
EUR Research Information Portal

Managing Concurrent Interactions in Online Time Slot Booking Systems for Attended
Home Delivery

Published in:
Transportation Science

Publication status and date:
Published: 01/09/2024

DOI (link to publisher):
10.1287/trsc.2022.0445

Document Version
Publisher's PDF, also known as Version of record

Document License/Available under:
Article 25fa Dutch Copyright Act

Citation for the published version (APA):
Visser, T. R., Agatz, N., & Spliet, R. (2024). Managing Concurrent Interactions in Online Time Slot Booking Systems for
Attended Home Delivery. Transportation Science, 58(5), 1056-1075. https://doi.org/10.1287/trsc.2022.0445

Link to publication on the EUR Research Information Portal

Terms and Conditions of Use
Except as permitted by the applicable copyright law, you may not reproduce or make this material available to any third party
without the prior written permission from the copyright holder(s). Copyright law allows the following uses of this material
without prior permission:

 • you may download, save and print a copy of this material for your personal use only;
 • you may share the EUR portal link to this material.

In case the material is published with an open access license (e.g. a Creative Commons (CC) license), other uses may be
allowed. Please check the terms and conditions of the specific license.

Take-down policy
If you believe that this material infringes your copyright and/or any other intellectual property rights, you may request its
removal by contacting us at the following email address: openaccess.library@eur.nl. Please provide us with all the relevant
information, including the reasons why you believe any of your rights have been infringed. In case of a legitimate complaint,
we will make the material inaccessible and/or remove it from the website.

https://doi.org/10.1287/trsc.2022.0445
https://doi.org/10.1287/trsc.2022.0445
https://pure.eur.nl/en/publications/5ea9c77e-0a54-4b35-a59a-09069180d85f

Managing Concurrent Interactions in Online Time Slot Booking
Systems for Attended Home Delivery
Thomas R. Visser,a Niels Agatz,b,* Remy Splietc

a ORTEC, 2719 EA Zoetermeer, Netherlands; b Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands;
c Erasmus School of Economics, Erasmus University, 3062 PA Rotterdam, Netherlands
*Corresponding author
Contact: thomas.visser@ortec.com, https://orcid.org/0000-0003-1456-3325 (TRV); nagatz@rsm.nl, https://orcid.org/0000-0003-3514-201X
(NA); spliet@ese.eur.nl, https://orcid.org/0000-0003-4821-2945 (RS)

Received: January 10, 2023
Revised: July 31, 2023; February 20, 2024;
May 14, 2024
Accepted: May 15, 2024
Published Online in Articles in Advance:
July 17, 2024

https://doi.org/10.1287/trsc.2022.0445

Copyright: © 2024 INFORMS

Abstract. Many goods and services require the customer to be at home to receive the
delivery. In the context of attended home delivery, customers can typically choose from a
menu of delivery time slots. We consider the problem of dynamically managing the offered
time slots and delivery bookings given the available fleet capacity. When multiple custo
mers interact with the online booking system at the same time, this can lead to conflicts.
Although managing such concurrent interactions is an important challenge in attended
home delivery systems, it has not yet been addressed in the literature. We present a concur
rency control strategy and several fast route planning approaches to manage time slots in
real time. To combine fast response times with high quality slotting decisions, we introduce
background procedures that use the time between successive order placements to improve
the performance of the time slot offer and validation procedures. Our detailed computa
tional experiments based on realistic instances provide insights into the effectiveness of our
background procedures and the complex trade-offs between waiting times, valid orders,
and invalid orders. We also discuss several relevant new areas of research in concurrency
control for time slot management.

Funding: This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek
[Grant 438-213-204]. It is co-funded by ORTEC B.V. and AH.nl.

Keywords: attended home delivery • concurrency control • time slot management

1. Introduction
Many services require the customer to be at home to
facilitate their delivery. This is common for the delivery
of groceries, furniture, and large appliances but also for
home services such as repairs, technical support, and
home care. If the customer is not at home, the service
fails and the provider may have to return at a later
time, unnecessarily generating additional vehicle miles
and emissions. To avoid such failures, it is common for
providers to allow customers to choose from a menu of
appointment times or delivery windows. Amazon
Fresh, for example, allows customers to select a one-
hour delivery window to receive their groceries. To
book their attended home delivery, customers typically
interact with an online booking system going through
the following phases: (i) the customer provides a deliv
ery location, (ii) the system shows the customer an
offer, that is, a set of time slot options, (iii) the customer
selects one of the options or leaves, and (iv) the system
processes the selection, if any. Customers can place
orders up to a certain cutoff time after which a route
plan is made in which all deliveries are scheduled. To
ensure a smooth booking experience for the customer,

it is important to limit the response times of the system,
that is, the time between the arrival of the customer and
offering the time slots.

There is a growing body of literature on managing
incoming orders in attended home delivery through
dynamic time slot management (DTSM) for a fixed
vehicle fleet capacity (Fleckenstein, Klein, and Stein
hardt 2023; Waßmuth et al. 2023). A fundamental
question is how to construct a valid time slot offer for
a given customer, consisting of all time slots in which
the customer can be served. Constructing a valid time
slot offer is computationally challenging because it
requires checking whether there exists a feasible
delivery schedule for the arriving customer and all
previously accepted customers. Conceptually, this is
equivalent to finding a feasible solution to a vehicle
routing problem with time windows (VRPTW). This
makes it difficult to ensure fast response times, espe
cially when the number of customers, and the associ
ated VRPTW instances, is large. Therefore, most of the
literature has primarily focused on designing fast and
high-quality heuristics for the VRPTW to construct a
time slot offer.

1056

TRANSPORTATION SCIENCE
Vol. 58, No. 5, September–October 2024, pp. 1056–1075

ISSN 0041-1655 (print), ISSN 1526-5447 (online) https://pubsonline.informs.org/journal/trsc

mailto:thomas.visser@ortec.com
https://orcid.org/0000-0003-1456-3325
mailto:nagatz@rsm.nl
https://orcid.org/0000-0003-3514-201X
mailto:spliet@ese.eur.nl
https://orcid.org/0000-0003-4821-2945
https://doi.org/10.1287/trsc.2022.0445

However, in addition to the challenge of quickly
determining a time slot offer, there is another challenge
that is often overlooked in the literature. The concur
rent interaction of customers with the system intro
duces additional complexity. We identify the following
complications arising from the simultaneous interac
tion of multiple customers with the system. First, a
valid time slot offer may be invalidated by another cus
tomer’s selection. This can happen if the interarrival
time between two customers is less than the sum of the
response time and the selection time, that is, the time it
takes a customer to select a time slot. For example, two
customers that arrive around the same time may be
offered the same time slot, even if only one more cus
tomer can be served in that time slot. A second issue is
that concurrent decisions and system updates might
lead to either data inconsistencies and an infeasible
plan after the cutoff or additional waiting time experi
enced by the customer if a customer needs to wait for
the system to respond to a previous customer. This
means that evaluating the run times of time slot meth
ods for each single customer independently (as is typi
cally done in the current literature) only provides a
lower bound on the actual waiting times. These issues
relate to the concept of multiuser concurrency in com
puter science (Bernstein, Hadzilacos, and Goodman
1987; Graefe 2019) and give rise to several tradeoffs in
the design and control of the system.

With a growing number of customers, there are more
customers interacting with the system simultaneously.
For example, at Dutch e-grocer AH.nl, it is not uncom
mon to have more than 50 customers from the same
region interacting with the online booking system at
the same time. Peak traffic typically occurs in the eve
ning, when many customers are considering the same
time slots for the next day’s delivery. We first encoun
tered the issues related to concurrent customer interac
tion when implementing a DTSM system at e-grocer
AH.nl together with ORTEC, an international supplier
of routing and scheduling optimization and advanced
analytics software. To increase the utilization of their
fulfilment capacity, AH.nl wanted an approach based
on real-time routing to replace their previous approach
which used fixed estimates of the number of orders
that can be fulfilled per time slot per delivery vehicle.
By reducing the slack in their route schedules, the con
sequences of ignoring concurrent customer interaction
become more apparent. ORTEC experienced similar
challenges related to concurrent customer interaction
in various other DTSM implementation projects around
the globe (G. Kant, Global Director Logistics Industry at
ORTEC, personal communication, June 24, 2020). We
have since learned that many companies are struggling
with these challenges.

In this paper, we present a new model for DTSM that
includes the time dimension in the different ordering

phases. In particular, it incorporates the interarrival,
response and selection times. Interestingly, although
the interarrival and selection times can be modeled
exogenously, for example, as random variables, the
response time is dependent on the algorithm, imple
mentation, and computer used to construct a time slot
offer. These solution times and their impact on the sys
tem dynamics are often ignored in the literature. Our
results based on realistic, detailed, real-time simula
tions show that state-of-art methodology from the
DTSM literature cannot be applied in this more realistic
environment. This suggests the need for using control
methods for concurrent interaction.

We present a concurrency control strategy in this
paper to manage the concurrent interactions. To ensure
consistency, we introduce an additional validation
check that alerts the customer when the selected slot is
no longer available. This means that we not only per
form an initial procedure to create a time slot offer but
also a validation procedure. Each procedure needs to
be performed almost instantaneously to ensure a
smooth booking process. Coordinating the different
steps for different customers creates an extra layer of
complexity in time slot management. Moreover, as
these processes are fundamentally interrelated, it is not
possible to solve the associated problems by adding
hardware capacity or performing computations in par
allel. This gives rise to a general tradeoff between the
speed and quality of the procedures. Because the state-
of-the-art methods as described in the literature would
create prohibitively long response times if naively
implemented within our framework, we propose the
use of background procedures to allow constructing high
quality time slot offers with low response times. The
key idea of the background procedures is to use the
periods without much traffic on the website to proac
tively run procedures to better prepare for the next
arrivals.

