ERASMUS UNIVERSITY ROTTERDAM
Colloquium doctum Mathematics level 2
for International Bachelor Economics \& Business Economics (IBEB)
and for International Business Administration (IBA)
PRACTICE EXAM

Please note:

- Write your student number on each sheet of the exam (this number is mentioned in the letter you have received from the exam administration)
- The use of a so called "graphing calculator" or "programmable calculator" is not permitted. "Simple" scientific calculators are allowed.
- Available time: 2.5 hours (150 minutes). You are not allowed to leave the examination room during the first hour of the exam and during the last 15 minutes.
- You CANNOT take any part of the exam home. All questions and answers have to be returned to the supervisor.
- In all your answers, give a complete solution where you show all the required steps, formulas, and substitutions that lead to your answer. A good or wrong answer is only a small part of the solution. The quality and completeness of your detailed solutions determine the points you will get. You should end an exercise with a conclusion or an answer.
- Questions containing the words "solve", "derive" or "calculate" require an exact answer; a decimal approximation is not allowed.

Question 1

Solve each of the systems of equations below:
(a) $\left\{\begin{aligned} 3 x+11 y & =21 \\ 2 x+5 y & =7\end{aligned}\right.$
(b) $\left\{\begin{aligned} 5 x-2 y & =-7 \\ 11 x-3 y & =-21\end{aligned}\right.$

Question 2

Determine the derivative of each of the following functions, and simplify your answer as much as possible.
(a) $f(x)=\sqrt{x^{2}+4}$
(b) $\quad f(x)=\ln \left(x^{2}-6 x\right)-\ln (x)$
(c) $f(x)=\frac{x^{2}+8 x+15}{5+x}$

Question 3

Given the function $f(x)=e^{-x^{2}+2 x}$
(a) Determine the extreme values of $f(x)$ or show that f has no extreme values. Determine for each extreme value whether it is a (local) maximum or a (local) minimum.
(b) Show that $f^{\prime \prime}(x)=2\left(2 x^{2}-4 x+1\right) e^{-x^{2}+2 x}$. Furthermore, determine the points of inflection of f or show that f has no inflection points.
(c) Determine the domain of function f and sketch the graph of f, based on the answers to the previous questions.

Question 4

Solve the following equations:
(a) $\ln \left(x^{4}-24 x^{2}\right)-\ln \left(x^{2}\right)=0$
(b) $\sqrt{x^{2}-15 x}-x=5$
(c) $\quad\left(3^{x}\right)^{2}=\frac{1}{9^{3 x+4}}$

Question 5

Consider the functions $f(x)=|2 x|$ and $g(x)=x^{2}-3$
Note: $|x|$ denotes the absolute value of x.
(a) Sketch the graphs of f and g in one figure.
(b) Solve $|2 x|=x^{2}-3$
(c) Solve $|2 x| \leq x^{2}-3$

Question 6

(a) Determine the formula of the straight line through the point (10,3), and parallel to the line $y=\frac{2}{5} x+13$.
(b) Determine the formula of the straight line through the point $(10,3)$, and perpendicular to the line $y=\frac{2}{5} x+13$.
(c) Determine the formula of the tangent line of $f(x)=\frac{2}{5} x^{2}+13 x-167$ at the point $(10,3)$.

Question 7

(a) Sketch in the same figure the graphs of the functions

$$
f(x)=\frac{x+\frac{1}{2}}{2} \quad \text { and } \quad g(x)=\frac{2}{x+\frac{1}{2}}
$$

(b) Calculate all points of intersection of the graphs of f and g.
(c) Determine all the values of x for which the inequality $f(x) \geq g(x)$ holds.

Question 8

(a) For each of the following three equations, give the number of solutions (explain your answer).
(i) $3 x^{2}-2 x-2=0$
(ii) $3 x^{2}+8 x+8=0$
(iii) $3 x^{2}+20 x+20=0$
(b) Give all value(s) of p for which the equation $3 x^{2}+p x+p=0$ has no solutions.

Question 9

Consider the function $f(x)=a x^{4}-8 x^{3}+b$. Assume that $(x, y)=(2,8)$ is an inflection point of this function. Show that f has another inflection point and compute the (x, y)-coordinates of this other point of inflection.

