.1 0.1 0.1
10 1,503.0 1,648.8 1,564.5 2,497.0 2,351.2 2,435.5 0.0 0.1 0.1
100 1,505.6 2,177.1 2,134.7 383.4 863.1 715.1 2.3 1.7 2.1

1:000 1,506.8 2,235.1 2,705.9 44.2 93.1 134.1 2.3 3.0 2.8
10:000 1,505.3 2,168.6 2,736.3 4.6 5.2 6.0 2.1 3.7 1.7

8,000 0.001 3,387.8 3,375.9 3,370.5 4,612.2 4,624.1 4,629.5 0.1 0.1 0.1
1 3,386.0 3,412.4 3,390.7 4,614.0 4,587.6 4,609.3 0.1 0.1 0.1
10 3,390.0 3,379.1 3,445.0 3,264.5 3,260.7 3,261.6 3.8 3.1 3.0
100 3,398.2 4,225.1 3,948.9 398.3 610.0 614.3 4.0 5.3 5.2

1:000 3,403.8 5,177.2 5,091.3 41.3 151.5 234.2 4.1 5.4 6.6
10:000 3,401.3 5,135.6 6,083.3 3.7 10.3 11.1 4.0 6.0 3.0
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means, for example, that in our experiment the interar
rival times are underestimates of real-world interarri
val times. We generate the selection time in seconds 
using a uniform distribution on [0, 60] based on aver
age values available to us. We apply the configuration 
INS+NS, which was arguably the best performing 
method in our previous experiments.

The average maximum response times for the time 
slot offer and the validation are negligibly close to zero 
for this configuration in these instances. This suggests 
that our best concurrency control methods perform 
well in realistic instances. In Table 7, for each of the 10 
instances, we provide the number of valid and invalid 
orders. The number of invalid orders varies between 10 
and 24, with an average of 16.5. On average, less than 
1% of the customers will experience an invalid order 
and thus find out that their selected time slot is no lon
ger available. All these invalid orders occur during a 
relatively short time period. Figure 5 illustrates this for 
instance 1. All invalid orders occur during a peak in the 
number of arrivals, whereas at the same time, the num
ber of valid orders and hence decision times are at their 
highest, and capacity is most scarce.

9. Concluding Remarks and Future 
Research Directions

In this paper, we introduce the problem of concurrent 
customer interactions in online booking systems for 
attended home delivery. We argue that there is a fun
damental tradeoff between the number of valid and 
invalid orders and waiting times, when allowing 

customers to choose their time slots. Our experiments 
focused primarily on maximizing the number of valid 
orders while limiting waiting times and invalid orders. 
Our results show that invalid orders and waiting times 
due to concurrent interactions are inevitable in this 
case, even with fast state-of-the-art methods. Moreover, 
our detailed experiments with different numbers of 
customers, interarrival times, and selection times shed 
light on the drivers of concurrent interactions and the 
different tradeoffs in the design of concurrency control 
strategies. For example, our experiments suggest that 
using a background procedure increases the number of 
customers that can be accommodated and leads to 
acceptable response times. However, this success comes 
at the cost of having more invalid orders.

As we are one of the first to explore the concept of 
concurrency control in time slot management, there are 
many avenues for future research. Here, we discuss 
three relevant directions. In Section 9.1, we discuss 
research directions for pessimistic concurrency control, 
in Section 9.2 we discuss research direction for optimis
tic concurrency control, and in Section 9.3, we discuss 
alternative time slot choice mechanisms. We conclude 
in Section 9.4.

9.1. Pessimistic Concurrency Control
Pessimistic concurrency control prevents conflicts that 
are caused by concurrent interactions with the system. 
For DTSM, pessimistic concurrency control means 
enforcing that we do not concurrently interact with 
more customers than can be accommodated by the 
available capacity. In Section 4, we provided a natural 
example of a pessimistic concurrency control strategy 
by letting customers interact sequentially with the sys
tem. This is clearly not viable in many applications due 
to the long waiting times. However, it may be possible 
to design more sophisticated pessimistic concurrency 
control methods with less waiting times.

To prevent invalid orders, we could choose to not 
offer all currently feasible slots but only offer those slots 
that are feasible in any specific scenario that can unfold 
given the current state of the system. The fundamental 
question is as follows. Is it feasible to visit the newly 
arrived customer during a specific time slot, given the 
current valid orders, for every realization of the 
response time, selection time, and time slot selection of 
every customer currently interacting with the system? 
If the answer is yes, there is no risk of invalid orders, 
and the time slot can be offered. If the answer is no, 
there is a second question to ask, namely whether there 
is any such realization in which the customer can be 
visited during the time slot under consideration. If the 
answer is again no, the time slot is not offered. If the 
answer is yes, we may decide to wait. These questions 
seem to fit well with the paradigm of robust optimiza
tion. This gives rise to questions on how to best model 