The main contributions of this paper can be summa
rized as follows. (i) We are the first to identify a new
problem in dynamic time slot management related to
the concurrent interaction between multiple customers
booking delivery services for attended home delivery.
This is a key practical challenge that has thus far been
ignored in the literature. (ii) To tackle the problem, we
propose a concurrency control strategy for making
time slot offers and for assessing the validity of cus
tomer selections. Within this framework, we adopt the
state-of-the-art heuristic methods from the literature.
Moreover, we introduce background procedures that
use the time between subsequent order placements to
improve the performance of the different procedures.
(iii) In our extensive realistic numerical experiments with
instances of up to 8,000 customers, we show the impact of
different system parameters on the concurrency-related
issues and show that complementing the state-of-the-art

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1057

methods with our background procedures allows for a
higher number of valid orders without additional waiting
times. (iv) Finally, we discuss several relevant new areas
of research related to concurrency control in time slot
management.

The remainder of this paper is structured as follows.
In Section 2, we discuss the related literature. In Section 3,
we provide a problem description, and in Section 4, we
describe a concurrency control strategy that can be
applied in our attended home delivery setting. In Section
5, we describe the specific algorithms used within the
various procedures for concurrency control, and in Sec
tion 6, we describe the background procedures. In Section
7, we describe the instances that we generate for our
numerical experiments, which are based on real-world
data. We provide real-time simulation experiments in
Section 8 to measure the performance of the system given
different parameter settings. Finally, we provide conclud
ing remarks and a classification of new research direc
tions in Section 9.

2. Literature Review
Building on the early work of Campbell and Savels
bergh (2005), constructing a valid time slot offer in
attended home delivery has recently received an
increasing amount of attention in the scientific litera
ture (Ehmke and Campbell 2014; Köhler, Ehmke, and
Campbell 2020). It is typically referred to as dynamic or
operational time slot management or DTSM (Agatz
et al. 2013; Fleckenstein, Klein, and Steinhardt 2023).

In contrast to more static and tactical approaches
(Agatz et al. 2011), the dynamic setting focuses on the
real-time management of time slot offers based on
arriving and already accepted orders. This stream of lit
erature primarily focuses on maximizing the number of
valid time slots offered for each arriving customer, by
finding a solution to a vehicle routing problem with
time windows (VRPTW) for every possible time slot.
As determining whether a feasible solution to a
VRPTW exists is computationally prohibitive in most
real-world settings, the dominant approach is to use
heuristics. One disadvantage of this is that we may fail
to identify a feasible schedule even when one does
exist, resulting in less time slots being offered and
thereby potentially losing sales. There is generally a tra
deoff between the quality of the heuristic and the
required run time.

Campbell and Savelsbergh (2005) are the first to
study a DTSM problem. They present an insertion-
based heuristic in which they first construct a new
route plan for all accepted delivery requests and then
try to insert the current delivery request under consider
ation. In Campbell and Savelsbergh (2006) the authors
extend this approach by maintaining a set of multiple
feasible schedules to increase the number of insertion

options. The core idea of checking feasibility for a cer
tain time slot by inserting the new customer in one or
more existing route plan for the already accepted cus
tomers is the most common method presented in time
slot management (Ehmke and Campbell 2014; Köhler,
Ehmke, and Campbell 2020; Agatz, Fan, and Stam
2021).

Checking feasibility is a required first step in more
sophisticated time slot management systems. Given a
set of feasible slots, several papers have proposed
dynamic pricing policies to determine incentives to
steer customers to the most profitable time slots (Yang
et al. 2016, Koch and Klein 2020). The work in this area
typically focuses on estimating the (opportunity) costs
to serve a specific customer in different time slots given
the already accepted customers and forecasts of future
demand (Yang and Strauss 2017, Abdollahi et al. 2023).

Although the concurrent interaction of customers
with the system has thus far been ignored in the time
slot management literature, there is a large body of lit
erature on concurrency control in multiuser informa
tion systems (Graefe 2019). Most closely related to our
setting is the work on concurrency issues in transaction
systems for e-commerce (Chen 2009, Khaing and Myint
2017). In traditional booking systems, concurrency con
trol helps to prevent selling the same product or capac
ity unit, for example, a seat on a flight, to multiple
customers (Lewandowski et al. 2007). Although the
capacity in terms of the fleet and labor force is fixed in
our setting, the number of orders that can be served
depends on their sizes and locations. This gives rise to
two additional complexities. (i) In addition to perform
ing concurrent read and write operations in a database
to keep track of placed orders, we need to solve a time-
consuming optimization problem to find out which
time slots we can still offer, and (ii) the capacity con
sumption for different time slots are interrelated. This
means that even finding out whether a conflict
occurred is a time-consuming step.

We are only aware of one recent paper in the opera
tions management literature that considers concurrency-
related issues, albeit without explicitly using the termi
nology. Ausseil, Pazour, and Ulmer (2022) focus on
determining supplier menus in matching requests and
service suppliers in a peer-to-peer transportation plat
form. This gives rise to a tradeoff between offering
requests to different service suppliers sequentially (pes
simistic control) or simultaneously (optimistic control).
However, most of the operations management literature
has ignored concurrent system interactions. Further
more, the information systems literature has only
scarcely addressed topics related to attended home
delivery platforms. To bridge this gap, we introduce an
attended home delivery model that incorporates concur
rent interactions.

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1058 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

3. Problem Description
In this section, we provide a problem description. We
describe the ordering process, including the four
phases of a delivery request: customer arrival, time slot
offer, selection, and validation. Furthermore, we pro
vide a description of a delivery schedule, which is
required to serve the customers that have placed an
order and determines the validity of a time slot offer or
selection. Finally, we summarize the corresponding
optimization problem.

The ordering process takes place during the time period
[0, T], where T is the cutoff time. That is, during [0, T] cus
tomers arrive to make a delivery request, whereas after T,
a delivery schedule is made and executed.

Let C be a collection of customers. At any moment in
time, it is unknown which customers will request a
delivery in the future. For any customer i ∈ C that
makes a delivery request, let ti ∈ [0, T] be the time at
which customer i arrives to make a delivery request of
size qi ≥ 0, for example, the number of items to be deliv
ered, and required service duration ui ≥ 0, that is, the
time required at the customer for delivery.

Next, a time slot offer is made. Let T be a set of time
slots, where each time slot is an interval of time later
than T. The time it takes to make a time slot offer T i ⊆

T is denoted by rtso
i and is referred to as a response

time. This response time is at least as large as the deci
sion time dtso

i , which is the time it takes to construct the
time slot offer, while the response time might also
include an additional delay. Which time slots are
included in the time slot offer is a decision which is part
of the optimization problem. Therefore, we do not con
sider dtso

i and rtso
i as inputs to the problem but rather a

result of the algorithm used to make this decision. At
time ti + rtso

i the time slot offer is presented to the
customer.

After a selection time of si, the customer selects a
time slot from T i at time ti + rtso

i + si or may leave with
out selecting a time slot. Both the selection time and the
preferred time slot are unknown, at least until the selec
tion is made.

If the customer does not leave, it has to be decided
after time ti + rtso

i + si whether the selected time slot is
valid. Let dval

i be the decision time of this validation and
rval

i the resulting response time, which might include
an additional delay. At time ti + rtso

i + si + rval
i the result

of a customer having gone through the ordering pro
cess is either (i) a valid order, corresponding to a valid
time slot selection, (ii) an invalid order, corresponding
to an invalid time slot selection, or (iii) no order, when
the customer leaves without selecting a time slot.

A new order is declared valid if a delivery schedule
can be constructed that includes this order as well as all
previously placed valid orders. We assume that custo
mers who place an order will be available to receive

their order in their selected time slot. This is in line with
current practice at our industry partner AH.nl. We do
not schedule deliveries for invalid orders. Next, we
define a delivery schedule.

Let C′ be a set of customers for which a delivery
schedule is made. Consider the complete directed
graph G � (V, A) with arcs A and where the vertices
V � C′∪D correspond to the customers C′ and a set of
depots D. The set D could consist of multiple depots
and each customer i ∈ C′ can receive its delivery from
any of the depots in D. We denote by τij(t) the travel
time function, which provides the time to traverse arc
(i, j) ∈A when departing at time t. That is, the travel
time is time dependent, which can for instance be used
to model congestion. As is common (Ichoua, Gen
dreau, and Potvin 2003; Gendreau, Ghiani, and Guer
riero 2015), we assume that the time dependent travel
time function is piecewise linear, continuous, and that
the arrival time function αij(t) � t+ τij(t) is strictly
increasing (first-in-first-out property). At each depot
d ∈D, there are Kd vehicles available for making deliv
eries, each with a capacity Q. A delivery is made when
a vehicle visits a customer along a route. We define a
route as a pair (ρ, tρ), where ρ is a simple cycle in G that
starts and ends at the same depot, and tρ is a vector
containing the arrival time at each customer on ρ. The
total demands qi, for all customers i visited on the
route, may not exceed the vehicle capacity Q, and the
duration of each route ρ, that is, arrival time minus
departure time from the depot, may not exceed the
limit S on the duration of a shift for a driver. Each
depot d ∈D has a time window [ad, bd] between which
routes from that depot must start and finish. Further
more, the time that service starts at a customer is
required to be in the selected time slot. Vehicles arriv
ing early must wait. The vehicle can only depart from
customer i after having spent the full-service duration
of ui since the start of service. A delivery schedule is a
set of at most K �

P
d∈DKd routes that visit all custo

mers while satisfying the capacity, time window and
route duration constraints.

The problem consists of the following steps. (1) Con
struct a time slot offer at each customer arrival, (2) per
form a validation each time a time slot is selected by a
customer, and (3) construct a delivery schedule after
the cutoff time. The objective is to maximize the
expected number of valid orders. This objective is com
mon in practice as many online retailers focus on gain
ing market share by serving as many customer orders
as possible, that is, maximizing the number of valid
orders.

4. Concurrency Control
In this section, we describe our concurrency control
strategy for the ordering process. If multiple customers

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1059

select time slots, there may not exist a delivery schedule
accommodating all customers. Conceptually, the litera
ture distinguishes between two general strategies to
prevent concurrency-related conflicts, that is, (1) pessi
mistic and (2) optimistic strategies (Bernstein, Hadzila
cos, and Goodman 1987). In the terminology of our
application, pessimistic strategies prevent conflicts in
the delivery schedule a priori, that is, before a customer
selects their preferred option. Optimistic strategies do
not necessarily prevent all conflicts, and if a conflict
occurs, this has to be repaired a posteriori.

