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1 Introduction

The essay that follows is prompted by recent achievements on models of
information transmission, which, in the game-theoretic jargon, distinguish
between �cheap talk�and �persuasion�. �Cheap talk�refers to situations in
which informed agents can send every signal they wish at no cost, so that
they can possibly lie. By contrast, the term �persuasion� is relevant when
some agents control the signals that are sent to others �as a function of the
available information �but cannot lie. In particular, �Bayesian persuasion�
denotes the particular case where some agents can design, in an ex ante util-
ity maximizing way, the information structure to be used later by Bayesian
decision-makers.
Starting with by now iconic papers like Crawford and Sobel (1982) on

cheap talk and Kamenica and Gentzkow (2011) on Bayesian persuasion, the
literature on these topics has become huge. The goal of the essay that follows
is just to show that many basic insights have spread from the seminal study
of repeated games with incomplete information �initiated by Aumann and
Maschler in the late 1960�s �to the systematic analysis of static games with
communication.
My overview will be awfully selective, with a bias in favor of my own work.

The surveys of Bergemann and Morris (2016b, 2019), Kamenica (2019),
Kreps and Sobel (1994), Özdo¼gan (2016) and Sobel (2013) complement the
present one.1 The results that I will cover �t in the game-theoretic tradition
initiated by von Neumann, Nash and Harsanyi, namely, assume that agents
�players �have �nitely many types and actions but arbitrary utility ��pay-
o¤��functions.2 These players can make use of mixed strategies and are
expected utility maximizers.
Here is a short description of the paper. Section 2 explains to which extent

a basic technique that was developed to solve zero-sum repeated games with
a single informed player ��concavi�cation��turns out to be also useful to
study Bayesian persuasion. Yet incentive compatibility conditions are much
weaker in the latter model than in the former. Section 3 describes a char-

1Kreps and Sobel (1994) insist on the di¤erences between �cheap talk�and �signaling.�
Kamenica (2019) concentrates on Bayesian persuasion and its applications. Bergemann
and Morris (2019) adopt a general, abstract view of information design. Sobel (2013) and
Özdo¼gan (2016) rather deal with parametrized models, allowing for comparative statics.

2Section 8 is an exception: it is devoted to Crawford and Sobel (1982)�s uniform
quadratic example, in which types and actions lie in a real interval.
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acterization of Nash equilibria in two-person non-zero-sum repeated games
with a single informed player. The characterization necessitates �dimartin-
gales�as a further tool. These are dynamic processes which account for a
basic belief feasibility condition (to be ful�lled in any model of information
transmission, in particular, Bayesian persuasion) but also for strong, truth
telling, incentive compatibility conditions faced by the �strategic �informed
player (such conditions do not appear in Bayesian persuasion).
Section 4 considers two-person non-zero-sum repeated games of �pure

information transmission,� in which the informed player�s actions are not
payo¤-relevant. Surprisingly, the characterization of Nash equilibrium out-
comes described in Section 3 does not become simpler in this particular class
of games: dimartingales cannot be dispensed with. However, as explained in
Section 5, under pure information transmission, repeated games with incom-
plete information are closely related to static games preceded by possibly
long cheap talk. Hence dimartingales are also an essential tool to character-
ize the Nash equilibrium outcomes in the latter class of games and players
can achieve more Nash equilibrium outcomes by talking longer.
Section 6 still focuses on games of pure information transmission but

is devoted to correlated equilibrium, a solution concept that extends Nash
equilibrium by allowing players to observe correlated extraneous signals be-
fore the beginning of the game. A simple characterization is proposed for
the correlated equilibria of the in�nitely repeated game: they are outcome-
equivalent to solutions of the static game, the �mediated� equilibria. As a
corollary, once the correlated equilibrium is adopted as solution concept, in
static games with information transmission, a single phase of cheap talk is
enough to obtain the e¤ects of long cheap talk or even of a mediator.
Section 7 summarizes the main single stage information transmission

schemes considered in the paper, namely, Bayesian persuasion (Section 2),
mediated equilibrium (Section 6) and cheap talk (Section 5). Very recent
contributions make it possible to compare these various schemes from the
informed player�s viewpoint. This section can be read independently of the
developments on repeated games, i.e., directly after Section 2.
Section 8 illustrates the consequences of possibly long cheap talk and

mediation in the popular uniform quadratic example of Crawford and Sobel
(1982). As Section 7, this section can be followed without entering the details
of the other ones. Section 9 goes back to repeated games with incomplete
information, to deal with existence issues that were left open in the previous
sections. Section 10 concludes with more general models.
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2 Concavi�cation as a �rst illustration

In this section, I �rst brie�y recall the basic features of �Bayesian persuasion.�
Most papers on this topic, starting with Kamenica and Gentzkow (2011)
cite Aumann and Maschler (1995) for a technique that can be referred to
as �concavi�cation.� I compare the way in which this technique is used in
Bayesian persuasion and in repeated games with incomplete information.

2.1 Concavi�cation in Bayesian persuasion

In the basic model of �Bayesian persuasion�(Kamenica and Gentzkow (2011)),
an individual (who, for reasons to be clear, will be called player 2) has to
make a decision whose outcome depends on a state of nature k (which, to �x
ideas, lies in a �nite set K). This state of nature is unknown to the decision-
maker but another individual, the information-designer (or player 1), has the
power to design a fully reliable experiment which randomly selects a signal
for the decision-maker, as a function of the true state. The decision-maker
and the information-designer share a common prior probability distribution
p over the possible states (i.e. over the set K), their utility is a function of
the state and the decision, the decision-maker maximizes his expected utility
at his current belief over the states. This belief is updated as a function of
the signal selected by the experiment, using Bayes formula.
More precisely, let us assume that player 2 has to choose an action a2 in

a �nite set A2. Let us denote his payo¤ as V k(a2) when his action is a2 and
the state of nature is k; let player 1�s payo¤, under the same circumstances,
be denoted as Uk(a2). This de�nes a basic decision problem, which will be
referred to as DP0(p) all along the paper.
If the decision-maker does not receive any further information on the state

of nature k, he just chooses his action a2 to maximize his expected payo¤P
k p

kV k(a2). Let uNR(p) be the best utility the information-designer can
expect by choosing a nonrevealing experiment, which selects signals inde-
pendently of the state. This is achieved by assuming that, when player 2 is
indi¤erent between two actions, he chooses the one with the highest possible
expected utility for player 1.
Kamenica and Gentzkow (2011) show that, by designing his experiment

optimally, i.e., to maximize his own expected payo¤, the information-designer
can achieve the expected utility cavuNR(p), where cavu is the smallest con-
cave function above u. The result is illustrated on a simple example below.
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Example 1
Let us assume that there are two states of nature, namely,K = f1; 2g, and

that player 2�s set of actions is A2 = fj1; j2; j3; j4g. Let the payo¤ functions
be

j1 j2 j3 j4
(U1; V 1)(�) = 2; 0 �1; 3 1; 4 0; 5

j1 j2 j3 j4
(U2; V 2)(�) = 0; 5 1; 4 �1; 3 2; 0

Let p = (p1; p2) be the common prior probability over types (hence
p2 = 1 � p1). The optimal decisions of player 2, as a function of p1, are: j1
if 0 � p1 � 1

4
, j2 if 14 � p1 � 1

2
, j3 if 12 � p1 � 3

4
, j4 if 34 � p1 � 1. This

generates the following mapping3 uNR:

2p1 if 0 � p1 < 1
4

uNR(p) = 1� 2p1 1
4
� p1 < 1

2

2p1 � 1 1
2
� p1 < 3

4

2(1� p1) 3
4
� p1 � 1

while the mapping cavuNR is:

2p1 if 0 � p1 � 1
4

cavuNR(p) =
1
2

if 1
4
� p1 � 3

4

2(1� p1) if 3
4
� p1 � 1

The mappings are represented below.

3In this example, the mapping uNR is continuous, which is a bit peculiar (see the
remark at the end of this section; see Section 7 for an example in which uNR is just
upper-semi-continuous).
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A nonrevealing experiment enables player 1 to achieve cavuNR(p) when
p1 =2 (1

4
; 3
4
). If p1 2 (1

4
; 3
4
), player 1 designs a state-dependent experiment,

so that player 2 computes the posterior probabilities 1
4
and 3

4
. For instance,

when p1 = 1
2
, such an experiment selects one of two signals, H or L, H is

selected with probability 1
4
when the state is 1 and with probability 3

4
when

the state is 2.