Table 6. Valid Orders and Average Travel Distance per 
Order

|C |

No. of valid orders Kilometers per order

INS INS+GR INS+NS INS INS+GR INS+NS

2,000 742.4 931.8 925.9 15.9 10.8 7.6
4,000 1,506.8 2,235.1 2,705.9 14.2 8.1 6.0
8,000 3,403.8 5,177.2 5,091.3 12.1 6.1 6.9

Table 7. Results of Using NS+GR on 10 Realistic Instances 
with 4,000 Customers

Instance No. of valid orders No. of invalid orders

1 3,238 18
2 3,239 14
3 3,277 17
4 3,235 13
5 3,244 20
6 3,230 19
7 3,247 24
8 3,259 17
9 3,184 10
10 3,213 13
Average 3,236.6 16.5
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the uncertainty sets to appropriately describe the set 
of possible realizations of response time, selection 
time, and time slot selection. Another interesting meth
odological avenue of research involves finding fast 
computational approaches to solve the underlying opti
mization problems. This involves exploring tradeoffs 
between the modeling accuracy of the uncertainty sets 
and computation times. Very detailed models of the 
state space may not be tractable given the combinato
rial nature of the underlying routing problems and the 
complex and intricate uncertainties based on the inter
action of different parts of the model. Furthermore, it is 
shown by van der Hagen et al. (2024) that machine 
learning approaches can quickly assess the feasibility of 
accepting a certain delivery order in a certain time slot 
given the already accepted orders. It is interesting to 
study how machine learning approaches can be used to 
predict and prevent concurrency conflicts.

In this context, it is also interesting to explore 
different ways to interact with customers. Do we need 
to provide the whole menu of possible time slots simul
taneously or can we buy more time by incrementally 
revealing possible time slots? That is, for some time 
slots it may be quickly determined that there is no risk 
of an invalid order, whereas for others, we need more 
time. This gives rise to new modeling questions but 
also questions on customer preferences and behavior. It 
is, for example, relevant to understand how customers 
respond to waiting times. How long do customers wait 
before dropping out? How does waiting affect future 

sales and choice behavior? Such insights help practi
tioners decide whether pessimistic concurrency control 
is beneficial or harmful based on the balance between 
avoiding invalid orders and the negative impact of 
waiting times on business.

9.2. Optimistic Concurrency Control
Optimistic concurrency control for DTSM does not 
avoid invalid orders. In Section 9.2.1, we discuss 
research directions on how to deal with these invalid 
orders when they occur. In Section 9.2.2, we discuss 
research opportunities focused on minimizing the 
expected number of invalid orders.

9.2.1. Dealing with Invalid Orders. A basic mechanism 
for dealing with invalid orders is to immediately 
inform the customer corresponding to an invalid order 
that their selected time slot is no longer available, and 
then offer a new (possibly empty) set of time slot 
options. Unfortunately, our study suggests that it can 
take a significant amount of time to determine that an 
order is invalid, especially during busy periods due to 
the interaction between different order arrivals in the 
system. Therefore, in practice, it may be more appropri
ate to cancel (or reschedule) orders after the booking 
period has ended, prior to route planning.

In our experiments, we define an invalid order as the 
incoming order that cannot be accommodated given 
the current set of accepted (valid) orders. However, an 
invalid order really only means that we cannot deliver 

Figure 5. (Color online) Number of Valid and Invalid Orders over Time 

Visser, Agatz, and Spliet: Managing Concurrent Interactions 
1072 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 



all currently placed orders within their corresponding 
time slots. Therefore, there is no fundamental reason to 
cancel specifically the last incoming order to resolve the 
infeasibility of the route plan. This provides more free
dom. For example, given the accumulation of orders, 
we may want to find the minimum number of orders to 
cancel to ensure a feasible schedule. Alternatively, we 
could minimize the total (long-term) revenue loss from 
cancelling orders. This gives rise to a new selective or 
prize-collecting variant of the vehicle routing problem 
with time windows.

Instead of canceling an order, we may serve a cus
tomer outside of their selected time slot. This can be 
done with or without explicitly coordinating this with 
the customer. However, without explicit coordination, 
there is a risk that nobody will be available to receive 
the delivery. Again, the question is which customers to 
serve later or earlier and by how much, to create a time 
feasible delivery schedule. This flexibility leads to new 
routing problems taking customer availability into 
account. This is related to a recent stream of work that 
focuses on maximizing the success rate of deliveries 
while minimizing the cost of additional attempts 
needed if the first attempt was not successful (Özarik 
et al. 2021, 2023; Voigt et al. 2023).