A pessimistic concurrency control strategy for DTSM
is obtained by enforcing that we do not concurrently
interact with more customers than can be accommo
dated by the available capacity. A simple and natural
example of a pessimistic strategy would let customers
interact with the system one by one, where a new cus
tomer must wait until the previous customer has made
a selection. In the context of e-grocery delivery, where
the selection time is typically much longer than the
interarrival time, this would create large waiting times
and would severely limit the throughput of the system,
that is, the total number of customers that the system
can process. For example, with customers entering the
system every second and selection times of 30 seconds,
in eight hours only 960 customers can be processed,
and the waiting time rises to nearly eight hours. There
fore, this option is not viable in many applications,
including ours. For an optimistic control strategy, con
flicts may arise a posteriori, that is, after the customer
selects their preferred option. This means we must
introduce an additional step to evaluate whether the
selection is still valid. The disadvantage of an optimistic
strategy is that we only find out afterward that a
selected time slot was no longer valid.

In this paper, we develop an optimistic concurrency
control strategy for the time slotting context. We elabo
rate on possible pessimistic strategies in our future
research section. In particular, we make use of two pro
cedures: one for making the time slot offer and one for
validation. We store a list of valid orders in memory.
Additionally, a delivery schedule for the current valid
orders can be stored in memory to aid the two proce
dures. For ease of writing, we refer to both the list and a
delivery schedule as a schedule in memory. It is impor
tant to distinguish between two types of operations
that are performed on the schedule in memory: read
operations are used to access the schedule in memory,
whereas write operations are used to replace or update
the schedule in memory. In particular, the time slot
offer procedure performs a read operation and does
not perform a write operation on the schedule in mem
ory. The validation procedure also performs a read
operation, required to check whether the selected time
slot can still be offered. Furthermore, if the selection is

declared valid, a write operation is performed to
include the new valid order in the schedule in memory.

Although read operations do not affect other proce
dures, write operations may create conflicts. Consider
an example in which a validation procedure for order i
is still running, when already starting in parallel a sec
ond validation procedure for order j. The procedures
check whether a delivery schedule exists in which all
current valid orders are satisfied and i or j, respectively.
If both orders are individually declared valid, it might
still happen that no delivery schedule exists that satis
fies both i and j.

Therefore, we perform the validation procedures
sequentially. That is, we block new validation procedures
and put them in a queue, if another validation procedure
is still running. After a validation procedure terminates,
we start the validation procedure from the queue, if any
remain, which has the earliest enqueue time.

Because time slot offer procedures do not perform
write operations, we run them parallel to any other pro
cedure that is still running, and we do not let them
block any other procedure. Moreover, a new time slot
offer procedure is started immediately on a customer
arrival if there are no validation procedures currently
running. If a validation procedure is running, deciding
whether to start a time slot offer procedure gives rise to
a tradeoff between the number of invalid orders and
waiting time. When starting a time slot offer procedure
while a validation procedure is running, it could be
that the ensuing time slot offer becomes invalid when
the validation terminates. For that reason, one might
wait for the current validation procedure, or even all
validation procedures in the queue, to terminate. This
gives a lower likelihood of the time slot offer becoming
invalid at the cost of increased response time, experi
enced as waiting time by the customer. In this paper,
we let the time slot offer procedure wait for a single
current validation procedure to terminate, but we do
not let it wait for the rest of the queue as preliminary
tests show that this could lead to unreasonably long
waiting times.

To illustrate the interaction between the different
procedures, Figure 1 provides a small example with
five customers. The five customers arrive at times
(t1, t2, t3, t4, t5) � (1, 2, 3, 4, 9), and each customer takes
three time units for their selection.

Customer 1 arrives at t1 � 1 and a time slot offer is
constructed (TSO). The customer receives the time slot
offer after a response time of rtso

1 � 2. After s1 � 3 units
of selection time, customer 1 picks a time slot, at which
point the validation procedure (Val) is run. After rval

1 � 2
units of time, the selected time slot of customer 1 is
declared valid. This triggers a write operation.

Customer 2 arrives at time 2, which is during the time
slot offer procedure for customer 1. We immediately start

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1060 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

a time slot offer procedure in parallel, since there are no
validation procedures currently running. After the selec
tion time of customer 2, the validation procedure must be
run. However, the validation procedure for customer 1 is
still running, so execution is blocked until the previous
validation procedure terminates. The response time is the
actual decision time of the procedure plus the waiting
time incurred by being blocked. In case of customer 2, the
response time is three time units, whereas the decision
time is only two time units. As can be seen by the
response times of customers 3 and 4, the waiting can
increase when many validation procedures are blocked,
even if the decision times are all the same: The response
time for customer 4 is five time units. Customer 5 arrives
during the validation procedure of customer 2, and the
time slot offer procedure is therefore blocked until that
single validation procedure has terminated.

5. Time Slot Offer and
Validation Procedures

In this section, we describe the algorithms for the time
slot offer and validation procedures that we use in our
numerical experiments. The algorithms used for the
individual procedures are based on the state-of-the-art
in the DTSM literature. The key feature of the algo
rithms is that they are very fast.

The strategy used by these procedures could be char
acterized as myopically offering as many time slots as
possible to every new customer. This increases the like
lihood of an individual customer to place an order.
This strategy serves as a heuristic for our optimization
problem. To maximize the expected number of custo
mers, it may sometimes be better to not offer all possi
ble time slots to a customer, see Liu, Van De Ven, and
Zhang (2019). However, such considerations require
the anticipation of future customers, which we consider
beyond the scope of this paper.

5.1. Time Slot Offer Procedures
A valid time slot offer to a customer, which is con
structed by the online booking system at a particular
time, is a menu of time slots such that for each time slot,
should it be selected, a delivery schedule exists for the
corresponding order and all valid orders that have
been placed prior. The algorithm that creates it, is

referred to as a time slot offer procedure. We empha
size that a valid time slot offer does not guarantee that
each time slot selection results in a valid order. During
the response and selection time other valid orders
might be placed that makes the time slot offer invalid.

We consider two different algorithms for construct
ing valid time slot offers. The main difference between
these two algorithms is that one builds on an existing
delivery schedule in memory, whereas the other builds
a new schedule from scratch. We use (i) a first-insert
search that is similar to the cheapest insert search of
Campbell and Savelsbergh (2006), Yang et al. (2016),
and Köhler, Ehmke, and Campbell (2020) and (ii) a
greedy construction heuristic that resembles the approach
used by Campbell and Savelsbergh (2005) without their
use of randomness. Our greedy construction heuristic dif
fers slightly from the approach used by Ehmke and Camp
bell (2014) and Cleophas and Ehmke (2014) and constructs
a schedule including the newly arriving customer for each
possible time slot. It will be obvious from our numerical
experiments that running multiple greedy construction
heuristics in this fashion does not seem a realistic option in
terms of response time, at least not when run on a single
thread.

5.1.1. First-Insert Search. For first-insert search, a
delivery schedule for the current valid orders needs to
be available in memory. This delivery schedule does
not yet contain a visit to the current customer under
consideration. Initially, the delivery schedule is empty.
For each time slot, we iteratively consider all routes
and all positions on these routes in which a visit might
be inserted to the new customer during the considered
time slot. Here, we first go over the empty routes and
then the nonempty routes. When a feasible insert posi
tion is found, the search immediately terminates, and
the selected time slot is included in the time slot offer.
For checking feasibility, the forward/backward algo
rithm of Visser and Spliet (2020) is used, which is the
fastest known algorithm when both time-dependent
travel times and route duration constraints are present.
The time complexity is O(|T |n2p), where |T | is the
number of time slots, n is the number of valid orders,
and p is the highest number of breakpoints among the
time-dependent travel time functions. For each time
slot in T , the algorithm needs at most O(np) time to
check a single insertion position. In the worst case, no
feasible insert position can be found, and all n insert
positions must be considered.

5.1.2. Greedy Construction Heuristic. Next, we explain
the greedy construction heuristic. In this case, instead
of using a delivery schedule from memory, a new
delivery schedule for the current valid orders is con
structed from scratch at the start of the time slot offer
procedure. Then, the first-insert search as described

Figure 1. Concurrency Control Example

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1061

above is applied to this schedule instead of to a sched
ule in memory. We initialize with an empty route for
every vehicle. Next, iteratively, for every customer that
is not yet inserted on a route, a feasible insert position
in the schedule that yields the smallest cost increase is
found by considering all possible insert positions. The
cheapest insert among all customers is performed, that
is, the customer is inserted at that position. This proce
dure is repeated until all customers are scheduled, or
no feasible insert position can be found.

The construction heuristic makes use of a cost crite
rion to compare different delivery schedules. We aim
to find a delivery schedule that maximizes the expected
number of accepted customers. We cannot directly
compare schedules with respect to this objective, as any
feasible insert position would have the same value.
Therefore, we use a costs criterion for which we expect
a schedule with lower costs to allow for the inclusion of
more additional customers than a schedule with higher
costs. In particular, we use the average travel time on
an arc as its cost and define the cost of a delivery sched
ule as the total costs of the used arcs.

The greedy construction heuristic creates a completely
new delivery schedule each time. As a result, the deci
sion time is expected to be higher than that of the first-
insert search, as evidenced by the larger time complexity
O(n4p+ |T |n2p). Indeed, iteratively finding the cheapest
insert among all O(n) customers will in the worst case
result in O(n3) overall insertion positions to be checked,
each requiring a worst case of O(np) time to check feasi
bility, resulting in O(n4p). After this, the first-insert
search on the resulting schedule requires worst-case
O(|T |n2p) time. Greedy construction has larger time
complexity than the first-insert search. However, if the
quality of the schedule in memory used by first-insert
search is low, the greedy construction heuristic might be
more successful in finding a feasible delivery schedule.

5.2. Validation Procedures
A validation procedure takes as input a time slot selec
tion from a customer and checks whether a correspond
ing feasible delivery schedule can be found. If so, the
corresponding order is declared valid and the schedule
in memory is updated, otherwise the order is declared
invalid, and the customer is not considered any further.
Also, for this procedure, we consider two different
approaches in our experiments, of which one requires a
delivery schedule in memory, whereas the other does
not. They are (i) a cheapest insert search like Campbell
and Savelsbergh (2006), Yang et al. (2016), and Köhler,
Ehmke, and Campbell (2020) and (ii) a greedy con
struction heuristic as is used for the time slot offer
procedure.