Sobel (2013, footnote 27) notes: �Aumann and Maschler (1995) contained
the basic mathematical result in their analysis of repeated games with incom-
plete information.�
Kamenica and Gentzkow (2011) give a slightly more detailed account in

their introduction: �the fact that the informed player�s initial actions have
no impact on his long-run average payo¤s (and can thus be treated as noth-
ing but a signal) combined with a focus on Nash equilibria (which implicitly
allow for commitment [sic]) makes Aumann and Maschler�s problem mathe-
matically analogous to ours.�
We will show below that the informed player�s actions indeed have a sig-

naling role in Aumann and Maschler (1966)�s model and that Kamenica and
Gentkow (2011)�s problem is analogous to the very �rst part of Aumann and
Maschler�s one. However the fact that Nash equilibria allow for commitment
is disputable.
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2.2 Concavi�cation in repeated games with incomplete
information

The quotation �Aumann and Maschler (1995)�refers to a book, which gath-
ers reports that were written much earlier, from 1966 until 1968, partly in
collaboration with R. Stearns.4 These reports were prepared at the initiative
of the US Disarmament Agency in the middle of the cold war.5 Aumann and
Maschler were thus motivated by very practical issues, which were de�nitely
more conceptual than mathematical. A main theme was that by making
use of their information, the US forces would also reveal it, which could be
disastrous in the long run. It is true that Aumann and Maschler identi�ed
many di¤erent facets of the strategic use of information, which called for
very diverse mathematical tools. This left their followers6 with a number of
challenges, many of which were solved with the help of rather sophisticated
mathematical techniques (see Mertens, Sorin and Zamir (2015)�s book).
Let me go on with some details on Aumann and Maschler (1966)�s results.

They start with a standard two-person game. Let A1 (resp., A2) be the �nite
set of actions of player 1 (resp., 2). The payo¤s depend on a state of nature
k, which can take �nitely many values. Let us denote them as Uk(a1; a2) and
V k(a1; a2) for player 1 and player 2 respectively, when the state is k and the
actions (a1; a2) 2 A = A1�A2. The players share a common prior p over the
states. A main di¤erence with the model of the previous subsection is that,
here, player 1 knows the state of nature, which can thus be referred to as
player 1�s type, in the sense of Harsanyi (1967). It is convenient to represent
the players�asymmetric information by making the game start with a move
of nature selecting the state k, player 1 being the only one to be informed
of k. Then, at every stage, the players simultaneously choose actions, which
are observed by both of them, stage after stage. Payo¤s are undiscounted,
i.e., evaluated as limits of averages. This de�nes the game �1(p).
Let fNR(p) be the best expected payo¤ player 1 can guarantee himself,

whatever player 2�s reaction, by playing independently of the state. fNR(p)
can be computed as the minmax level of player 1 in the expected one-shot

4Each chapter of Aumann and Maschler (1995) is followed by �postscripts�summariz-
ing the main results obtained between 1966 and 1995.

5This is acknowledged in Kamenica (2019) in �a few words on the intellectual history
of information design and the concavi�cation approach.�

6Just to mention a few from the ��rst generation:�S. Hart, R. Simon, S. Sorin, J.-F.
Mertens, S. Zamir.
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game.7 Aumann and Maschler (1966) show that, in �1(p), by making use
of his information, player 1 can guarantee himself cavfNR(p), and no more,
against any strategy of player 2.8

One of the keys to the result is that, in the absence of discounting, player
1�s actions at the early stages of the game can be interpreted as costless
signals. Player 1 can thus modify player 2�s probability distribution over
the states by choosing his actions s for the �rst n stages of the game (in
S = (A1)

n, for some n = 1; 2; :::) by means of a type-dependent mixed
strategy. Which posteriors ps can be reached in this way? All the ps�s whose
expectation, with respect to some probability distribution over the signals, is
the prior p. This characterization, which is just a straightforward consequence
of Bayes formula, is known as the �splitting lemma� in the literature on
repeated games with incomplete information (see, e.g., Sorin (2002)). As
understood in the previous subsection, it is also a corner stone in �Bayesian
persuasion.�Using the splitting lemma, Aumann and Maschler (1966) �rst
establish that if player 1 can guarantee himself some f(p) in �1(p), he can
as well guarantee himself cavf(p).
This looks at �rst sight quite similar to what we have seen for Bayesian

persuasion. There are however a number of di¤erences, which re�ect that
uNR(p) and fNR(p) are computed in quite di¤erent games. First of all, in
Aumann and Maschler (1966)�s framework, the state of nature corresponds
to player 1�s �type�. And player 1 is a strategic player, who cannot commit
to randomly select his action as a function of the true state of nature when
he maximizes his payo¤ against player 2. In particular, player 1�s signaling
(minmax) strategy is not only constrained by the straightforward condition
on posteriors but also by incentive compatibility conditions, which guarantee
that he cannot pro�t from lying about his type.9

By contrast, an implicit condition behind Bayesian persuasion is that
the information-designer chooses his experiment without knowing the state

7A precise formula is: fNR(p) = min�2�(A2)max�2�(A1)

�P
k2K p

kUk(�; �)
�
.

8In the previous presentation, there is no restriction on the payo¤ matrices, so that
�1(p) can be viewed as a non-zero-sum game. fNR(p) (resp., cavfNR(p)) is the minmax
level of player 1 in the expected one-shot game (resp., in �1(p)), where player 1 is the
maximizer. In Aumann and Maschler (1966)�s original model, the game is assumed to be
zero-sum and player 1 is the maximizer.

9Player 1�s incentive compatibility conditions somehow come for free in Aumann and
Maschler (1966)�s analysis, whose aim is to characterize the informed player�s individually
rational level. We will be more precise on incentive compatibility conditions in the next
section.
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of nature and can make sure that the experiment be fully reliable, namely,
selects the signal as a function of the true state. Another di¤erence is that
Aumann and Maschler (1966) are interested in player 1�s minmax level, so
that player 2 appears as player 1�s opponent.
But the most important di¤erence between the two frameworks is that,

in Aumann and Maschler (1966), it is far from obvious that player 1 cannot
guarantee more than cavfNR(p). Actually, easy examples (like the one below)
illustrate that it may happen that player 1 can do much better in the �nitely
repeated game (the same holds in the discounted in�nitely repeated game).
A result of Blackwell (1956) can be used to show how, in the undiscounted
in�nitely repeated game, the uninformed player can keep the payo¤ of the
informed one below cavfNR(p).

Example 2
Player 1 is informed; he has two types, K = f1; 2g, and two actions H

and L. Player 2 is uninformed and has three actions `, c and r. As in Example
1, let p = (p1; p2) be the common prior probability over types. The game is
zero-sum, the utility function of player 1 is:

` c r
k = 1 H 2 0 1

L 2 0 �1
` c r

k = 2 H 0 2 �1
L 0 2 1

If the informed player does not make use of his private information, he
gets, at best,

fNR(p) = min
�
2p1; 2(1� p1);max

�
2p1 � 1; 1� 2p1

		
It can be checked that fNR(p) coincides with the mapping uNR(p) computed
in Example 1 (see the �gure below).10

10The mapping fNR(p) is continuous, a property that always holds in Aumann and
Maschler�s framework. In Bayesian persuasion, if player 2 has �nitely many actions and
breaks ties in favor of player 1, uNR is upper-semi-continuous (but not necessarily contin-
uous, see Section 7).
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In the one-shot game, player 1 can make full use of his information without
taking any risk, namely, play H (resp., L) when his type is 1 (resp., 2); he
gets, at best,

f1(p) = min
�
2p1; 2(1� p1)

	
.

In the in�nitely repeated game, player 1�s �rst move can be used as a
signal. According to Aumann and Maschler (1966) he gets, at best, the level
cavfNR(p) = cavuNR(p) computed in Example 1.
We observe that

for every p s.t. p1 2 (1
4
;
3

4
), f1(p) > cavfNR(p).

More generally, one can show that player 1�s minmax levels in the n times
repeated game de�ne a sequence of concave mappings fn(p) � cavfNR(p),
which converge to cavfNR(p) (see, e.g., Sorin (2002)).

3 Joint plans and dimartingales

In this section, I describe what I view as the main achievement in Aumann
and Maschler (1995), namely, fundamental steps toward the characterization
of the Nash equilibria of the undiscounted in�nitely repeated nonzero-sum
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game �1(p) introduced in the previous section. This is the topic of Aumann,
Maschler and Stearns (1968), reprinted as the last chapter of Aumann and
Maschler (1995). With this view, the results of Aumann and Maschler (1966)
and Blackwell (1956) appear as auxiliary tools to compute the players�indi-
vidually rational levels in the game �1(p).
The name �Folk theorem� had not yet been coined in the 1960�s, but

Aumann, Maschler and Stearns knew that, under complete information, the
Nash equilibrium payo¤s of an undiscounted in�nitely repeated game coincide
with the feasible individually rational payo¤s which, in this case, are de�ned
in the one-shot game.
Equipped with a double background (Folk theorem under complete in-

formation and individually rational levels under incomplete information),
Aumann, Maschler and Stearns (1968) start by characterizing the �nonre-
vealing�Nash equilibrium payo¤s in the game �1(p). A noticeable feature
is that these payo¤s are sustained by strategies of the informed player that are
nonrevealing on the equilibrium path but may very well be type-dependent
o¤ path, i.e., to punish player 2 by means of a trigger strategy keeping him
below his individually rational level.11

