Brein en Cognitie

Learning resources 3.4 C B&C Foundations of Cognitive Brain Research

What is Intelligence?

  • Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460. doi:http://www.jstor.org/stable/2251299
  • The Turing Test (2011). Stanford Encyclopedia of Philosophy.
  • Hannagan, Thomas, Ktori, Maria, Chanceaux, Myriam, Grainger, Jonathan,. (2012). Deciphering CAPTCHAs: What a Turing Test Reveals about Human Cognition. PLoS ONE, 7(3), e32121–e32121. doi:10.1371/journal.pone.0032121
  • Hauser, L. (2016). Chinese Room Argument.
  • Langley, P. (2012). Intelligent Behavior in Humans and Machines.
  • Brian Christian. (2012). Mind vs. Machine. 

Mental Representation

  • Markman, A.B., & Dietrich, E. (2000). Extending the classical view of representation. Trends in Cognitive Sciences, 4(12), 470–475. doi:10.1016/S1364-6613(00)01559-X
  • Shapiro, L. (2007). The Embodied Cognition Research Program. Philosophy Compass, 2(2), 338–346. doi:10.1111/j.1747-9991.2007.00064.x
  • Brooks, R. A. (1991). Intelligence Without Representation. Artificial Intelligence Journal, 47(0), 139–159. doi:10.1016/0004-3702(91)90053-M
  • Clark, Andy,. (2001). Reasons, Robots and the Extended Mind. Mind and Language, 16(2), 121–145. doi:10.1111/1468-0017.00162
  • Andy Clark. (2009). Memento’s Revenge: The Extended Mind, Extended.. 

Neuroimaging

  • Cooper, R. P. & Shallice, T. (2010). Cognitive neuroscience: the troubled marriage of cognitive science and neuroscience. Current Topics in Cognitive Science, 2(3), 398–406. doi:10.1111/j.1756-8765.2010.01090.x
  • Poldrack, Russell A., Farah, Martha J.,. (2015). Progress and challenges in probing the human brain. Nature, 526(7573), 371–379. doi:10.1038/nature15692
  • Fernandez-Duque, Diego, Evans, Jessica, Christian, Colton, Hodges, Sara D.,. (2015). Superfluous Neuroscience Information Makes Explanations of Psychological Phenomena More Appealing. Journal of Cognitive Neuroscience, 27(5), 926–944. doi:10.1162/jocn_a_00750
  • Poldrack, Russell A., Yarkoni, Tal,. (2016). From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure. Annual Review of Psychology, 67(1), 587–612. doi:10.1146/annurev-psych-122414-033729
  • Farah, Martha J.,. (2014). Brain Images, Babies, and Bathwater: Critiquing Critiques of Functional Neuroimaging. Hastings Center Report, 44(s2), S19–S30. doi:10.1002/hast.295 

Good Research Practices

  • Feyman, R.P. (1974). Cargo cult science. Eng Sci, 10–13.
  • Simmons, J.P., Nelson, L.D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psychological Science, 22(11), 1359–1366. doi:10.1177/0956797611417632
  • Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716–aac4716. doi:10.1126/science.aac4716
  • Alogna, V. K., Attaya, M. K., Aucoin, P., Bahnik, S., Birch, S., Birt, A. R., … Zwaan, R. A. (2014). Registered replication report: Schooler & Engstler-Schooler (1990). Perspectives on Psychological Science, 9, 556–578. (2014). Registered Replication Report: Schooler and Engstler-Schooler (1990). Perspectives on Psychological Science, 9(5), 556–578. doi:10.1177/1745691614545653
  • Schooler, J. W.,. (2014). Turning the Lens of Science on Itself: Verbal Overshadowing, Replication, and Metascience. Perspectives on Psychological Science, 9(5), 579–584. doi:10.1177/1745691614547878
  • Baumeister, Roy F.,. (2016). Charting the future of social psychology on stormy seas: Winners, losers, and recommendations. Journal of Experimental Social Psychology, 66, 153–158. doi:10.1016/j.jesp.2016.02.003 

Learning resources 3.5 C B&C Memory

Reading for TG1

  • Radvansky, G.A. (2011). Chapter 1 (pp. 1-18). 

Theme 1: Short-Term Memory (TG2)

  • Radvansky, G.A. (2011). Chapter 5 (pp. 83-103).
  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829-839.
  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62-101). New York, NY: Cambridge University Press.
  • Jaeggi, S.M., Buschkuehl, M., Jonides, J., & Perrig, W.J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 6829-6833.
  • Harrison, T.L., Shipstead, Z., Hicks, K.L., Hambrick, D.Z., Redick, T.S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24, 2409-2419. 