The cheapest insert search uses a delivery schedule
stored in memory. We go over the delivery schedule in
memory until the cheapest feasible insert position is

found, where the costs are defined like before by the
average travel times per arc. If no feasible insert posi
tion is found, the selection is declared invalid. Other
wise, the cheapest insert is performed and the delivery
schedule in memory is updated. The time complexity
of this procedure is O(n2p), as in the worst-case O(n)
insert positions must be checked of which each cost
O(np) time. It is not always necessary to wait until the
cheapest insert search is completed before confirming
that the selection is valid. To limit the response time,
this could already be confirmed when the first feasible
insert position is found. In this way, the response time
may be lower than the decision time of the procedure.
Therefore, in this paper when presenting response
times we only include the first feasible insert time,
although the decision time of course represents the
computation time of the entire cheapest insert search.

Second, we can also apply the greedy construction
heuristic provided in Section 5.1 as a validation proce
dure. Now, only the selected time slot is considered
instead of all potential time slots in T , and the resulting
time complexity is O(n4p+ n2p)�O(n4p). If the con
struction heuristic is unsuccessful, the selection is
declared invalid. Otherwise, the corresponding order is
declared valid and the delivery schedule in memory (if
any) is replaced by the newly constructed delivery
schedule. In this case, a confirmation of validity can
only be given after the heuristic has terminated.

6. Background Procedures
The algorithms that we use as time slot offer and vali
dation procedures are used because of their low com
putation times. However, the delivery schedules
produced by these algorithms might not be of high
quality resulting in a low number of valid orders.
Observe that some of the algorithms which we have
presented rely on a delivery schedule that is stored in
memory. Therefore, improving the delivery schedule
in memory might result in more valid orders. To
achieve this, we run an additional procedure in the
background.

A background procedure performs a read operation
to access the delivery schedule in memory. It then
attempts to find a better delivery schedule, where the
quality is defined by the sum of the average travel
times per arc as before. Only if upon termination a bet
ter delivery schedule is found, a write operation is per
formed to replace the delivery schedule in memory.

We maintain concurrency control by avoiding con
flicting write operations as follows. A write operation is
postponed until the entire queue of validation proce
dures is empty. Moreover, the write operation is not
performed at all if since the start of the background
procedure a new valid order has been placed. In that
case, the improved delivery schedule is simply wasted.

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1062 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

Note that it might sometimes be possible to repair the
result of a background procedure, to update the result
ing schedule with the new valid orders. However, we
consider such repair schemes beyond the scope of this
paper. In our numerical experiments, we only run one
background procedure at any time, although multiple
could be run in parallel. A background procedure is
first started when a valid order is placed. When a back
ground procedure terminates, a new background pro
cedure is started at the earliest time that the validation
procedure queue is empty.

Next, we present two algorithms that can be used as
background procedures, a greedy randomized adap
tive search and a neighborhood search.

6.1. Greedy Randomized Adaptive Search
The greedy randomized adaptive search (GRASP)
works almost identically to the greedy construction
heuristic described in Section 5.1. However, instead of
identifying the single cheapest feasible insert position
in each iteration, the l cheapest feasible insert positions
are found. Next, one of those l options is randomly
selected and performed, each with equal probability.
This algorithm has time complexity O(n4p+ n3 log l),
with the first term representing the time complexity of
the greedy construction heuristic and the second term
representing the time needed to keep the list of l best
insert positions. Observe that for l � 1, GRASP is equiv
alent to the greedy construction heuristic.

The GRASP is designed to provide different delivery
schedules at every run. Therefore, by continually run
ning GRASP as a background procedure, a diverse
range of delivery schedules is explored. This approach
strongly resembles the GRASP approaches used in
Campbell and Savelsbergh (2005) and Campbell and
Savelsbergh (2006), where GRASP is run a fixed num
ber of times between each customer placement. Clearly,
a fixed number of runs is not a natural stopping crite
rion in our model. The GRASP of Yang et al. (2016)
selects customers at random rather than selecting from
a list of best insertions.

6.2. Neighborhood Search
Second, we propose a neighborhood search approach
which uses a lexicographic k-exchange (Kindervater
and Savelsbergh 1997). The background procedure
performs one neighborhood search iteration on the
delivery schedule in memory. This consists of evaluat
ing all schedules that can be obtained by performing a
move on the delivery schedule. The best feasible move
is executed. In a k-exchange neighborhood, a move
consists of the exchange of a segment of customers of
length up to k in one route with a segment of custo
mers of length up to k in another route. We use the lex
icographic k-exchange with ready-time function tree
and forward/backward data structures (TREE+F/B)

as described in Visser and Spliet (2020), which has
time complexity O(n3k2p). In short, this complexity
arises from worst-case checking O(n2k2) possible
exchange moves each costing O(np) time to check.

7. Data and Instances
For our numerical experiments, we build instances
based on real-world online retail data provided by
Ortec BV. To test our solution and approaches in differ
ent possible environments, we present a number of com
puter simulations in Section 8 for different instances. In
particular, our instances consist of a sequence of cus
tomer arrivals. We randomly draw different numbers of
customers from a service region which includes the four
largest cities in the Netherlands (Amsterdam, Rotter
dam, The Hague, and Utrecht), various surrounding
urban satellite cities and towns, and rural areas. There
are four depots, each located with easy highway access
near a major city, and each with a fleet of identical vehi
cles. One depot is a so-called fulfilment center, which is
the main warehouse facility where orders are picked
and where vehicles are stationed. The three other depots
are hub locations, which are not warehouses but transfer
locations. There are also vehicles stationed at each hub.
Figure 2 illustrates the locations of the depots, as well as
4,000 customers for an example instance.

We consider a morning shift with a depot time win
dow of [0600, 1500]. The set of time slots is T � {[0700,
0800], [0800, 1400], [0800, 1000], [0900, 1100], [1000,
1200], [1100, 1300], [1200, 1400]}. These time slots are
overlapping and include three different lengths. We
assume that all customers arrive before the cutoff time.
As the online grocery retailer in our specific case uses
different time slot prices to balance demand over time,
we assume that all time slots are equally popular. In
particular, we model customer preferences as follows.
Each customer has an ordered set of time slot prefer
ences T

p
i containing |T p

i | � 2 time slots, which are
drawn uniformly from the set of time slots T . Because
of the overlap and different widths among the time
slots, this popularity is not evenly spread over time
across the planning horizon [0600, 1500]. We only
model the initial time slot choice and do not explicitly
model what happens if the customer learns after vali
dation that the selected time slot is invalid. One inter
pretation of this is that we make the conservative
assumption that a customer leaves if his or her pre
ferred time slot choice turns out to be invalid. The ser
vice duration per customer is randomly generated
according to an empirical distribution.

We use a standard procedure, like in Ichoua, Gen
dreau, and Potvin (2003), to model time-dependent
travel times. We obtain a nominal travel time on each
arc using OSRM, an open-source routing service for
openstreetmap, which represents the travel time at a

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1063

nominal speed and which we round to minutes. Fur
thermore, we use the following speed profiles: nominal
speed at times in [0600, 0700], half speed in [0700, 1000],
and nominal speed again in [1000, 1500]. This speed
profile models a congestion period in between free
flow. The same speed profile is used for all arcs in our
network.

We model the preferences of customers for time slots
by using a general nonparametric rank-based choice
model (van Ryzin and Vulcano 2014). This means that
we assume a customer has an ordered set of preferred
time slots T p

i ⊆ T , and it selects the first time slot in T p
i

that is also in T i. If T p
i ∩ T i � ∅, the customer leaves

without selecting a time slot.
Figure 3 shows the empirical arrival time distribu

tion. In Figure 3(a), a histogram is shown that provides
the fraction of the total number of customers that
placed an order over time. In Figure 3(a), we show the
cumulative percentage of arrivals over time. Customers
that did not place an order are not included in this
figure. Figure 3(a) demonstrates that roughly half of all
the orders are placed in a very short amount of time.
From the figure, it can also be inferred that the

interarrival time decreases toward the cutoff time. This
can be explained because it is convenient for most cus
tomers to place their order as late as possible. Typically,
the number of accepted orders also increases over time
and is highest around the cutoff time. This means that
the decision times are also longer because the underly
ing routing problems we need to solve to check the
capacity are larger. As a result, we observe a combina
tion of unfavorable circumstances near the cutoff time:
customers arrive with short interarrival times, whereas
capacity is scarce, and the decision times are high. This
suggests that most waiting time and invalid orders are
likely to occur in this period. This means that in testing
our methods it is mostly relevant to look at what hap
pens in these (final) peak periods.

To disentangle the effects of the different individual
drivers, we first present a set of controlled experiments
in which we control the interarrival and selection times.
For a given experiment, we fix the parameter to a par
ticular constant value. By varying the different parame
ter values one at a time while reducing random
stochastic noise, we can get more insights into the
impact of each parameter. For the same reason we also

Figure 2. (Color online) Locations of an Instance with 4,000 Customers

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1064 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

fix the demand per customer to a constant. One inter
pretation of this setup is that we specifically focus on
the interarrival times around the peak times at the end
of the booking period, which can be considered fairly
constant. In Section 8.6, we also present experiments in
which we use varying interarrival times, demand and
selection times per customer, which are randomly gen
erated according to realistic distributions. We want to
emphasize that using the empirical distributions, we
can see very low interarrival times for these realistic
instances. For example, in realistic instance 1, the mini
mum interarrival time is 3.5 ms, and there is a substan
tial number of arrivals with interarrival times in the
range of 10–100 ms. As explained previously, these low
interarrival times occur at a crucial period of time with
limited remaining capacity and high decision times.