Aumann, Maschler and Stearns (1968) propose easy examples to show
that a nonrevealing equilibrium may not exist for some values of the prior
probability distribution p. Furthermore, a nonrevealing Nash equilibrium
of the game with incomplete information �1(p), when it exists, may not
re�ect a lesson that is familiar under complete information, namely, that the
repetition of a game enables the players to cooperate. Aumann, Maschler
and Stearns (1968) go on with �joint plan equilibria�in which the informed
player �rst sends a signal s to the other one, who updates his prior p to
a posterior ps. Then, given the signal s, the players play a nonrevealing
equilibrium of �1(ps). As in the previous section, the absence of discounting
enables the informed player to use his early actions as costless signals.
A �signaling strategy� takes the form of a mixed strategy �(� j k) to

choose a signal for every type k. It is formally identical to the experiment
of an information-designer in Bayesian persuasion. The posteriors ps are just
constrained by the fact that their expectation is the prior p (splitting). But
here, player 1 chooses his signal by himself, which implies very demanding

11Let gNR(p) be the best expected payo¤ player 2 can guarantee himself if player 1 does
not make use of his information. Player 2�s individually rational level is vexgNR(p), where
vexg is the largest convex function below g.
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incentive compatibility conditions. Indeed, if being of type k, player 1 sends
signals s and s0 with positive probability (namely, �(s j k) > 0, �(s0 j k) > 0),
he must be indi¤erent between s and s0. Denoting as xks the expected payo¤
of player 1 of type k after having sent signal s, we must have xks = x

k
s0.
12

Summing up loosely, let (x; �) = ((xk)k2K ; �) be a pair of interim ex-
pected payo¤s for player 1 and player 2 respectively13; (x; �) is a joint plan
equilibrium expected payo¤ if and only if there exist a probability distrib-
ution over signals and for every signal s, a posterior ps over the states, an
interim payo¤ xs = (xks)k2K for player 1 and an expected payo¤ �s for player
2 such that (i) for every s, (xs; �s) is a nonrevealing equilibrium payo¤ of
�1(ps) (ii) xs = xs0 for every s, s

0
and (iii) (p; x; �) is the expectation of

(ps; xs; �s), in particular, the prior p is the expectation of the posteriors ps.
Having characterized the joint plan equilibria, Aumann, Maschler and

Stearns (1968) propose examples of games with further equilibrium payo¤s,
which cannot be achieved by a joint plan (and a fortiori, in a nonrevealing
way). For this, they �rst identify a new coordination procedure that is made
feasible in the undiscounted repeated game �1(p): the jointly controlled
lottery.
In a jointly controlled lottery, which can take place any time in �1(p),

player 1 does not make use of his information and both players choose their
action by means of a mixed strategy. To give the simplest example, suppose
that at some stage of �1(p), both players select independently of each other
their �rst action (�1�) or their second action (�2�), with equal probability 1

2
.

Then, as soon as one of the players randomizes with equal probability over �1�
and �2�, the probability that the outcome is �11�or �22�is 1

2
(and similarly

for �12�or �21�). The procedure is immune to unilateral deviations and is
easily generalized to any probability distribution. It enables the players to
generate by themselves the e¤ect of an extraneous public device.14 Given two
equilibrium payo¤s (x; �) and (x0; �0) of �1(p), the players can thus decide
to achieve (x; �) with some probability � and (x0; �0) with probability 1� �.
12At �rst sight, we need to add conditions of the form xks � xks0 if �(s j k) > 0,

�(s0 j k) = 0. These inequalities can be turned into equalities by introducing �ctitious
payo¤s (see Hart (1985) and e.g., Forges (1994), Peski (2014)).
13For the informed player 1, we consider interim payo¤s, indexed by his types, namely,

(xk)k2K , with K denoting the set of all states of nature.
14See, e.g., Matthews and Postlewaite (1989) and Celik and Peters (2016) for applica-

tions of jointly controlled lotteries to auctions and oligopoly, respectively.
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In other words, the set of all equilibrium payo¤s of �1(p) is convex.15 But
Aumann, Maschler and Stearns (1968) �nd examples of equilibrium payo¤s
which cannot be achieved as convex combinations of joint plan equilibria,
namely, equilibrium payo¤s that require two stages of signaling from the
informed player.

Aumann, Maschler and Stearns (1968) end up with two open questions:

(1) What is the full characterization of the Nash equilibrium payo¤s of the
in�nitely repeated game �1(p)?

(2) Does a joint plan equilibrium always exist?

Hart (1985) answers the �rst one.16 To do this, he �rst observes that,
as suggested above, a very special kind of random variable, with values
(ps; xs; �s), can be associated with a joint plan equilibrium of �1(p). First,
(p; x; �) is the expectation of the random variable, which can thus be inter-
preted as the �rst stage of a martingale.17 Second, condition (ii) above states
that player 1�s interim payo¤ is constant. This further property accounts
for the incentive compatibility conditions of the informed player, who cannot
rely on a safe experiment but has to send his signal by himself.
Suppose now that, having reached some posterior probability ps, the play-

ers perform a jointly controlled lottery to decide on how to play in the fu-
ture. Since the informed player does not make use of his information in a
jointly controlled lottery, the probability distribution ps over the states can-
not change. But the payo¤s of both players do change, as they depend on
the outcome of the jointly controlled lottery.
Hart (1985) proves that all equilibrium payo¤s of �1(p) can be achieved

by alternating, possibly ad in�nitum, signaling stages �at which the posterior

15It has become customary in the literature on in�nitely repeated games to assume
at the outset that a public randomization device is available. In Aumann, Maschler and
Stearns (1968), the assumption is indeed without loss of generality.
16During the 1970�s, the work on in�nitely repeated games with incomplete information

was mostly pursued by Mertens and Zamir, who investigated further the zero-sum case,
possibly with lack of information on both sides (see Section 10). Research on non-zero-sum
in�nitely repeated games with incomplete information started again during the spring 1980
at the Institute for Advanced Study of Jerusalem. Hart (1985) �rst appeared in 1982, as
CORE discussion paper 8203.
17Once again, this is the �splitting lemma�, namely, the not so demanding constraint

on posteriors.
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changes but player 1�s interim payo¤remains constant �and jointly controlled
lotteries � at which the posterior remains constant but player 1�s interim
payo¤ changes.
More precisely, Hart (1985) de�nes a dimartingale18 (ept; ext; e�t) as a mar-

tingale19 such that, at every stage t, either ext+1 = ext or ept+1 = ept. Hart
(1985)�s characterization states that (x; �) is an equilibrium payo¤ of �1(p)
if and only if there exists a dimartingale (ept; ext; e�t) whose expectation is
(p; x; �) and which becomes nonrevealing at the limit (namely, the limit
(ep1; ex1; e�1) is such that (ex1; e�1) is a nonrevealing equilibrium payo¤ of
�1(ep1)). Aumann and Hart (1986)20 o¤er a thorough treatment of dimartin-
gales as mathematical objects and construct a geometric example �the �four
frogs��of a converging dimartingale that does not reach its limit within a
bounded number of stages.

4 Repeated games of pure information
transmission

An early version of Hart (1985)�s characterization of Nash equilibrium payo¤s
in �1(p) was already available in the summer 1981. My thesis advisor, J.-
F. Mertens, suggested then the characterization of correlated equilibrium
payo¤s in �1(p) as a promising research topic. By applying Aumann (1974)�s
de�nition, a correlated equilibrium of the game �1(p) is a Nash equilibrium
of an extension of �1(p) in which, before the beginning of the game, the
players privately observe correlated signals. These signals are generated by
an extraneous device so that player 1 gets the same signal whatever his type.
Given the possible complexity of equilibrium behavior in �1(p), I �rst

investigated games that were simpler than the ones of Hart (1985), namely,
games in which the informed player�s actions have no impact on the play-
ers�payo¤s. In this case, the one-shot game reduces to the decision problem
DP0(p) introduced in Section 2. Recall that the payo¤ V k(a2) of the unin-
formed decision-maker, player 2, depends on his action a2 and the state of
nature k, which here, is known to player 1. The payo¤ Uk(a2) of the latter

18The terminology was then �bimartingale�(see Aumann and Hart (2003)).
19A martingale is a random process with constant conditional expectation, i.e., denoting

the past events up to stage t by Ht, E((ept+1; ext+1; e�t+1) j Ht) = (ept; ext; e�t).
20As for Hart (1985), the results were available much earlier in a preprint.
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depends on the same parameters. The players have the same common prior
p over the states of nature.
If the decision-maker does not receive any further information on the

state of nature k, he just chooses his action a2 to maximize his expected
payo¤

P
k p

kV k(a2). This is also the starting point in Bayesian persuasion.
But here there is no reason to assume that the decision-maker picks the
informed player�s preferred action when he is himself indi¤erent. We will
keep track of all interim expected payo¤s (Uk(a2))k2K that are associated to
optimal decisions a2 of player 2 in DP0(p). These are player 1�s nonrevealing
equilibrium payo¤s in the in�nitely repeated game �1(p), in which player
1�s actions are just costless signals.
In other words, a nonrevealing equilibrium does exist in �1(p) for every

prior p, a property that does not hold in the more general model of Au-
mann, Maschler and Stearns (1968). What really simpli�es the analysis of
games of pure information transmission is that, in these games, the players�
individually rational levels in �1(p) and in the one-shot decision problem
DP0(p) are identical. This is quite intuitive, since the informed player�s ac-
tions have no e¤ect on the payo¤s. To see this formally, recall from Section 2
that the informed player�s individually rational level in �1(p) is cavfNR(p),
where fNR(p) is the best payo¤ player 1 can expect without revealing infor-
mation in �1(p), if player 2 behaves as an opponent. In the current model,
fNR(p) = mina2

P
k p

kUk(a2) is concave (as a minimum of linear functions),
so that revealing information can only hurt player 1 when he defends himself
against player 2.
Summing up, if we keep viewing the above game �1(p) �of pure in-

formation transmission � as an in�nitely repeated game, nonrevealing (or
�babbling�) equilibrium payo¤s exist whatever the prior p and are charac-
terized in a straightforward way. These two properties need not hold in the
more general model considered by Aumann, Maschler and Stearns (1968)
and Hart (1985).
However, even if in�nitely repeated games of pure information transmis-

sion look elementary, their equilibria can have a quite complex structure. This
is illustrated in Forges (1984).21 First of all, some of these equilibrium payo¤s
cannot be reached unless two stages of signaling are performed. As pointed
out above, the phenomenon was already identi�ed by Aumann, Maschler and
Stearns (1968), but in games with payo¤-relevant actions for the informed

21CORE Discussion paper 8220.