We can also try to actively reschedule customers to 
different time windows to create a feasible routing 
schedule. This gives rise to novel route optimization 
problems that are loosely related to the area of vehicle 
routing problems with soft time windows (Figliozzi 
2010). Moreover, some customers are more flexible 
than others in terms of rescheduling their time slot 
appointment. One interesting question in this realm 
relates to finding the best sequence in which to 
approach customers to reschedule. Moreover, we may 
also offer monetary incentives or discounts to persuade 
customers to switch to another time window or accept 
a longer time window. How to best deploy incentives 
to maximize the effectiveness is another interesting 
area of study.

A customer may accept an occasional cancellation, 
rescheduling, or late delivery. An interesting line of 
research is to design time slot offer procedures and 
algorithms that generate the final route schedule to 
ensure that such actions do not occur too often for the 
same customer. This links the planning and control 
across multiple booking periods and thus creates sig
nificant computational challenges.

9.2.2. Minimizing the Risk of Invalid Orders. If there 
are historical data available on order patterns and time 
slot preferences of customers, it may be possible to 
exploit this information. Although pessimistic control 
strategies prevent all possible concurrent interactions, 
even if they are unlikely to happen, we can also take a 
more probabilistic approach focusing on likely conflicts. 

This involves explicitly modeling customer and system 
behavior. Consider a simple example, in which we 
know that all customers currently in the system prefer 
morning slots. In that case, we may confidently offer a 
newly arriving customer an afternoon slot such that the 
probability of conflicts is low. The opposite logic also 
applies. If an incoming customer prefers only afternoon 
slots, we can confidently block the morning slots for this 
customer without the risk of losing this customer due to 
lack of appropriate choices. We can then either optimize 
the system given certain chance constraints or by taking 
into account the costs and awards in the objective func
tion. It is not obvious how to model the different states 
and uncertainties in such a setting to build models and 
methods that are tractable and fast. One interesting ave
nue for future research is exploring the most suitable 
customer choice models and their level of detail and 
accuracy. Also here, we see promising opportunities for 
data-driven machine learning approaches to predict 
both customer and system behavior and to identify use
ful patterns and properties for concurrency control. 
Given the need for extremely fast methods, it may be 
especially relevant to explore “predict and optimize” 
models that take into account the time slot offering deci
sions in the prediction process (Elmachtoub and Grigas 
2022, Vanderschueren et al. 2022).

On the capacity side, there may also be ways to 
reduce the risk of invalid orders. For example, we can 
anticipate potentially invalid orders by reserving some 
backup vehicles that are not visible to the system dur
ing the order intake phase. Determining the appropri
ate level of backup vehicle capacity is an interesting 
stochastic problem in this context.

9.3. Alternative Mechanisms
Some of the fundamental tradeoffs and concurrency 
issues associated with letting customers choose a time 
slot for attended home delivery in real time can be pre
vented by different ways of interacting with the 
customers.

First, online grocery retailers have started to offer 
subscription services (Wagner, Pinto, and Amorim 
2021). Some of these subscription models allow fre
quent customers to subscribe to a specific delivery win
dow, such as every Monday 0600–2000 hours for the 
next three months. In a hybrid system, where some cus
tomers subscribe and others arrive dynamically and 
sporadically, we would still encounter the concurrency 
problems discussed in this paper. That is, the subscrip
tion customers can be considered early-booking custo
mers, and we still see concurrent interaction for the 
dynamically arriving customers. In a subscription-only 
system, we would likely not see concurrent interaction 
because subscription customers would typically not all 
arrive at the same time, would be willing to accept lon
ger wait times, and may be more flexible in their choice 
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of time slots. Such a full subscription model would 
only work with a repeat-purchase product such as 
groceries and a large base of loyal customers. One of 
the challenges of the subscription system is customer 
churn. Another challenge is subscription customers 
who do not use their subscribed time slot. This raises 
new questions. How do you deal with subscribers who 
do not order? Customers with a subscription can still 
choose not to place an order. When this happens, 
capacity is freed up to accommodate other customers. 
To know when this capacity will become available, the 
subscription may specify that if no order is placed 
before a certain time, the reservation of the time slot 
will be canceled. Optimistic concurrency control strate
gies may anticipate that this will happen for some 
customers and therefore allow invalid orders from 
dynamically arriving customers before this specified 
time. In this case, it remains uncertain whether an order 
is valid or invalid until after the specified time. New 
time slot offer procedures must be designed to accom
plish this. Even outside the subscription service model, 
these research questions are relevant in settings in 
which it is common that customers cancel their order.