We generated 10 instance sets with 2,000, 4,000, and
8,000 arriving customers, which gives a total of 30
instance sets. The demands of all customers are equal,
and each vehicle has a capacity that allows it to carry
the demand of 33 customers. In Table 1, we summarize
the number of vehicles stationed at the fulfillment cen
ters and hubs for the different instance sizes. Within
each instance set, we consider the following constant
interarrival times ∆: 1 ms, 1 ms, 10 ms, 100 ms, 1 second,
and 10 seconds. As stated previously, for the empirical
arrival time distributions, interarrival times in the order
of 1 ms and upward are observed. Furthermore, pre
liminary experiments show that our decision times,
and therefore also the response times, can be very
low, that is, less than 1 ms. We highlight here that
in absolute terms, our response times are perhaps

Figure 3. (Color online) Histogram of Arrivals (a) and Cumulative Fraction of Arrived Customers (b)

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1065

underestimates of real-life response times, because these
also include, for example, time for communication over
the Internet. Hence, relatively speaking, 1 ms represents
the case that interarrival times are lower than response
times, which is not unrealistic. Finally, we consider an
arbitrarily large interarrival time, larger than the sum of
the selection and response time, referred to as ∆ �∞.
This represents the scenario in which no invalid orders
can occur. Furthermore, we consider two cases of cus
tomer selection times: (i) each customer has a selection
time of 30seconds, and (ii) each customer has a selection
time of 0seconds, which means the customer immedi
ately selects a time slot or leaves after the time slot offer
is presented.

8. Computational Experiments
In this section, we present the results of our computa
tional experiments. In Section 8.1, we report on the
decision and response times of our algorithms. Simi
larly, we report the number of valid and invalid orders
for these instances in Section 8.2. In these sections we
demonstrate the effects that interarrival, response and
selection times have on the number of valid and invalid
orders. The placement of invalid orders does not occur
throughout the entire ordering process but rather at
times where the capacity limits are almost reached. We
illustrate this with an example in Section 8.3, which has
implications for the number of invalid orders that can
be expected for larger instances. In Section 8.4, we
report on the number of valid and invalid orders, and
response times for larger instances. Finally, we provide
the results of our experiments on instances in which
also the interarrival times, selection times and demands
vary stochastically in Section 8.6.

We report the decision and response times of the var
ious algorithms presented in this paper, and the num
ber of valid orders achieved by these algorithms. In our
experiments, we focus on five configurations of the
algorithms used for concurrency control. Observe that
there are two algorithms for the time slot, validation
and background procedures, whereas for the back
ground procedure, there is a third option of not using
any algorithm. One might also combine options. In par
ticular, in our experiments we consider a validation
procedure that first performs a cheapest insertion and
afterward performs a greedy construction. Table 2

provides a summary of the configurations that we use.
The first column provides the name of each configura
tion, and the other columns provide the algorithm
selected for each of the procedures.

We use the following parameters for the background
procedures. The GRASP used within INS+GR selects
from l � 3 possible moves. Each time a new valid order
is placed, the first new GRASP run uses l � 1, rather
than l � 3, and therefore resembles a (deterministic)
greedy construction algorithm. The INS+NS searches a
k-exchange neighborhood. We set k � 33, which is an
upper bound on the number of customers that fit in one
route. All possible segments of length 1 up to 33 custo
mers are tried for exchange. In the case of a sufficiently
large interarrival time, the INS+GR and INS+NS back
ground procedures are limited to 10 and 100 successive
runs between customer arrivals, respectively. In our
experiments, a maximum number of 100 successive
runs for INS+NS is not limiting because a local opti
mum is typically reached in less iterations.

We use a discrete event simulator to simulate the
ordering process using our configurations, which is
coded in C++11 and compiled using GCC version 6.3.
All simulation runs are executed as a single thread on
an Intel XeonVR E5-2650 v2 with 2.6 GHz (Turbo Boost
up to 3.6 GHz) and 64 GB of RAM running Debian
Linux version 9. All CPU times were measured using
std::chrono::high_resolution_clock, a high-
resolution wall-clock timer and were used with micro
second precision inside the simulations. The DTSM
configurations are essentially multithreaded, but our cus
tom discrete event simulator allows us to simulate a multi
threaded configuration using only one thread. This way,
we avoid the CPU time measurements to include possible
overhead that is specific to a multithreaded/parallel
implementation and the used CPU architecture. Only this
one thread was run at any time on the CPU.

8.1. Decision and Response Times
In this section, we report on the decision and response
times of applying the configurations CON, INS, and
INSCON to the instance sets consisting of 2,000 arriv
ing customers with a selection time of 30 seconds.
These times can be interpreted as waiting times experi
enced by a customer, but also affects the number of
time slot offers that become invalid. As running the
background procedure has no direct impact on the
decision and response times, we do not consider INS+GR
and INS+NS in this section.

We report the maximum times, which is a more
insightful statistic than the often-used average times,
for the following reason. Observe that the computa
tional effort required to find a delivery schedule
increases with the number of valid orders, hence so
does the decision time of any procedure. As a result,
the decision time is low at the start of the simulation,

Table 1. Number of Vehicles Available and Total Capacity
in Number of Customers

n

No. of vehicles
Total capacity

(no. of customers)Total Fulfillment Hub

2,000 50 20 10 1,650
4,000 100 40 20 3,300
8,000 200 80 40 6,600

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1066 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

and increases as more valid orders are placed, accord
ing to the time complexity of the used algorithm. The
maximum times determine the applicability of a config
uration and are typically observed at the end of the
ordering process.

Table 3 shows the maximum decision and response
times for the different time slot offer procedures and
validation procedures, averaged over 10 instances. The
column Interarrival provides the interarrival time ∆

between consecutive customers. Recall that we denote
a sufficiently large interarrival time by ∞. All times in
the table are reported as minutes:seconds:milliseconds.

Overall, we observe that the time slot offer proce
dures take little time, indeed the average maximum
decision times are less than a second. As expected, we
also see that CON takes substantially more time than
INS and INSCON. The average maximum response
times of the time slot offer procedures are longer than
the decision times, as additional waiting times are
incurred due to being blocked by a validation proce
dure. This difference can be observed for interarrival
times of 100 ms and longer. For shorter interarrival
times, the average maximum response times of all time
slot offer procedures are equal to their decision times.
Moreover, these times are short, 0.2 ms or less. The rea
son is that in this case, all customers have arrived
before the first customer has made a selection. Hence,
no valid order has been placed and the time slot offer
consisting of all possible time slots is easy to compute.

Similar effects also apply to the decision times of a
validation procedure. One difference is that for the
short interarrival times of 10 ms or less, valid orders
will have been placed, making the validation procedure

for these instances computationally more demanding
than the time slot offer procedure. However, validation
procedures are put in a queue. Therefore, unlike the
time slot offer procedure, validation procedures are
blocked until all previously enqueued validation proce
dures are run. As a result, although the decision times
are comparable to those of the time slot offer proce
dures, the response times increase substantially. For
example, for an interarrival time of 100 ms, the average
maximum response time for CON is almost nine min
utes, for INSCON it is almost three minutes, whereas
the INS configurations still only requires 0.2 ms. In prac
tice, it might be crucial to confirm validity in a short
amount of time, for instance, when a customer is made
to wait for confirmation of a placed order. It seems that
in such a situation CON and INSCON are less suitable
than INS.

8.2. Number of Valid and Invalid Orders
Next, we present the number of valid and invalid
orders that result from applying CON, INS, INSCON,
INS+GR, and INS+NS to the instance sets consisting of
2,000 arriving customers. Table 4 shows the number of
valid and invalid orders, averaged over the instance
sets. The column Sel. provides the selection time, that
is, 0 or 30 seconds. Again, the column Interarrival
provides the interarrival time ∆ between consecutive
customers. These results are based on a detailed
simulation of the interaction between decision times,
interarrival times, and selection times. Preliminary
experiments showed the relevance of explicitly taking
the decision times into account, even when the selec
tion times are relatively long. Comparing the results

Table 2. Configurations Investigated in This Paper

Configuration Time slot offer Validation Background

CON Greedy construction Greedy construction No
INS First insertion Cheapest insertion No
INSCON First insertion Cheapest insertion and greedy construction No
INS+GR First insertion Cheapest insertion GRASP
INS+NS First insertion Cheapest insertion Neighborhood search

Table 3. Decision and Response Times (min:s:ms) for Instances with 2,000 Customers and a Selection Time of 30 Seconds

Interarrival time
(s:ms)

Time slot offer Validation

Max. decision Max. response Max. decision Max. response

CON INS INSCON CON INS INSCON CON INS INSCON CON INS INSCON

0.001 0.2 0.0 0.0 0.2 0.0 0.0 612.5 0.5 1:162.1 13:19:572.6 181.7 4:43:202.8
1 0.2 0.0 0.0 0.2 0.0 0.0 622.9 0.5 1:144.4 13:19:382.8 0.3 4:37:178.1
10 0.2 0.0 0.1 0.2 0.0 0.1 617.3 0.5 1:158.5 13:02:296.1 0.2 4:22:187.3
100 586.4 0.8 0.2 1:091.1 0.8 992.7 612.9 0.5 1:147.4 8:56:632.6 0.2 2:57:381.6
1:000 618.2 0.9 0.8 716.0 0.9 258.1 569.3 0.5 1:152.8 569.3 0.2 257.8
10:000 611.6 0.7 0.8 611.6 0.7 0.8 553.3 0.4 1:170.6 553.3 0.2 0.2
∞ 602.8 1.0 0.7 602.8 1.0 0.7 533.9 0.5 1:165.3 533.9 0.2 0.1

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1067

with and without decision times, we found that the
realistic decision times have a significant impact on the
results in terms of invalid orders.

We first comment on the number of valid orders. For
the configurations without the background procedures,
that is, CON, INS, and INSCON, Table 4 shows that the
interarrival and selection times do not have a large
effect on the number of valid orders. As expected, we
see that CON leads to more valid orders than INS. The
configuration INSCON leads to even more valid
orders, which is due to the larger search space of the
validation procedure. Looking at the configurations
that use the background procedures, that is, INS+GR
and INS+NS, we see that they yield more valid orders
when the interarrival time increases. This is because
longer interarrival times allow the background proce
dure more time to find better delivery schedules. For
sufficiently large interarrival times, the number of valid
orders of INS+GR is comparable to that of INSCON,
which does not use the background procedure. More
over, INS+NS has the highest number of valid orders
when the interarrival times are 100 ms or more. The
configuration INS+NS seems to outperform the other
methods in terms of response time and number of valid
orders when the interarrival time is sufficiently large.
We observe that the number of valid orders is not
affected by selection time.