15



player. More surprisingly, the �four frogs� example of Aumann and Hart
(1986) can be generated in an in�nitely repeated game of pure information
transmission. In other words, to achieve some equilibrium payo¤s, the players
have to alternate signaling and jointly controlled lotteries, without being able
to determine an upper bound on the number of stages that will be needed to
reach a nonrevealing equilibrium.

5 Two-stage signaling and long cheap talk

The examples in Forges (1984) can easily be re-interpreted as illustrations of
the role of two-stage signaling and �long cheap talk� in the basic decision
problem DP0(p). To see this, let us describe the n stage cheap talk game
CTn(p) based on DP0(p) as follows: player 1�s type k is �rst chosen according
to the prior probability p; then, at every stage t = 1; : : : ; n, player 1 and
player 2 simultaneously send a message to each other; �nally, player 2 makes
a decision a2 and the payo¤s are Uk(a2), V k(a2) for player 1 and player 2
respectively.
We have seen above that the nonrevealing equilibrium payo¤s of �1(p)

coincide with the equilibrium payo¤s of the decision problem DP0(p), in
which the uninformed player just maximizes his expected payo¤ at the prior
p. When n = 1, CT1(p) amounts to a sender-receiver game in which the
informed player sends a message to the decision-maker.22 It is not di¢ cult
to see that the joint plan equilibrium payo¤s of �1(p) coincide with the
equilibrium payo¤s of the sender-receiver game CT1(p). More interestingly,
the equilibrium payo¤s of �1(p) achieved with two stages of signaling and a
jointly controlled lottery in between can be achieved as equilibrium payo¤s
of the three stage cheap talk game CT3(p).
Given the previous straightforward interpretation, Example 1 in Forges

(1984) shows that the equilibrium payo¤ of the informed player in CT3(p),
whatever his type, is higher than any payo¤ he can get in the sender-receiver
game CT1(p). In other words, the informed player bene�ts from two stages
of signaling, whatever his type.
As already mentioned above, another example of Forges (1984) shows

that Aumann and Hart (1986)�s �four frogs�can be generated from a game.
This example thus demonstrates an equilibrium payo¤ of �1(p) in which the

22In CT1(p), jointly controlled lotteries do not generate more payo¤s than the unin-
formed player�s mixed strategies.
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players do not reach a nonrevealing equilibrium within a bounded number of
stages �1(p). Re-interpreted in the framework of the cheap talk games based
on DP0(p), this example proposes an outcome that could not be achieved in
CTn(p), whatever the �nite number of cheap talk stages n. However, this
outcome can be achieved with �nitely many stages of cheap talk, provided
that no deadline n is �xed in advance, i.e., in a long (but �nite) cheap talk
game.
Following a suggestion of R. Aumann in the spring 1986, I rewrote this

example to give the players�types and actions a concrete meaning. In Forges
(1990b), the decision-maker is an employer, the informed player is a job
candidate whose type is not the traditional high or low quality but rather
re�ects di¤erent tastes for diversi�ed tasks. The informed player is shown
to dramatically improve his expected payo¤, whatever his type, by engaging
in long, rather than bounded, cheap talk. Simon (2002) proposes a variant
of Forges (1990b) in which a long cheap talk equilibrium ex ante Pareto-
dominates any equilibrium that can be achieved within a bounded number
stages of cheap talk.
Aumann and Hart (2003) consider the e¤ects of allowing long, possibly

unbounded, bilateral cheap talk in a static game that is more general than
the above decision problem DP0(p). There is still a single informed player
but both players have payo¤-relevant actions. The basic model is thus simi-
lar to the one-shot game of Aumann, Maschler and Stearns (1968) and Hart
(1985). The players can exchange costless messages for as long as they want
before choosing their actions. It is understood that the players can send their
messages simultaneously, so that this is not �polite talk,�as pointed out by
Aumann and Hart (2003). They characterize the set of all equilibrium payo¤s
that can be achieved in this way in terms of the dimartingales introduced in
Hart (1985) and Aumann and Hart (1986). The model di¤ers nevertheless
from the in�nitely repeated game �1(p). For instance, existence of nonre-
vealing equilibria is guaranteed at the outset but ever lasting cheap talk is
hard to justify.23

Forges and Koessler (2008) show that Forges (1990b) and Aumann and
Hart (2003)�s basic insights survive in a variant of the decision problem

23Ever lasting cheap talk corresponds to a dimartingale that converges without reaching
its limit in �nitely stages. The characterization does not rule out this possibility even if no
example illustrates this pattern in a game. Indeed, in the examples of Forges (1984, 1990b),
the underlying dimartingale attains its limit within a �nite but not bounded number of
stages.
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DP0(p), in which the informed player�s type is certi�able.24 This means that
player 1 cannot lie on his type but can hide part of his information. Forges
and Koessler (2008) characterize the set of equilibrium payo¤s that can be
achieved by long bounded cheap talk, using the concepts of diconvexi�cation
and dimartingale. They propose an example in which delaying information
certi�cation bene�ts the informed player, whatever his type, compared to all
equilibria of the game with a single, unilateral signaling stage.

6 Implementation of a mediator by cheap talk

At the beginning of Section 4, I explained that my aim (in the fall 1981)
was to characterize the set C(�1(p)) of correlated equilibrium payo¤s of
every in�nitely repeated game �1(p) of pure information transmission. To
characterize this set, Forges (1985)25 considers another solution concept, the
communication equilibrium26, in the basic one-shot decision problemDP0(p).
A (canonical) communication device � for DP0(p) consists of probability

distributions �(� j k), k 2 K, over the decision-maker actions. Adding a
communication device � to the basic decision problem DP0(p) gives rise to a
game with communication, in which player 1 is invited to report a type k0 to
the communication device which then recommends an action a02 to player 2
according to �(� j k0). The communication device � de�nes an equilibrium if
in the game with communication induced by �, it is an equilibrium for player
1 to report his type truthfully and for player 2 to play the recommended
action (k0 = k, a02 = a2).

27 A communication device is usually interpreted as
a mediator (see Forges (1986), Myerson (1986) and Myerson (1991), Section
6.3). We thus denote asM(DP0(p)) the set of all communication equilibrium
payo¤s of DP0(p). This set is tractable, as it is described by a �nite set of
linear inequalities (see (3.5) to (3.8) in Forges (1985)).
Forges (1985) establishes that, if �1(p) is a game of pure information

24Following a popular terminology at the time, Forges and Koessler (2008) refer to
games with certi�able types as to �persuasion games�, not to be confused with �Bayesian
persuasion�(see, e.g., Özdo¼gan (2016) for a classi�cation of the di¤erent models).
25CORE Discussion Paper 8218.
26The terminology adopted in Forges (1985) is �noisy channel� equilibrium (see also

Myerson (1982, 1986, 1991) and the discussion below).
27The di¤erence between a communication device and an experiment in Bayesian per-

suasion is that, in the latter, the information-designer does not have to report the state of
nature.
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transmission, C(�1(p)) = M(DP0(p)). This shows that correlated equi-
librium payo¤s of �1(p) are characterized in terms of solutions of the static
decision problem DP0(p), as in the Folk theorem for games with complete in-
formation. In particular, no dimartingale is needed to achieve any correlated
equilibrium payo¤, as opposed to what may happen for Nash equilibrium
payo¤s (see Section 5, recall that the examples of Forges (1984, 1990b) are
games of pure information transmission28).
The proof of the previous result proceeds in two steps. First it is shown

that a very large superset of C(�1(p)), the set of all communication equilib-
rium payo¤s of �1(p), in which players make inputs and receive outputs at
every stage, is included inM(DP0(p)). The rough intuition for this part is
the same as in the revelation principle (but some care is needed to handle
payo¤s within an in�nite horizon). The same kind of argument shows that
every equilibrium payo¤ achieved in some possible noncooperative extension
of DP0(p) enabling the players to communicate (for as long as they want,
with or without a mediator) must be inM(DP0(p)).
The proof of the reverse inclusion, namely, thatM(DP0(p)) is included

in C(�1(p)), is fully constructive and uses strategies in �1(p) that are so
simple that they can be described in the sender-receiver game CT1(p) based
onM(DP0(p)), which was introduced in the previous section. More precisely,
lemma 2 in Forges (1985) states that every communication equilibrium payo¤
of DP0(p) can be achieved as a correlated equilibrium payo¤ of a sender-
receiver game based on DP0(p), in which the informed player sends a single
message in a �nite set S to the decision-maker. The previous lemma can
thus be interpreted independently of the in�nitely repeated game framework,
namely, in the static decision problem DP0(p).29