Theme 2: Long-Term Memory (TG3)

  • Neath, I., & Surprenant, A.M. (2003). Perspectives on processing (chapter 5). In Human memory (2nd ed., pp. 96-111). Belmont, CA: Wadsworth.
  • Neath, I., & Surprenant, A.M. (2003). Forgetting (chapter 6). In Human memory (2nd ed., pp. 125-129). Belmont, CA: Wadsworth.
  • Radvansky, G.A. (2011). Chapters 3 (pp. 38-51), 8 (pp. 149-171), 12 (pp. 239-259).
  • Roediger, H. L. III., & Karpicke, J. D. (2006). Test-enhanced learning: Taking tests improves long-term retention. Psychological Science, 17, 249-255.
  • Cepeda, N.J., Vul, E., Rohrer, D., Wixted, J.T. & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19, 1095-1102.
  • de Jonge, M., Tabbers, H.K., Pecher, D., & Zeelenberg, R. (2012). The effect of study time distribution on learning and retention: A Goldilocks principle for presentation rate. Journal of Experimental Psychology: Learning, Memory, & Cognition, 38, 405-412. 

Theme 3: Memory Retrieval (TG4)

  • Raaijmakers, J.G.W., & Shiffrin, R.M. (1981). Search of associative memory. Psychological Review, 88, 93-134. (Sections II and III may be skipped)
  • Levy, B.J., & Anderson, M.C. (2002). Inhibitory processes and the control of memory retrieval. Trends in Cognitive Sciences, 6, 299-305.
  • Anderson, M.C., & Levy, B.J. (2009). Suppressing unwanted memories. Current Directions in Psychological Science, 18, 184-194.
  • Anderson, M.C., et al. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303, 232-235. 

Theme 4: Concepts and Categories (TG5)

  • Radvansky, G.A. (2011). Chapter 9 (pp. 172-197).
  • Posner, M.I., & Keele, S.W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353-363.
  • Hintzman, D.L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411-428. 2

Learning resources 3.6 C B&C The Brain

  • Maletic, V., Robinson, M., Oakes, T., Iyengar, S., Ball, S. G., Russell, J.,. (2007). Neurobiology of depression: an integrated view of key findings. International Journal of Clinical Practice, 61(12), 2030–2040. doi:10.1111/j.1742-1241.2007.01602. 

Theme 5: The Neural Basis of Memory and Memory Disorders (TG5)

  • Gluck, M.A., Mercado, E., & Myers, C.E. (2007). The neuroscience of learning and memory (chapter 2, only the part on ‘Synaptic plasticity’). In Learning and memory: From brain to behavior (pp. 72-78). New York, NY: Worth.
  • Gluck, M.A., Mercado, E., & Myers, C.E. (2007). Episodic and semantic memory (chapter 3, only the part on ‘Brain substrates’). In Learning and memory: From brain to behavior (pp. 102-118). New York, NY: Worth.
  • Maguire, E.A., Woollett, K., & Spiers, H.J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis, Hippocampus, 16, 1091-1101. Radvansky, G.A. (2011). Chapters 16 (pp. 318-335) and 17 (pp. 336-349).

Theme 6: Implicit Memory & Skill Learning (TG6)

  • Radvansky. Chapter 6 (pp. 105-121).
  • Roediger, H.L. (1990). Implicit memory: Retention without remembering. American Psychologist, 45, 1043-1056.
  • Gabrieli, J.D.E., Fleischman, D.A., Keane, M.M., Reminger, S.L., & Morell, F. (1995). Double dissociation between memory systems underlying explicit and implicit memory in the human brain. Psychological Science, 6, 76-82.

Theme 7: Consolidation and Forgetting (TG6)

  • Wixted, J. T. (2005). A theory about why we forget what we once knew. Current Directions in Psychological Science, 14, 6-9.
  • Wixted, J. T. & Carpenter, S. K. (2007). The Wickelgren power law and the Ebbinghaus savings function. Psychological Science, 18, 133-134.
  • Murre, J.M.J. (1996). TraceLink: A model of amnesia and consolidation of memory. Hippocampus, 6, 675-684.
  • Stickgold, R., James, L., Hobson, J. A. (2000). Visual discrimination learning requires post-training sleep. Nature Neuroscience, 2, 1237-1238.
  • Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437, 1272-1278. 3

Encoding Specificity Effects in Cued Recall: Retrieval, Response Bias or Monitoring?

  • Higham, P.A. (2002). Strong cues are not necessarily weak: Thomson and Tulving (1970) and the encoding specificity principle revisited. Memory & Cognition, 30, 67-80.
  • Sternberg et al. (2007). Chapter 2: Evaluating experimental research: critical questions. 

False Memories and Nonconscious Processes

  • Seamon, J.G., Luo, C.R., & Gallo, D.A. (1998). Creating false memories of words with or without recognition of list items: Evidence for nonconscious processes. Psychological Science, 9, 20-26. Sternberg et al. (2007). Chapter 7: Informal logical fallacies.

Discussion meeting 3

  • Midazolam Amnesia
  • Polster, M.C., McCarthy, R.A., O’Sullivan, G., Gray, P.A., & Park, G.R. (1993). Midazolam-induced amnesia: implications for the implicit/explicit distinction. Brain and Cognition, 22, 244-265.
  • Sternberg et al. (2007). Chapter 5: Critical thinking in designing and analyzing research.