The number of invalid orders, due to concurrency
conflicts, is substantially affected by interarrival and
selection times for all configurations. We observe that
the number of invalid orders decreases with an increas
ing interarrival time. Indeed, for an interarrival time of
0.001 ms, we see a substantial number of invalid orders,
which decreases until there are no invalid orders when
the interarrival time is sufficiently large. Even when the
selection time is 0 seconds, we see invalid orders. In
particular, we see invalid orders for all configurations
when the interarrival time is 0.001 ms. For 1 ms, 10 ms,

and 100 ms, this also occurs for CON and INSCON due
to their higher response times. For INS, INS+GR, and
INS+NS, there are no invalid orders for interarrival
times of 1 ms or more because the response time plus
the selection time is lower than the interarrival time in
this case. When the selection time is 30 seconds, and the
interarrival time is 10 ms or less, all customers arrive
before the first customer has made a selection. This is
why the number of invalid orders is the same for inter
arrival times of 1 and 10 ms for the configurations
CON, INS, and INSCON. When the interarrival time is
0.001 ms, we observe slight deviations in the number of
invalid orders. This is because, due to slight variations
in the response time, the sequence in which customers
receive their time slot offer is not necessarily the same
as their sequence of arrival, so neither is their sequence
of making a selection.

Table 4 shows that an increase in selection time
affects the number of invalid orders when considering
interarrival times of 100 ms and more. Among the five
configurations and these three interarrival times, only
in one case does the number of invalid orders go down
as the selection time is increased from 0 to 30 seconds,
whereas in the other 14 cases, a substantial increase is
observed.

8.3. Invalid Orders over Time
Invalid orders occur when a time slot is selected that
can no longer be accommodated. Roughly stated, this
happens when during the response and selection time,
one or more other customers use up the remaining
capacity. This means that a feasible delivery schedule
can be found at the time of making the time slot offer
but not at the time that the customer chooses a time
slot.

At the start of the ordering process there is often
ample capacity available to accommodate new custo
mers and no invalid orders will occur. However, when

Table 4. Number of Valid and Invalid Orders for Instances with 2,000 Customers

Sel. (s)
Interarrival time

(s:ms)

No. of valid orders No. of invalid orders

CON INS INSCON INS+GR INS+NS CON INS INSCON INS+GR INS+NS

0 0.001 739.5 684.2 925.9 693.3 686.7 1,260.5 1,315.8 1,074.1 1,306.7 1,313.3
1 742.7 689.4 927.4 684.3 691.4 1,257.3 0.0 1,072.6 0.0 0.0
10 740.9 689.4 926.1 902.8 825.8 1,259.1 0.0 1,073.9 0.0 0.0
100 742.3 689.4 925.5 951.8 1,117.7 798.1 0.0 1,070.8 0.0 0.0

1:000 742.5 689.4 930.4 926.3 1,174.5 0.4 0.0 0.0 0.0 0.0
10:000 742.5 689.4 930.4 930.3 1,176.8 0.0 0.0 0.0 0.0 0.0

30 0.001 741.6 676.6 936.7 681.3 674.2 1,258.4 1,323.4 1,063.3 1,318.7 1,325.8
1 742.4 689.5 933.1 689.2 696.5 1,257.6 1,310.5 1,066.9 1,310.8 1,303.5
10 742.4 689.5 933.1 905.2 800.8 1,257.6 1,310.5 1,066.9 1,094.8 1,199.2
100 739.6 692.5 933.8 944.1 1,085.3 1,057.0 342.9 1,065.7 371.9 486.2

1:000 742.4 688.6 931.8 925.9 1,180.0 30.7 42.2 37.0 40.4 51.1
10:000 742.0 688.8 931.1 932.1 1,173.3 3.5 4.8 4.4 4.2 6.0
∞ 742.5 689.4 930.4 934.4 1,176.8 0.0 0.0 0.0 0.0 0.0

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1068 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

the limits of capacity are reached, time slot offers can
become invalid. This means that there is only a limited
amount of time during which the system is at risk for
getting invalid orders. The number of invalid orders
during this time depends on the interarrival, response,
and selection times, as explained before.

To illustrate the dynamics over time, we consider a
single instance from our set, with 2,000 arriving custo
mers and a selection time of 30 seconds. For the interar
rival times of 10 ms, 100 ms, 1 second, and 10 seconds,
Figure 4 shows graphs of the number of invalid orders
after each customer is processed. The graphs show that
there are no invalid orders among the first 500 delivery
requests, because the capacity limits are not yet reached.
As soon as the remaining capacity becomes limited,
invalid orders start occurring. As the different config
urations produce different delivery schedules and valid
orders, we see that the first invalid orders occur at differ
ent points in time.

In case of an interarrival time of 10 ms in Figure 4(a),
we observe a steady increase in the number of invalid
orders until all customers are processed. For the other
interarrival times, and almost all configurations, the
number of invalid orders stops increasing at some
point. This happens when it is evident that the capacity

limit has been reached, and new customers are not
offered any time slots. From that moment onward, new
customers arrivals result in no order, instead of an inva
lid order. This demonstrates that there is a limited time
range during which invalid orders occur.

As the configurations that use a background proce
dure, that is, INS+GR and INS+NS, improve the sched
ule in memory, it may be possible that after a period in
which no time slots are offered, the time slots would
again be offered. This means that after a period of no
orders, we see new valid orders again and also new
invalid orders. This effect can most clearly be seen in
Figure 4(d) for INS+NS.

8.4. Impact of the Number of Customers
Next, we present the results for the configurations INS,
INS+GR, and INS+NS to the larger instance sets con
taining 4,000 and 8,000 arriving customers and a selec
tion time of 30 seconds. We do not include CON and
INSCON, because the response times are prohibitively
large. We report the response times and number of
valid and invalid orders for these larger instances. As
shown in Table 1, not only the number of customers is
larger in these instance sets, the capacity is also propor
tionally larger.

Figure 4. (Color online) Number of Invalid Orders for an Instance with 2,000 Customers with Interarrival Times

(a) (b)

(c) (d)

Note. (a) 10 ms, (b) 100 ms, (c) 1 second, and (d) 10 seconds.

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1069

Table 5 shows the average number of valid and inva
lid orders, as well as the average maximum response
time of the time slot offer procedure in milliseconds,
TSO max response (ms). Column |C | provides the
amount of arriving customers, and once more, column
Interarrival provides the interarrival time ∆ between
consecutive customers.

First, we observe that the average maximum response
times of the time slot offer procedures are less than
6.6 ms in all cases, even for instances with 8,000 arriving
customers. The response times of the validation proce
dures are larger than those of the time slot offer proce
dures. Although we do not report the average maximum
response times of the validation procedure in Table 5, the
largest value is observed for instances with 8,000 cus
tomers and interarrival times of 0.001 ms, which is
three seconds for all configurations. This may still be
acceptable, even if a customer is kept waiting for a
confirmation.

Although the response times increase with the num
ber of customers, this is not necessarily the case for the
number of invalid orders. As illustrated in Section 8.3,
invalid orders only occur for the duration of time when
nearing the capacity limits. This duration is primarily
dependent on the response, selection and interarrival
times. For instances with an interarrival time of 100 ms
or more, the simulation encompasses this full duration.
As a result, it can be observed from Tables 4 and 5 that
the number of invalid orders using the configuration
INS is roughly the same for all instances. That is, it is
independent of the instance size.

However, for the configurations INS+GR and
INS+NS, which use a background procedure, the num
ber of invalid orders is higher for the instances with
4,000 and 8,000 customers than for the instances with
2,000 customers. Because the ordering process spans a
longer time, the improvement procedure potentially
replaces the schedule in memory at more separate
moments. Although this can have a positive effect on
the number of valid orders as explained in Section 8.3

and demonstrated in Table 5, there is also a downside.
Now, the system is more often in the situation of being
close to the capacity limit. As a result, the number of
invalid orders also increases.

8.5. Impact of Background Procedures on the
Route Schedules

Our background procedures can significantly reduce
the decision times and response times as reported in
Table 3 and increase the number of valid orders as seen
in Table 4. In addition to these benefits, we can also
improve the quality of the route schedules in memory
by using the background procedures. This relates to the
travel distances per order as these are associated with
fulfilment costs, fuel consumption, and emissions. The
quality of the route schedule at the end of the order
intake period is especially relevant when the retailer
wants to start order picking and execution based on
this schedule immediately after the cutoff time. Table 6
provides an overview of the average number of kilo
meters per order, averaged over the instances in the
instance set. As before we only include INS, INS+GR,
and INS+NS. For illustrative purposes we present the
results for an interarrival time of one second. The
results show that the background procedures create
route schedules with substantially lower travel dis
tances per order.

8.6. Realistic Instances
Next, we present the results of our experiments on the
realistic instances, in which demand, interarrival times,
and selection times are stochastic. We use 10 instances
with n � 4,000 customers for this purpose, which are
generated as described in Section 7. We assume a
capacity of 60 vehicles at the fulfilment center and 20
vehicles at each hub. We use an empirical distribution
for demand per customer, for the service duration per
customer, and for the customer arrival process as
shown in Figure 3. These data are only available for
customers that actually placed a valid order. This

Table 5. Results for the Large Instance Sets with 30-Second Interarrival Time

|C | Interarr. (s:ms)

No. of valid orders No. of invalid orders TSO max. response (ms)

INS INS+GR INS+NS INS INS+GR INS+NS INS INS+GR INS+NS

4,000 0.001 1,498.9 1,513.4 1,497.0 2,501.1 2,486.6 2,503.0 0.1 0.1 0.1
1 1,503.0 1,512.4 1,532.2 2,497.0 2,487.6 2,467.8 0.1 0.1 0.1
10 1,503.0 1,648.8 1,564.5 2,497.0 2,351.2 2,435.5 0.0 0.1 0.1
100 1,505.6 2,177.1 2,134.7 383.4 863.1 715.1 2.3 1.7 2.1

1:000 1,506.8 2,235.1 2,705.9 44.2 93.1 134.1 2.3 3.0 2.8
10:000 1,505.3 2,168.6 2,736.3 4.6 5.2 6.0 2.1 3.7 1.7

8,000 0.001 3,387.8 3,375.9 3,370.5 4,612.2 4,624.1 4,629.5 0.1 0.1 0.1
1 3,386.0 3,412.4 3,390.7 4,614.0 4,587.6 4,609.3 0.1 0.1 0.1
10 3,390.0 3,379.1 3,445.0 3,264.5 3,260.7 3,261.6 3.8 3.1 3.0
100 3,398.2 4,225.1 3,948.9 398.3 610.0 614.3 4.0 5.3 5.2

1:000 3,403.8 5,177.2 5,091.3 41.3 151.5 234.2 4.1 5.4 6.6
10:000 3,401.3 5,135.6 6,083.3 3.7 10.3 11.1 4.0 6.0 3.0

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1070 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

means, for example, that in our experiment the interar
rival times are underestimates of real-world interarri
val times. We generate the selection time in seconds
using a uniform distribution on [0, 60] based on aver
age values available to us. We apply the configuration
INS+NS, which was arguably the best performing
method in our previous experiments.