Not surprisingly, the previous characterization of correlated equilibrium
payo¤s does not hold for Nash equilibrium. This is con�rmed by an ex-
ample in Forges (1985), in which a communication equilibrium payo¤ (in

28The basic motivation for these examples was indeed to illustrate the di¤erence between
Nash equilibria and correlated equilibria in games of pure information transmission.
29The size of the set of messages, although �nite, depends on the underlying commu-

nication equilibrium. The result is thus easier to formulate in �1(p). To implement all
communication equilibrium payo¤s in a single sender-receiver game, one can assume that
the set S of messages allowed in CT1(p) is countable. Then the lemma can be stated as (i)
M(DP0(p)) � C(CT1(p)) (ii) the informed player�s strategy used to implement a particu-
lar communication equilibrium only uses �nitely many messages. By denoting as CT1(p)
the long cheap talk game (see Aumann and Hart (2003)), Forges (1985)�s result can be
stated as: for every n = 2; 3; :::, C(CT1(p)) = C(CTn(p)) = C(CT1(p)) =M(DP0(p)).
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M(DP0(p))) cannot be achieved as a Nash equilibrium payo¤ of the asso-
ciated repeated game �1(p), or, equivalently, as a Nash equilibrium payo¤
of DP0(p) preceded by long cheap talk. In particular, this communication
equilibrium payo¤ cannot be achieved as a Nash equilibrium of any cheap
talk game CTn(p), whatever the number of stages n, or CT1(p), de�ned as in
Aumann and Hart (2003). The same phenomenon arises in Forges (1990b)�s
example. Yet Forges (1985) shows that if the players can observe signals (that
are correlated with each other but independent of the state of nature), they
can implement a mediator by a single stage of information transmission.30

Quite some time after the previous characterization result, implementa-
tion of a mediator by cheap talk became an active research topic, specially
in situations involving more than two players, both in game theory and com-
puter science (see, e.g., Forges (2009), Forges (2010) and Halpern (2008) for
surveys). If there are at least four players, Forges (1990a) shows that the
communication equilibrium outcomes of every Bayesian game can be imple-
mented as Nash equilibrium outcomes of the extended game in which the
players, knowing their type, can exchange costless messages before making
decisions. Communication equilibrium outcomes are implemented by cheap
talk in two steps: �rst, as correlated equilibrium outcomes (i.e., as in Forges
(1985)) and then, using a result of Bárány (1992)31, as Nash equilibrium
outcomes (see also Ben-Porath (2003) and Gerardi (2004)). As seen in the
previous paragraph, with only two players, such a result cannot be true, even
if the underlying Bayesian game reduces to the decision problem DP0(p).
Vida (2007) (see Vida and Forges (2013)) implements a mediator by cor-

related cheap talk (i.e., extends Forges (1985)�s result) in arbitrary (static)
two-person games, in which both players have private information and payo¤-
relevant actions. To state the result precisely and connect it to the previous
ones, suppose that, before engaging in long cheap talk, the players can pri-
vately observe signals that are correlated with each other but independent
of the players�types. By appealing to a general form of the revelation prin-
ciple, every equilibrium payo¤ of the corresponding extended game can be
achieved by means of a communication equilibrium of the one-shot game.
Vida (2007) and Vida and Forges (2013) establish that essentially all com-

30Forges (1988) proposes a characterization of correlated equilibria and communication
equilibria in the in�nitely repeated game proposed by Aumann, Maschler and Stearns
(1968) and studied by Hart (1985), in which player 1 must choose an action at every
stage.
31CORE Discussion Paper 8718.
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munication equilibrium payo¤s of the one-shot game can be implemented in
this way, namely, as correlated equilibrium payo¤s of the long cheap talk
game. They also show that the number of stages of cheap talk at equilibrium
is �nite, but not necessarily uniformly bounded.

Remark: correlated equilibrium in games with incomplete infor-
mation
As recalled above, Aumann (1974) proposed the correlated equilibrium

as a solution concept for games in strategic form. In the previous section,
we applied Aumann (1974)�s notion to the strategic form of sender-receiver
games based on DP0(p). Myerson (1982) considers the problem of an unin-
formed principal who can commit himself but cannot monitor the decisions
of informed agents. The principal maximizes his utility function but acts oth-
erwise as a communication device between the agents. Myerson (1982, 1991)
views the communication equilibrium as the natural extension of Aumann
(1974)�s correlated equilibrium to games with incomplete information.
Forges (1993) points out that the strategic form correlated equilibrium

is a legitimate de�nition of correlated equilibrium as well. The results de-
scribed above show that this de�nition makes sense, in particular, in cheap
talk games. One could argue that implementing communication equilibrium
by correlated equilibrium amounts to replacing a mediator by another one.
Nevertheless, the informed player does not have to report his type to the
mediator who runs a correlated equilibrium. Hence the latter mediator is
appropriate if the players have privacy concerns.
Forges (1993) proposes another legitimate de�nition of correlated equi-

librium in games with incomplete information, the �Bayesian solution�. This
solution concept can be de�ned as a communication equilibrium in which
the mediator is omniscient. Let us apply the de�nition to DP0(p). Whether
player 1 is informed or not does not matter. The omniscient mediator recom-
mends an action to player 2, which the latter follows at equilibrium. Bayesian
persuasion (see Section 2) corresponds to a Bayesian solution which maxi-
mizes player 1�s ex ante expected payo¤. The previous solution concepts
will be further illustrated in the next two sections. Bergemann and Mor-
ris (2016a)�s Bayes correlated equilibrium is akin to the Bayesian solution
but by contrast with the extensions of Aumann (1974) surveyed above, does
not even maintain the assumption that the mediator cannot have access to
information that the players do not collectively possess.
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7 Comparison of information transmission
schemes

Let us go back to the decision problem DP0(p), in which the payo¤ of the
decision-maker (player 2), V k(a2), depends on his action a2 2 A2 and an
unknown state of nature k, distributed according to p. Player 1�s prior is p
as well and his payo¤ is Uk(a2). In this basic model, player 1 is a dummy and
player 2 maximizes his expected payo¤

P
k p

kV k(a2). Recall from Section 2
that uNR(p) denotes the best ex ante expected payo¤that player 1 can obtain
inDP0(p). We have seen three kinds of games that extendDP0(p) by making
a signal available to player 2 before he chooses his action.32

1. In a sender-receiver game (equivalent to a cheap talk game CT1(p)),
player 1 is informed of the state of nature k and sends a message s
in some set S to player 2.33 Then the latter chooses an action a2(s)
that maximizes his expected payo¤ at the posterior probability ps over
K. Player 1 faces strong incentive compatibility conditions, namely,
he must be indi¤erent between any two messages that he sends with
positive probability (see Section 5).

2. In a mediated game, player 1 sends a message s 2 S to a reliable me-
diator who in turn selects, according to some probability distribution
depending on s, another message to player 2. By the revelation princi-
ple, every equilibrium outcome of any mediated game can be achieved
as a canonical communication equilibrium, which is described by type-
dependent probability distributions �(� j k), k 2 K, selecting a recom-
mendation �in A2 �to player 2. The corresponding set of equilibrium
payo¤s isM(DP0(p)) (see Section 6).

3. In the �Bayesian persuasion�game (see Section 2), everything happens
as if, before being informed of the state of nature, player 1 could hire
an omniscient mediator � or at least a reliable mediator who would
learn the true state of nature k �to recommend an action in A2 to
player 2 using a probability distribution �(� j k), k 2 K. In this

32In this section, we focus on the case where player 2 receives a single message, directly
from player 1 or via a mediator.
33Di¤erent games can potentially be generated by varying the (size of the) set S of

messages.
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scenario, player 2�s equilibrium conditions are exactly as in a canonical
communication equilibrium, but player 1 does not face any incentive
compatibility constraints. Player 1�s objective is to maximize his own
ex ante expected payo¤ (under player 2�s obedience constraint).