Second, it may be possible to reduce the negative 
impact of concurrent interactions by increasing the 
time flexibility in final route planning. This can be done 
by having a sufficient number of customers select a 
wider time slot or provide flexibility for multiple time 
slots (Strauss, Gülpinar, and Zheng 2021). This creates 
more wiggle room to find a feasible routing schedule 
after the cutoff time. This gives rise to several research 
questions on how to model and operate such a system 
and on how to preserve sufficient flexibility during the 
order intake phase while maximizing choices offered to 
the customer and thereby the number of valid orders. 
One possible idea would be to offer various lengths of 
time windows to customers at different stages of the 
planning period. Köhler, Ehmke, and Campbell (2020) 
study a system in which early in the planning stage 
only long time windows are offered, whereas later 
short time windows are offered. From a concurrency 
control perspective, it may be better to actually use an 
opposing strategy in which we offer longer time slots 
in the busy period just before the cutoff time. It is inter
esting to explore the tradeoffs that arise in such a situa
tion in terms of routing efficiency versus the risks of 
invalid orders.

9.4. Concluding Remarks
Despite the growing attention for dynamic time-slot 
management in the academic literature, the problems 
of concurrent interactions in online time-slot reserva
tion systems are only now surfacing with large-scale 
implementation in practice. In this paper, we introduce 
the problems of concurrent interaction, show the need 

for new methods to prevent and deal with these pro
blems, and point to relevant future research directions.

References
Abdollahi M, Yang X, Nasri MI, Fairbank M (2023) Demand man

agement in time-slotted last-mile delivery via dynamic routing 
with forecast orders. Eur. J. Oper. Res. 309(2):704–718.

Agatz N, Fan Y, Stam D (2021) The impact of green labels on time 
slot choice and operational sustainability. Production Oper. Man
agement 30(7):2285–2303.

Agatz N, Campbell AM, Fleischmann M, Savelsbergh MWP (2011) 
Time slot management in attended home delivery. Transporta
tion Sci. 45(3):435–449.

Agatz N, Campbell AM, Fleischmann M, van Nunen J, Savelsbergh 
MWP (2013) Revenue management opportunities for Internet 
retailers. J. Revenue Pricing Management 12(2):128–138.

Ausseil R, Pazour JA, Ulmer MW (2022) Supplier menus for 
dynamic matching in peer-to-peer transportation platforms. 
Transportation Sci. 56(5):1304–1326.

Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency Con
trol and Recovery in Database Systems, vol. 370 (Addison-Wesley, 
New York).

Campbell AM, Savelsbergh MWP (2005) Decision support for con
sumer direct grocery initiatives. Transportation Sci. 39(3): 
313–327.

Campbell AM, Savelsbergh MWP (2006) Incentive schemes for 
attended home delivery services. Transportation Sci. 40(3):327–341.

Chen HR (2009) An evaluation of real-time transaction services in 
web services e-business systems. Advances in Data and Web 
Management (Springer, Berlin), 532–537.

Cleophas C, Ehmke JF (2014) When are deliveries profitable? Bus. 
Inform. Systems Engrg. 6(3):153–163.

Ehmke JF, Campbell AM (2014) Customer acceptance mechanisms 
for home deliveries in metropolitan areas. Eur. J. Oper. Res. 
233(1):193–207.

Elmachtoub AN, Grigas P (2022) Smart “predict, then optimize”. 
Management Sci. 68(1):9–26.

Figliozzi MA (2010) An iterative route construction and improvement 
algorithm for the vehicle routing problem with soft time win
dows. Transportation Res. Part C Emerging Tech. 18(5):668–679.

Fleckenstein D, Klein R, Steinhardt C (2023) Recent advances in inte
grating demand management and vehicle routing: A methodo
logical review. Eur. J. Oper. Res. 306(2):499–518.

Gendreau M, Ghiani G, Guerriero E (2015) Time-dependent routing 
problems: A review. Comput. Oper. Res. 64:189–197.

Graefe G (2019) On transactional concurrency control. Synthetic Lec
ture Data Management 14(5):1–404.

Ichoua S, Gendreau M, Potvin JY (2003) Vehicle dispatching with 
time-dependent travel times. Eur. J. Oper. Res. 144(2):379–396.

Khaing KK, Myint MM (2017) Data consistency and concurrency 
controlling in air ticket selling in different sites by using 
notification-reread method (NRM). PhD thesis, MERAL Portal, 
University of Computer Studies, Yangon, Myanmar.

Kindervater GAP, Savelsbergh MWP (1997) Vehicle routing: Han
dling edge exchanges. Aarts E, Lenstra JK, eds. Local Search in 
Combinatorial Optimization, 1st ed. (John Wiley & Sons, New 
York), 337–360.

Koch S, Klein R (2020) Route-based approximate dynamic program
ming for dynamic pricing in attended home delivery. Eur. J. 
Oper. Res. 287(2):633–652.
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Özarik SS, Veelenturf LP, Van Woensel T, Laporte G (2021) Opti
mizing e-commerce last-mile vehicle routing and scheduling 
under uncertain customer presence. Transportation Res. Part E 
Logist. Transportation Rev. 148:102263.
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