The average maximum response times for the time
slot offer and the validation are negligibly close to zero
for this configuration in these instances. This suggests
that our best concurrency control methods perform
well in realistic instances. In Table 7, for each of the 10
instances, we provide the number of valid and invalid
orders. The number of invalid orders varies between 10
and 24, with an average of 16.5. On average, less than
1% of the customers will experience an invalid order
and thus find out that their selected time slot is no lon
ger available. All these invalid orders occur during a
relatively short time period. Figure 5 illustrates this for
instance 1. All invalid orders occur during a peak in the
number of arrivals, whereas at the same time, the num
ber of valid orders and hence decision times are at their
highest, and capacity is most scarce.

9. Concluding Remarks and Future
Research Directions

In this paper, we introduce the problem of concurrent
customer interactions in online booking systems for
attended home delivery. We argue that there is a fun
damental tradeoff between the number of valid and
invalid orders and waiting times, when allowing

customers to choose their time slots. Our experiments
focused primarily on maximizing the number of valid
orders while limiting waiting times and invalid orders.
Our results show that invalid orders and waiting times
due to concurrent interactions are inevitable in this
case, even with fast state-of-the-art methods. Moreover,
our detailed experiments with different numbers of
customers, interarrival times, and selection times shed
light on the drivers of concurrent interactions and the
different tradeoffs in the design of concurrency control
strategies. For example, our experiments suggest that
using a background procedure increases the number of
customers that can be accommodated and leads to
acceptable response times. However, this success comes
at the cost of having more invalid orders.

As we are one of the first to explore the concept of
concurrency control in time slot management, there are
many avenues for future research. Here, we discuss
three relevant directions. In Section 9.1, we discuss
research directions for pessimistic concurrency control,
in Section 9.2 we discuss research direction for optimis
tic concurrency control, and in Section 9.3, we discuss
alternative time slot choice mechanisms. We conclude
in Section 9.4.

9.1. Pessimistic Concurrency Control
Pessimistic concurrency control prevents conflicts that
are caused by concurrent interactions with the system.
For DTSM, pessimistic concurrency control means
enforcing that we do not concurrently interact with
more customers than can be accommodated by the
available capacity. In Section 4, we provided a natural
example of a pessimistic concurrency control strategy
by letting customers interact sequentially with the sys
tem. This is clearly not viable in many applications due
to the long waiting times. However, it may be possible
to design more sophisticated pessimistic concurrency
control methods with less waiting times.

To prevent invalid orders, we could choose to not
offer all currently feasible slots but only offer those slots
that are feasible in any specific scenario that can unfold
given the current state of the system. The fundamental
question is as follows. Is it feasible to visit the newly
arrived customer during a specific time slot, given the
current valid orders, for every realization of the
response time, selection time, and time slot selection of
every customer currently interacting with the system?
If the answer is yes, there is no risk of invalid orders,
and the time slot can be offered. If the answer is no,
there is a second question to ask, namely whether there
is any such realization in which the customer can be
visited during the time slot under consideration. If the
answer is again no, the time slot is not offered. If the
answer is yes, we may decide to wait. These questions
seem to fit well with the paradigm of robust optimiza
tion. This gives rise to questions on how to best model

Table 6. Valid Orders and Average Travel Distance per
Order

|C |

No. of valid orders Kilometers per order

INS INS+GR INS+NS INS INS+GR INS+NS

2,000 742.4 931.8 925.9 15.9 10.8 7.6
4,000 1,506.8 2,235.1 2,705.9 14.2 8.1 6.0
8,000 3,403.8 5,177.2 5,091.3 12.1 6.1 6.9

Table 7. Results of Using NS+GR on 10 Realistic Instances
with 4,000 Customers

Instance No. of valid orders No. of invalid orders

1 3,238 18
2 3,239 14
3 3,277 17
4 3,235 13
5 3,244 20
6 3,230 19
7 3,247 24
8 3,259 17
9 3,184 10
10 3,213 13
Average 3,236.6 16.5

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1071

the uncertainty sets to appropriately describe the set
of possible realizations of response time, selection
time, and time slot selection. Another interesting meth
odological avenue of research involves finding fast
computational approaches to solve the underlying opti
mization problems. This involves exploring tradeoffs
between the modeling accuracy of the uncertainty sets
and computation times. Very detailed models of the
state space may not be tractable given the combinato
rial nature of the underlying routing problems and the
complex and intricate uncertainties based on the inter
action of different parts of the model. Furthermore, it is
shown by van der Hagen et al. (2024) that machine
learning approaches can quickly assess the feasibility of
accepting a certain delivery order in a certain time slot
given the already accepted orders. It is interesting to
study how machine learning approaches can be used to
predict and prevent concurrency conflicts.

In this context, it is also interesting to explore
different ways to interact with customers. Do we need
to provide the whole menu of possible time slots simul
taneously or can we buy more time by incrementally
revealing possible time slots? That is, for some time
slots it may be quickly determined that there is no risk
of an invalid order, whereas for others, we need more
time. This gives rise to new modeling questions but
also questions on customer preferences and behavior. It
is, for example, relevant to understand how customers
respond to waiting times. How long do customers wait
before dropping out? How does waiting affect future

sales and choice behavior? Such insights help practi
tioners decide whether pessimistic concurrency control
is beneficial or harmful based on the balance between
avoiding invalid orders and the negative impact of
waiting times on business.

9.2. Optimistic Concurrency Control
Optimistic concurrency control for DTSM does not
avoid invalid orders. In Section 9.2.1, we discuss
research directions on how to deal with these invalid
orders when they occur. In Section 9.2.2, we discuss
research opportunities focused on minimizing the
expected number of invalid orders.

9.2.1. Dealing with Invalid Orders. A basic mechanism
for dealing with invalid orders is to immediately
inform the customer corresponding to an invalid order
that their selected time slot is no longer available, and
then offer a new (possibly empty) set of time slot
options. Unfortunately, our study suggests that it can
take a significant amount of time to determine that an
order is invalid, especially during busy periods due to
the interaction between different order arrivals in the
system. Therefore, in practice, it may be more appropri
ate to cancel (or reschedule) orders after the booking
period has ended, prior to route planning.

In our experiments, we define an invalid order as the
incoming order that cannot be accommodated given
the current set of accepted (valid) orders. However, an
invalid order really only means that we cannot deliver

Figure 5. (Color online) Number of Valid and Invalid Orders over Time

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1072 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

all currently placed orders within their corresponding
time slots. Therefore, there is no fundamental reason to
cancel specifically the last incoming order to resolve the
infeasibility of the route plan. This provides more free
dom. For example, given the accumulation of orders,
we may want to find the minimum number of orders to
cancel to ensure a feasible schedule. Alternatively, we
could minimize the total (long-term) revenue loss from
cancelling orders. This gives rise to a new selective or
prize-collecting variant of the vehicle routing problem
with time windows.

Instead of canceling an order, we may serve a cus
tomer outside of their selected time slot. This can be
done with or without explicitly coordinating this with
the customer. However, without explicit coordination,
there is a risk that nobody will be available to receive
the delivery. Again, the question is which customers to
serve later or earlier and by how much, to create a time
feasible delivery schedule. This flexibility leads to new
routing problems taking customer availability into
account. This is related to a recent stream of work that
focuses on maximizing the success rate of deliveries
while minimizing the cost of additional attempts
needed if the first attempt was not successful (Özarik
et al. 2021, 2023; Voigt et al. 2023).

We can also try to actively reschedule customers to
different time windows to create a feasible routing
schedule. This gives rise to novel route optimization
problems that are loosely related to the area of vehicle
routing problems with soft time windows (Figliozzi
2010). Moreover, some customers are more flexible
than others in terms of rescheduling their time slot
appointment. One interesting question in this realm
relates to finding the best sequence in which to
approach customers to reschedule. Moreover, we may
also offer monetary incentives or discounts to persuade
customers to switch to another time window or accept
a longer time window. How to best deploy incentives
to maximize the effectiveness is another interesting
area of study.

A customer may accept an occasional cancellation,
rescheduling, or late delivery. An interesting line of
research is to design time slot offer procedures and
algorithms that generate the final route schedule to
ensure that such actions do not occur too often for the
same customer. This links the planning and control
across multiple booking periods and thus creates sig
nificant computational challenges.

9.2.2. Minimizing the Risk of Invalid Orders. If there
are historical data available on order patterns and time
slot preferences of customers, it may be possible to
exploit this information. Although pessimistic control
strategies prevent all possible concurrent interactions,
even if they are unlikely to happen, we can also take a
more probabilistic approach focusing on likely conflicts.

This involves explicitly modeling customer and system
behavior. Consider a simple example, in which we
know that all customers currently in the system prefer
morning slots. In that case, we may confidently offer a
newly arriving customer an afternoon slot such that the
probability of conflicts is low. The opposite logic also
applies. If an incoming customer prefers only afternoon
slots, we can confidently block the morning slots for this
customer without the risk of losing this customer due to
lack of appropriate choices. We can then either optimize
the system given certain chance constraints or by taking
into account the costs and awards in the objective func
tion. It is not obvious how to model the different states
and uncertainties in such a setting to build models and
methods that are tractable and fast. One interesting ave
nue for future research is exploring the most suitable
customer choice models and their level of detail and
accuracy. Also here, we see promising opportunities for
data-driven machine learning approaches to predict
both customer and system behavior and to identify use
ful patterns and properties for concurrency control.
Given the need for extremely fast methods, it may be
especially relevant to explore “predict and optimize”
models that take into account the time slot offering deci
sions in the prediction process (Elmachtoub and Grigas
2022, Vanderschueren et al. 2022).