In the third game, player 1�s optimum is well-de�ned and easy to com-
pute: it is cavuNR(p) (see Section 2). As observed in the previous section,
cavuNR(p) is the best ex ante expected payo¤ player 1 can expect from a
Bayesian solution, i.e., by relying on an omniscient mediator. We might also
ask about player 1�s best ex ante expected payo¤ when the mediator cannot
check the state of nature, or when no mediator at all is available, namely, in
the other two extensions of DP0(p).
Regarding the second class of games, Salamanca (2016/2019) shows that

player 1�s ex ante best communication equilibrium payo¤ in DP0(p) �let us
denote it as u�(p) �is the value of a �ctitious persuasion problem constructed
on the players�virtual utilities (see Myerson (1991)). In the �ctitious problem,
by construction, there are no incentive constraints so that concavi�cation can
be applied as in the third game. The expression of u�(p) is more complex
than in a Bayesian persuasion problem because the value function to be
concavi�ed changes with the underlying prior belief p.
Lipnowski and Ravid (2019) consider a particular class of sender-receiver

games, in which player 1 has �transparent motives�, namely, his payo¤ is
type-independent (Uk(a2) = U(a2), for every a2 2 A2). Under this further
assumption, player 1�s incentive compatibility conditions reduce to equalities
in R (rather than in Rk, recall condition (ii) in Section 2 and the analysis
in Section 5). Lipnowski and Ravid (2019) show that the best expected
payo¤ player 1 can expect from cheap talk in DP0(p) is qucavuNR(p), where
qucavuNR denotes the smallest quasi-concave function above u.
Furthermore, they establish that player 1 cannot expect a higher expected

payo¤ by using several (possibly in�nitely many) stages of cheap talk. In
other words, if player 1 has transparent motives, focusing on a single stage of
cheap talk is w.l.o.g. to characterize player 1�s best ex ante expected payo¤.
However, Lipnowski and Ravid (2019) show that several stages of cheap talk
can improve player 2�s expected payo¤.
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Example 3
We consider a particular decision problem DP0(p), proposed by Sala-

manca (2019). As in Example 1, the informed player has two types, K =
f1; 2g and the decision-maker has four actions A2 = fj1; j2; j3; j4g. The lat-
ter�s utility function is the same as in Example 1. However, and this is a
main feature of the example, the preferences of the informed player do not
depend on his type, as in Lipnowski and Ravid (2019).

j1 j2 j3 j4
(U1; V 1)(�) = 2; 0 0; 3 3; 4 1; 5

j1 j2 j3 j4
(U2; V 2)(�) = 2; 5 0; 4 3; 3 1; 0

Whatever his type, player 1�s most preferred decision is j3, his second best
is j1, then comes j4 and �nally j2. Recall that p1 denotes the probability
of type 1. The optimal decisions of player 2 are, as in Example 1, j1 if
0 � p1 � 1

4
, j2 if 14 � p

1 � 1
2
, j3 if 12 � p

1 � 3
4
and j4 if 34 � p

1 � 1.34
The �gure below, borrowed from Salamanca (2019), describes the map-

pings uNR(p) � qucavuNR(p) � u�(p) � cavuNR(p). All the inequalities are
strict at p = 2

5
.

Let us look more closely what happens when the prior probability of type
1 is 2

5
. Then, in the absence of further information, player 2 chooses j2, the

worst decision from player 1�s point of view. Player 1 gets uNR(25) = 0, player
2 gets 18

5
= 3:6.

Assume �rst that player 1, knowing his type, can modify the prior belief
of player 2 by having an informal conversation with him. Let m1 and m2 be
two messages available to player 1. Let him send m1 with probability 1 when
his type is 1 and with probability 2

3
when his type is 2. Given this strategy of

player 1, player 2 believes that both types are equally likely when he receives
message m1. He is then indi¤erent between j2 and j3. Let him choose j2 with
probability 1

3
and j3 with probability 2

3
. When player 2 receives message m2,

he believes that player 1�s type is 2 for sure and decides on j1. If player 2 uses
the previous strategy (i.e., �(m1) = (

1
3
j2;

2
3
j3), �(m2) = j1), then player 1 is

indi¤erent between the two messages and can send them with the previous

34The player�s utility function can be given a concrete interpretation, in the vein of
Forges (1990).
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type-dependent probabilities. This cheap talk equilibrium improves player
1�s expected payo¤ (he gets 2) as well as player 2�s one (he gets 59

15
' 3:93).

Let us turn to the second scenario, in which player 1 still knows his
type but uses an intermediary to talk to player 2, namely, let us consider a
particular communication equilibrium. If player 1 reports �type 1� to the
mediator, the latter recommends j3 (resp., j4) with probability 3

4
(resp., 1

4
) to

player 2. If player 1 reports �type 2�to the mediator, the latter recommends
j1 (resp., j3) with probability 1

2
(resp., 1

2
). If player 2 follows the recom-

mendation, player 1 cannot bene�t from lying. If player 1 reports his type
truthfully, player 2 believes that he faces type 1 (resp., type 2) for sure when
he is recommended j4 (resp., j1). When j3 is recommended, both types are
equally likely. In all cases, player 2 is happy to follow the recommendation.
At this communication equilibrium, player 1 gets an expected payo¤ of 2:5
and player 2 gets 4:1. Both players get more than in the cheap talk equi-
librium above. Using his characterization, Salamanca (2019) obtains a full
description of the mapping u�(p) in this example. In particular, 2:5 = u�(2

5
),

the previous communication equilibrium achieves player 1�s best possible ex
ante expected payo¤.
As a consequence of Forges (1985)�s result (see Section 6), the previous

communication equilibrium must be implementable as a correlated equilib-
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rium of the sender-receiver game. Salamanca (2019) shows that in this exam-
ple, implementation turns out to be extremely simple. Only two messages,
say ` and r, are necessary. The correlation device recommends two possi-
ble strategies � : f1; 2g ! f`; rg with positive probability to player 1: r`
(type 1 sends r, type 2 sends `) and rr (both types send r). Two strategies
� : f`; rg ! fj1; : : : ; j4g are also recommended with positive probability to
player 2: j1j3 (�(`) = j1, �(r) = j3) and j1j4 (�(`) = j1, �(r) = j4). The
correlation device selects the pair of strategies as follows:

j1j3 j1j4

rl 1
4

1
4

rr 1
2

0

Player 1�s equilibrium conditions are straightforward. For player 2, one checks
that:

Pr(type 1 j j1j3; �(ek) = `) = 0, hence, �(`) = j1 is optimal.
Pr(type 1 j j1j3; �(ek) = r) = 1

2
, hence, �(r) = j3 is optimal.

Pr(type 1 j j1j4; �(ek) = `) = 0, hence, �(`) = j1 is optimal.
Pr(type 1 j j1j4; �(ek) = r) = 1, hence, �(r) = j4 is optimal.

Let us come to the third scenario. Player 1 does not know his type but
can make it check by some reliable test or can rely on an omniscient mediator.
Assume that the test can have two possible results, r1 or r2, that the result is
necessarily r1 for type 1 and r1 with probability 2

3
, r2 with probability 1

3
for

type 2 (hence the test is highly biased). When player 2 observes r2, he is sure
to face type 2 so that j1 is an optimal decision. When player 2 observes r1,
he concludes that both types are equally likely. Hence player 2�s posteriors
are exactly as in the cheap talk equilibrium above. The di¤erence is that,
now, player 1 does not have to ful�ll any incentive constraint. Hence we can
have player 2 deciding on j3 (player 1�s �rst best) when his posterior belief
is 1

2
. Player 1�s expected payo¤ is now 2:8 = cavuNR(25). Player 2 only gets

19
5
= 3:8.
Let us sum up what this section has taught us. In games of pure informa-

tion transmission (i.e., games based onDP0(p)), a �concavi�cation approach�
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applies to compute the informed player�s best ex ante expected communica-
tion equilibrium payo¤ u�(p). Not surprisingly, u�(p) lies below the regular
concavi�cation of uNR(p), the informed player�s best ex ante expected pay-
o¤ at a Bayesian solution, i.e., under Bayesian persuasion. If in addition,
the sender�s motives are transparent, then a �concavi�cation approach�ap-
plies also to compute the informed player�s best ex ante expected equilibrium
payo¤ under cheap talk, which turns out to be the quasi-concavi�cation of
uNR(p).

8 Cheap talk and mediation in Crawford and
Sobel�s leading example

In the information transmission framework adopted up to now, in which
�nitely many types and actions are feasible, various examples have been pro-
posed to illustrate that nonrevealing equilibrium payo¤s can be improved by
a single stage of cheap talk, that long cheap talk can do better than one stage
signaling and that mediated talk can do even better than long cheap talk.
The papers brie�y described below compare the e¤ects of di¤erent forms of
information transmission within a single parametrized example, the �uni-
form quadratic�case of Crawford and Sobel (1982). The solution concepts
reviewed above apply to this example, even if its setup does not satisfy our
�niteness assumptions.
In the �uniform quadratic�decision problem, the informed player�s type

k is uniformly distributed over the unit interval [0; 1] and the uninformed
player�s actions also belong to A2 = [0; 1]. The utility functions are Uk(a2) =
�[a2 � (k + b)]2 for the informed player and V k(a2) = �[a2 � k]2 for the
uninformed one. These utility functions, which are parametrized by a bias
b > 0, capture the fact that for every type k, player 1�s uniquely de�ned ideal
decision k+b di¤ers from player 2�s ideal decision by the bias b. Conceptually,
this decision problem is similar to the model DP0(p) considered in Sections
2 and 4 (formally, the main di¤erence is that types and actions take values
in a continuum). As we will see below, the comparison of the equilibrium
outcomes associated with di¤erent information transmission schemes, as the
bias b varies, is enlightening.
Crawford and Sobel (1982) consider the plain sender-receiver game, in

which the informed player sends a single message (in [0; 1]) to the uninformed
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one who then makes a decision. They show that all equilibria of the sender-
receiver game are equivalent to partition equilibria and that no revelation of
information can occur if b > 1

4
. The form of the utility functions implies that,

when the decision-maker chooses his action optimally after having updated
his beliefs, the players�ex ante payo¤s only di¤er by a constant. As a conse-
quence, the ex ante equilibrium expected payo¤s of the sender-receiver game
can be Pareto-ranked.35 The players�ex ante equilibrium expected payo¤s
increase as the partition gets �ner.36

Krishna and Morgan (2004) extend the sender-receiver game into a cheap
talk game with several stages, which is similar to the game CTn(p) introduced
in Section 5. They describe explicit, plausible, �conversations� in which
a second stage of information transmission depends on the outcome of a
jointly controlled lottery. As long as b � 1p

8
(' 0:35), such conversations

enable the players to Pareto-improve on the equilibrium payo¤s of the plain
sender-receiver game. To be more precise, let us say that an equilibrium is
monotonic if the receiver�s decision increases with the sender�s type. Krishna
and Morgan (2004) identify two di¤erent classes of equilibria: monotonic
ones that yield Pareto superior payo¤s for b � 1

8
and nonmonotonic ones

with the same property for 1
8
� b � 1p

8
. In particular, for 1

4
� b � 1p

8
,

bilateral cheap talk makes the revelation of some information possible.
Goltsman, Hörner, Pavlov, and Squintani (2009) go on by considering the

mediated game, namely, the communication equilibrium payo¤s (the analog
of the setM(DP0(p)) of Section 6, see also scenario 2 in Section 7). They
show that no useful information can be transmitted at a communication
equilibrium if b � 1

2
, so that we may henceforth assume that b < 1

2
. Goltsman

et al. (2009) identify the optimal ex ante expected communication equilibrium
payo¤ and show that it can be achieved by a particular mediation procedure
proposed earlier by Blume, Board and Kawamura (2007). Goltsman et al.
(2009) also establish that equilibria achieved with bounded cheap talk do
as well as communication equilibria if and only if b � 1

8
and that, in this

case, Krishna and Morgan (2004)�s cheap talk equilibrium achieves the best
possible communication equilibrium payo¤. Using the terminology of Section
6, when the con�ict of interest is su¢ ciently low, the players can implement
a mediator by cheap talk in a straightforward way.

35The same property holds in all the extensions of the game that are considered below.
36For the informed player, the interim expected payo¤ is the relevant one. But here, by

contrast with Forges (1990), no ranking is available in terms of these.
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Blume (2012) proves that the optimal communication equilibrium pay-
o¤ identi�ed by Goltsman et al. (2009) can be implemented as a correlated
equilibrium payo¤of Crawford and Sobel (1982)�s sender-receiver game. Con-
ceptually, this result is similar to Forges (1985) �see Section 6 �applied to
a speci�c communication equilibrium outcome. But the continuum of types
calls for a di¤erent argument.
So far, cheap talk in the uniform quadratic decision problem has been

limited to a few stages. Chen, Goltsman, Hörner and Pavlov (2017) consider
a particular form of cheap talk, �straight talk�, which can last for an arbitrary
number of stages. In a straight talk equilibrium, only two messages are used,
one of which leads to the end of the conversation. Chen et al. (2017) observe
that the nonmonotonic equilibrium identi�ed by Krishna and Morgan (2004)
for 1

8
� b � 1p

8
is a special case of straight talk (i.e., ending �shortly�) while

the unbounded cheap talk in Forges (1990b)�s example is not straight.
Chen et al. (2017) show, among other results, that if 1

8
� b � 1p

8
, then,

for every number of stages n, the best straight talk equilibrium of length n+1
(within a particular class) achieves a higher expected payo¤ than the best
equilibrium straight talk equilibrium of length n (within the same particular
class), with no a priori bound on the duration of this conversation. In other
words, for appropriate values of b, bilateral, possibly long cheap talk enables
the players to improve on the expected equilibrium payo¤s they achieve in
the sender-receiver game. This suggests that examples like the ones of Forges
(1984, 1990b) are not pathological.

9 Existence of a joint plan equilibrium

In Section 6, we established strong connections between the in�nitely re-
peated game �1(p) and static games of information transmission. Since
then, we focused on the latter framework. Let us come back to �1(p) and
investigate other relationships between �1(p) and static decision problems.
Recall, from Section 3, that the question of the existence of an equilibrium

in �1(p) was not solved by Aumann, Maschler and Stearns (1968). Note
also that the question is meaningless in the in�nitely repeated games of
pure information transmission considered in Sections 4 and 6, in which a
nonrevealing equilibrium always exists.
Sorin (1983) established the existence of a joint plan equilibrium (as de-

�ned in Section 3) in �1(p) under the further assumption that the informed
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player has two types only. The general problem remained open for a while
until Simon et al. (1995) managed to extend Sorin (1983)�s proof to the case
of an arbitrary number of types. Simon et al. (1995) present their result as
one of the �Borsuk-Ulam type�. A very rough intuition for this interpre-
tation comes from the informed player�s incentive compatibility conditions
(condition (ii) in Section 2), which take the form of equalities of vector pay-
o¤s.37

It is quite remarkable that Sorin (1983) and Simon et al. (1995) establish
the existence of an equilibrium in the in�nitely repeated game �1(p), for
every prior probability distribution p, without making use of Hart (1985)�s
characterization of all equilibrium payo¤s of the game (described in Section
2). Indeed, recalling the de�nition of a joint plan equilibrium, Sorin (1983)
and Simon et al. (1995) prove that if, at some prior p, �1(p) does not have a
nonrevealing equilibrium, then p can be split into posteriors ps, s 2 S, such
that (i) for every s 2 S, �1(ps) does have a nonrevealing equilibrium and (ii)
the splitting is incentive compatible for the informed player. In other words,
there always exist equilibria in which Hart (1985)�s dimartingale converges
in at most one stage.
Adopting a �design point of view�, once we know that the set of all

equilibrium payo¤s of �1(p), characterized by Hart (1985), is nonempty, we
can maximize one of the players�ex ante expected payo¤ over this set. Then
the full power of the characterization can become useful, namely, several or
even in�nitely many stages of signaling may be necessary to reach such a
best payo¤.
Renault (2000) generalizes Simon et al. (1995) existence theorem to the

case where after every stage, instead of observing each other�s actions, the
players get a private, random, state-independent signal. In particular, in his
Proposition 4.2, he proposes a reformulation of Simon et al. (1995)�s result
that abstracts from the repeated games framework. Simon et al. (2008) sug-
gest that this abstract formulation can be useful to obtain existence results in
a class of static principal-agent problems. However the agent�s participation
constraints in Simon et al. (2008)�s are not easy to interpret in a standard,
yet not trivial, principal-agent framework.
Forges, Horst and Salomon (2016) and Forges and Horst (2018) start with

37Chakraborty and Harbaugh (2010) make a direct use of the Borsuk-Ulam theorem to
show the existence of informative equilibria in a model in which the preferences of the
informed player do not depend on his type (as in Lipnowski and Ravid (2019)) but this
type belongs Rd, for some d.
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the same static game as Aumann and Hart (2003) (see Section 5). They ex-
plore the e¤ects of a phase of cheap talk followed by commitment on a joint
strategy. More precisely, they make use of Renault (2000)�s formulation to
establish �under appropriate assumptions �the existence of cooperative so-
lutions, which are incentive compatible and �posterior individually rational�
(i.e., individually rational given the transmitted information). These solu-
tions can be implemented as Nash (or even perfect Bayesian) equilibrium
outcomes of various extensions of the static game in which the informed
player sends a message to the uninformed one and both players make an
agreement on how to jointly choose their actions.
Renault (2001) investigates the existence of a Nash equilibrium in n per-

son repeated games with lack of information on one side, namely, in the case
where all players but one know the state of nature. If n � 4, the existence
of a completely revealing equilibrium is immediate, hence Renault (2001) fo-
cuses on the case n = 3. He establishes that a joint plan equilibrium exists
when there are two states of nature but shows that this result may fail as
soon as there are three states. Existence of an equilibrium (that would not
be achieved by a joint plan) is still an open question in this model.