On the capacity side, there may also be ways to
reduce the risk of invalid orders. For example, we can
anticipate potentially invalid orders by reserving some
backup vehicles that are not visible to the system dur
ing the order intake phase. Determining the appropri
ate level of backup vehicle capacity is an interesting
stochastic problem in this context.

9.3. Alternative Mechanisms
Some of the fundamental tradeoffs and concurrency
issues associated with letting customers choose a time
slot for attended home delivery in real time can be pre
vented by different ways of interacting with the
customers.

First, online grocery retailers have started to offer
subscription services (Wagner, Pinto, and Amorim
2021). Some of these subscription models allow fre
quent customers to subscribe to a specific delivery win
dow, such as every Monday 0600–2000 hours for the
next three months. In a hybrid system, where some cus
tomers subscribe and others arrive dynamically and
sporadically, we would still encounter the concurrency
problems discussed in this paper. That is, the subscrip
tion customers can be considered early-booking custo
mers, and we still see concurrent interaction for the
dynamically arriving customers. In a subscription-only
system, we would likely not see concurrent interaction
because subscription customers would typically not all
arrive at the same time, would be willing to accept lon
ger wait times, and may be more flexible in their choice

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1073

of time slots. Such a full subscription model would
only work with a repeat-purchase product such as
groceries and a large base of loyal customers. One of
the challenges of the subscription system is customer
churn. Another challenge is subscription customers
who do not use their subscribed time slot. This raises
new questions. How do you deal with subscribers who
do not order? Customers with a subscription can still
choose not to place an order. When this happens,
capacity is freed up to accommodate other customers.
To know when this capacity will become available, the
subscription may specify that if no order is placed
before a certain time, the reservation of the time slot
will be canceled. Optimistic concurrency control strate
gies may anticipate that this will happen for some
customers and therefore allow invalid orders from
dynamically arriving customers before this specified
time. In this case, it remains uncertain whether an order
is valid or invalid until after the specified time. New
time slot offer procedures must be designed to accom
plish this. Even outside the subscription service model,
these research questions are relevant in settings in
which it is common that customers cancel their order.

Second, it may be possible to reduce the negative
impact of concurrent interactions by increasing the
time flexibility in final route planning. This can be done
by having a sufficient number of customers select a
wider time slot or provide flexibility for multiple time
slots (Strauss, Gülpinar, and Zheng 2021). This creates
more wiggle room to find a feasible routing schedule
after the cutoff time. This gives rise to several research
questions on how to model and operate such a system
and on how to preserve sufficient flexibility during the
order intake phase while maximizing choices offered to
the customer and thereby the number of valid orders.
One possible idea would be to offer various lengths of
time windows to customers at different stages of the
planning period. Köhler, Ehmke, and Campbell (2020)
study a system in which early in the planning stage
only long time windows are offered, whereas later
short time windows are offered. From a concurrency
control perspective, it may be better to actually use an
opposing strategy in which we offer longer time slots
in the busy period just before the cutoff time. It is inter
esting to explore the tradeoffs that arise in such a situa
tion in terms of routing efficiency versus the risks of
invalid orders.

9.4. Concluding Remarks
Despite the growing attention for dynamic time-slot
management in the academic literature, the problems
of concurrent interactions in online time-slot reserva
tion systems are only now surfacing with large-scale
implementation in practice. In this paper, we introduce
the problems of concurrent interaction, show the need

for new methods to prevent and deal with these pro
blems, and point to relevant future research directions.

References
Abdollahi M, Yang X, Nasri MI, Fairbank M (2023) Demand man

agement in time-slotted last-mile delivery via dynamic routing
with forecast orders. Eur. J. Oper. Res. 309(2):704–718.

Agatz N, Fan Y, Stam D (2021) The impact of green labels on time
slot choice and operational sustainability. Production Oper. Man
agement 30(7):2285–2303.

Agatz N, Campbell AM, Fleischmann M, Savelsbergh MWP (2011)
Time slot management in attended home delivery. Transporta
tion Sci. 45(3):435–449.

Agatz N, Campbell AM, Fleischmann M, van Nunen J, Savelsbergh
MWP (2013) Revenue management opportunities for Internet
retailers. J. Revenue Pricing Management 12(2):128–138.

Ausseil R, Pazour JA, Ulmer MW (2022) Supplier menus for
dynamic matching in peer-to-peer transportation platforms.
Transportation Sci. 56(5):1304–1326.

Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency Con
trol and Recovery in Database Systems, vol. 370 (Addison-Wesley,
New York).

Campbell AM, Savelsbergh MWP (2005) Decision support for con
sumer direct grocery initiatives. Transportation Sci. 39(3):
313–327.

Campbell AM, Savelsbergh MWP (2006) Incentive schemes for
attended home delivery services. Transportation Sci. 40(3):327–341.

Chen HR (2009) An evaluation of real-time transaction services in
web services e-business systems. Advances in Data and Web
Management (Springer, Berlin), 532–537.

Cleophas C, Ehmke JF (2014) When are deliveries profitable? Bus.
Inform. Systems Engrg. 6(3):153–163.

Ehmke JF, Campbell AM (2014) Customer acceptance mechanisms
for home deliveries in metropolitan areas. Eur. J. Oper. Res.
233(1):193–207.

Elmachtoub AN, Grigas P (2022) Smart “predict, then optimize”.
Management Sci. 68(1):9–26.

Figliozzi MA (2010) An iterative route construction and improvement
algorithm for the vehicle routing problem with soft time win
dows. Transportation Res. Part C Emerging Tech. 18(5):668–679.

Fleckenstein D, Klein R, Steinhardt C (2023) Recent advances in inte
grating demand management and vehicle routing: A methodo
logical review. Eur. J. Oper. Res. 306(2):499–518.

Gendreau M, Ghiani G, Guerriero E (2015) Time-dependent routing
problems: A review. Comput. Oper. Res. 64:189–197.

Graefe G (2019) On transactional concurrency control. Synthetic Lec
ture Data Management 14(5):1–404.

Ichoua S, Gendreau M, Potvin JY (2003) Vehicle dispatching with
time-dependent travel times. Eur. J. Oper. Res. 144(2):379–396.

Khaing KK, Myint MM (2017) Data consistency and concurrency
controlling in air ticket selling in different sites by using
notification-reread method (NRM). PhD thesis, MERAL Portal,
University of Computer Studies, Yangon, Myanmar.

Kindervater GAP, Savelsbergh MWP (1997) Vehicle routing: Han
dling edge exchanges. Aarts E, Lenstra JK, eds. Local Search in
Combinatorial Optimization, 1st ed. (John Wiley & Sons, New
York), 337–360.

Koch S, Klein R (2020) Route-based approximate dynamic program
ming for dynamic pricing in attended home delivery. Eur. J.
Oper. Res. 287(2):633–652.

Köhler C, Ehmke JF, Campbell AM (2020) Flexible time window
management for attended home deliveries. Omega 91:102023.

Lewandowski G, Bouvier DJ, McCartney R, Sanders K, Simon B 2007
Commonsense computing (episode 3) concurrency and concert
tickets. Proc. 3rd Internat. Workshop Comput. Ed. Res. (ACM, New
York), 133–144.

Visser, Agatz, and Spliet: Managing Concurrent Interactions
1074 Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS

Liu N, Van De Ven PM, Zhang B (2019) Managing appointment
booking under customer choices. Management Sci. 65(9):
4280–4298.

Özarik SS, Veelenturf LP, Van Woensel T, Laporte G (2021) Opti
mizing e-commerce last-mile vehicle routing and scheduling
under uncertain customer presence. Transportation Res. Part E
Logist. Transportation Rev. 148:102263.

Özarik SS, Lurkin V, Veelenturf LP, Van Woensel T, Laporte G
(2023) An adaptive large neighborhood search heuristic for last-
mile deliveries under stochastic customer availability and mul
tiple visits. Transportation Res. Part B Methodological 170:194–220.

Strauss A, Gülpinar N, Zheng Y (2021) Dynamic pricing of flexible time
slots for attended home delivery. Eur. J. Oper. Res. 294(3):1022–1041.

van der Hagen L, Agatz N, Spliet R, Visser TR, Kok L (2024) Machine
learning–based feasibility checks for dynamic time slot manage
ment. Transportation Sci. 58(1):94–109.

van Ryzin G, Vulcano G (2014) A market discovery algorithm to
estimate a general class of nonparametric choice models. Man
agement Sci. 61(2):281–300.

Vanderschueren T, Verdonck T, Baesens B, Verbeke W (2022) Predict-
then-optimize or predict-and-optimize? An empirical evaluation
of cost-sensitive learning strategies. Inform. Sci. 594: 400–415.

Visser TR, Spliet R (2020) Efficient move evaluations for time-
dependent vehicle routing problems. Transportation Sci. 54(4):
1091–1112.

Voigt S, Frank M, Fontaine P, Kuhn H (2023) The vehicle routing prob
lem with availability profiles. Transportation Sci. 57(2):531–551.

Waßmuth K, Köhler C, Agatz N, Fleischmann M (2023) Demand
management for attended home delivery: A literature review.
Eur. J. Oper. Res. 311(3):801–815.

Wagner L, Pinto C, Amorim P (2021) On the value of subscription mod
els for online grocery retail. Eur. J. Oper. Res. 294(3):874–894.

Yang X, Strauss AK (2017) An approximate dynamic programming
approach to attended home delivery management. Eur. J. Oper.
Res. 263(3):935–945.

Yang X, Strauss AK, Currie CSM, Eglese R (2016) Choice-based
demand management and vehicle routing in e-fulfillment. Trans
portation Sci. 50(2):473–488.

Visser, Agatz, and Spliet: Managing Concurrent Interactions
Transportation Science, 2024, vol. 58, no. 5, pp. 1056–1075, © 2024 INFORMS 1075