10 More general models

The set up of the previous sections is quite restrictive : there are only two
players, only one of them has access to information and in many cases, the
latter individual does not have payo¤ relevant decisions. We shall now turn
to more general models, keeping in mind the motivation of applying results
from repeated games to static games with information transmission.
We have discussed above the �rst and the last chapter of Aumann and

Maschler (1995) �Aumann and Maschler (1966) and Aumann, Maschler and
Stearns (1968) �which both deal with in�nitely repeated games with lack of
information on one side. The chapters in between contain a number of results
on zero-sum in�nitely repeated games with lack of information on both sides.
The simplest possible game �1(p; q) generalizing the model of Sections

1 and 2 is described by a set of types K and a set of actions A1 for player
1, a set of types L and a set of actions A2 for player 2, independent priors
p over K and q over L and payo¤ functions Uk` and V k` (over A1 � A2) for
player 1 and player 2 respectively, for every state (k; `).38 Nature selects a

38All sets (K, L, A1 and A2) are assumed to be �nite.
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pair of types (k; `) at a preliminary stage, every player is only informed of
his own type. Then at every subsequent stage, the players simultaneously
choose actions, which are then announced to both. As for �1(p), payo¤s in
�1(p; q) are undiscounted, i.e., evaluated as limits of averages.
Aumann and Maschler (1967, Chapter 2 of Aumann and Maschler (1995))

assume that �1(p; q) is zero-sum, namely, that V k` = �Uk` for every state
(k; `). De�ning uNR(p; q) as the value of the game in which both player 1
and player 2 do not reveal any information, they show that the minmax of
�1(p; q) is the function vexqcavpuNR(p; q) and that, similarly, the maxmin
of �1(p; q) is the function cavpvexquNR(p; q). As a consequence, �1(p; q)may
not have a value (it may happen that cavpvexquNR(p; q) < vexqcavpuNR(p; q))39

and the existence of a joint plan equilibrium (recall Section 9) is no longer
guaranteed if both players have private information.
Mertens and Zamir (1971-72) consider the value vn(p; q) of the n times

repeated game �n(p; q) and show that limn!1 vn(p; q) exists and is the unique
solution of a system of functional equations.40 Starting from a continuous
mapping u over beliefs (i.e., over �(K)��(L)), the system is described as
follows:

f = vexmax fu; fg
f = cavmin fu; fg .

Under appropriate assumptions, there is a unique solution f to the system,
which will be denoted as f = MZ(u). This de�nes the �Mertens and Zamir
operator�MZ(�). With this notation, Mertens and Zamir (1971-72) show
that in the model described above

lim
n!1

vn(p; q) =MZ(uNR)(p; q)

and
cavpvexquNR(p; q) �MZ(uNR)(p; q) � vexqcavpuNR(p; q).

This system has been thoroughly studied, starting with Mertens and Zamir
(1977) (see Mertens, Sorin and Zamir (2015)).

39Aumann and Maschler (1967), together with R. Stearns, propose a �rst example (see
Example 4.10 in Aumann and Maschler (1995, Chapter 2)).
40The same holds for lim�!1 v�(p; q), where v�(p; q) is the value of the �-discounted game

��(p; q).
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Among the various models related to the previous system of functional
equations, �splitting games�(Laraki (2002), Sorin (2002), Oliu-Barton (2017),
Laraki and Renault (2018)) are particularly relevant to the present survey.
The basic version of a splitting game is a zero-sum stochastic game in which
the states are probability distributions (p; q) over K�L. At every stage t, as
in the models of Section 2, player 1 chooses a �splitting�of the current prob-
ability distribution pt over K namely, a probability distribution over �(K)
(to choose pt+1), with expectation pt. Similarly player 2 chooses a �split-
ting�of qt, in �(�(L)). In other words, each player controls a martingale.
The splittings are used to select the next state and the stage payo¤s depend
continuously on the state.
Splitting games �rst appeared in the analysis of in�nitely repeated games

with incomplete information with lack of information on both sides, building
once again on the martingale property of posterior beliefs pointed out in
Sections 2 and 3. Splitting games were then studied for themselves, which
involved extensions of the previous model and lead to new results for systems
of functional equations of the form initially proposed by Mertens and Zamir.
Koessler, Laclau, Renault and Tomala (2019) apply the previous method-

ology to a genuine information design problem. As above, two strictly com-
peting players interact over stages; player 1 controls pt in �(K) and player
2 controls qt in �(L). But pt and qt now represent the successive beliefs of
a third individual, who has to make a single decision, at the end of the per-
suasion process. For instance, player 1 and player 2 are competing �rms,
the decision-maker is a consumer who makes an optimal decision given his
�nal beliefs over the quality of the products. Koessler et al. (2019) consider
various possible games, depending on whether the �rms move �i.e., choose a
�splitting��simultaneously or not, and whether they face a deadline or not.
Let uNR(p; q) be player 1�s induced payo¤, given �nal beliefs (p; q) of

the decision-maker. Koessler et al. (2019) assume that the correspondence
of splittings available to player 1 and player 2 is well-behaved. They show
that the various possible games have a (Markovian) equilibrium. In partic-
ular, if the players move one after the other for T � 2 stages, the value is
vexqcavpuNR(p; q) if player 1 moves last (resp., cavpvexquNR(p; q)) if player
2 moves last).41 If the players can split for in�nitely many stages, then the
value is MZ(uNR)(p; q). Koessler et al. (2019) show on an example that the

41If T = 1 and say, player 1 is the only one to move, we recover cavpuNR(p; q) as in
Section 2.
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number of disclosure periods needed to reach the value may be unbounded,
although disclosure stops in �nite time with probability one. The pattern
may remind us of the long cheap talk equilibria of Section 5.
The previous paper illustrates particularly well how the methodology of

repeated games with incomplete information can be used in information de-
sign. A promising literature on multistage persuasion is also developing inde-
pendently of this methodology (see, e.g., Best and Quigley (2017), Makris and
Renou (2019)). There are many more papers to mention on information de-
sign with multiple information designers and possibly, multiple agents to con-
vince but they focus on one-shot information design (see, e.g., Koessler, La-
clau and Tomala (2018), Gentzkow and Kamenica (2017), Mathevet, Perego
and Taneva (2019)).
Bergemann and Morris (2016b, 2019) propose a general setting in which

�nitely many players have to choose an action. The players�utility is deter-
mined by their actions and an unknown state of nature. The outcomes that
are achievable (under a given solution concept, e.g., Nash equilibrium42) in
this basic environment depend on the underlying information structure. Un-
der a literal interpretation, the latter is chosen by an information designer.
But, as Bergemann and Morris (2016b, 2019) explain, a metaphorical inter-
pretation can also be adopted, in which it is the analyst who characterizes
the e¤ect of di¤erent information structures. Whatever the interpretation,
a two steps approach is in order. The �rst one is to characterize the set
of outcomes that are feasible given the information structure (and the un-
derlying solution concept). The second one is to identify the best outcome
according to some criterion, e.g., maximizing the designer�s expected utility.
This method is illustrated, on a very particular case, in Section 7.
We have indicated that the study of zero-sum repeated games with lack of

information on both sides sheds light on Bayesian persuasion problems. Let
us turn to two-person nonzero-sum repeated games with lack of information
on both sides. Very few results are available on this topic, but some of them
could be useful to analyze long cheap talk in models extending the ones of
Section 5.
Koren (1988/1992) considers in�nitely repeated games �1(p; q) with �pri-

vate values�or �known own payo¤s�, namely, in which Uk`(a) = Uk(a) and

42All along this survey, we have focused on equilibrium concepts that can be de�ned
from Nash�s fundamental notion. Other solution concepts, like rationalizable strategies,
are obviously conceivable.

34



V k`(a) = V `(a) for every pair of actions a 2 A1�A2 and every state (k; `). He
shows that, in this case, Nash equilibria are payo¤-equivalent to completely
revealing equilibria.43 Using this simple characterization, he constructs an
example in which, as in the zero-sum case above, there is no equilibrium at
all. Both the characterization and the example make use of the �long term
� individual rationality levels (i.e., minmax) in �1(p; q), which are com-
puted in the associated zero-sum games.44 Salomon and Forges (2015) make
the further assumption that long term and short term individual rationality
levels coincide (they refer to �uniform punishment strategies�). Under this
assumption, the Nash equilibria of �1(p; q) can be characterized in terms of
the one-shot game but the non-existence phenomenon persists.45

Amitai (1996b) substantially extends Koren (1988/1992)�s work by char-
acterizing the equilibria of the in�nitely repeated game �1(p; q) without
making restrictive assumptions on the payo¤ functions. In other words, Ami-
tai (1996b) extends Hart (1985) to the case of lack of information on both
sides. A companion paper, Amitai (1996a) undertakes a similar task for long
cheap talk, i.e., seeks to generalize the results of (a preliminary version of)
Aumann and Hart (2003). Summing up very loosely, in both models, equi-
libria generate a dimartingale, as in the case of lack of information on one
side (see Section 3 and 5); the converse holds in static games with cheap talk
and in the in�nitely repeated game, but, in the latter case, Amitai (1996b)
makes an additional assumption, referred to as �tightness�. As the existence
of uniform punishment strategies, �tightness�makes long term punishments
unnecessary.

43The same holds for the communication equilibria of �1(p; q) (see Forges (1992)).
44Under the known own payo¤ assumption, a vector payo¤ x 2 RK is individually

rational for player 1 in �1(p; q) if and only if, for every � 2 �(K), � � x � cavuNR(�)
with uNR de�ned as in the previous sections. A symmetric de�nition obviously applies for
player 2.
45Salomon and Forges (2015) consider ��discounted in�nitely repeated games with lack

of information on both sides (see also Peski (2008, 2014) on this topic). They investi-
gate the possible extension, in the nonzero-sum case, of Mertens and Zamir (1971-72)�s
convergence of v� as � ! 1.
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