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Abstract

This study proposes a dynamic multi-factor copula model with time-varying, data-driven group
assignments. Transitions of firms between groups are modelled using a hidden Markov model,
driven by the distance between clusters and the past likelihood of group membership. Using daily
returns from S&P 100 stocks between 2015 and 2024, the model is evaluated against two static
benchmarks: k-means clustering and industry-based classifications. It was found that the dynamic
clustering approach consistently outperforms the static alternatives. Notably, a model with 15
dynamic groups yields better forecasts than an otherwise identical model with 21 static groups.
The results show that time-varying group assignments enable the model to adapt to changes in

firm characteristics while preserving sufficient persistence in cluster assignments.



1 Introduction

Correlations between asset returns tend to increase significantly during periods of market stress or
economic shocks (Chesnay & Jondeau, 2001). This was evident during the 2007-2008 global financial
crisis, where models that ignored joint extreme events contributed to the collapse of the housing
market (Coval et al., 2009; Zimmer, 2012). This crisis emphasized the need for models that can
capture dynamic dependencies in unstable economic conditions. However, financial markets often
involve more than 50 variables, resulting in high model complexity (Manner & Reznikova, 2012). This
estimation difficulty is reduced by copulas, which separate each variable’s marginal behaviour from
their dependence structure (Smith, 2015).

Previous research on copulas focused on modelling time-varying dependence through dynamic
factor loadings. These loadings represent how strongly each variable is influenced by one or more
underlying latent factors, which capture common sources of variation in returns. Oh & Patton (2017)
extended this approach by introducing multi-factor copulas with pre-specified static clusters based
on SIC industry codes. More recently, Oh & Patton (2023) derived clusters directly from the data
using k-means clustering. Assuming stable group assignments over time, they showed that a model
with just five data-driven clusters outperforms a comparable model using 21 industry-based clusters
in out-of-sample forecasts.

However, no study yet has combined multi-factor copulas with time-varying, data-driven group
assignments. Allowing estimated clusters to change over time may better reflect real-world dynamics,
such as firms shifting industries, changing strategies or making acquisitions. This idea is supported by
Joao et al. (2023), who developed a linear panel model incorporating a hidden Markov process that
allows firms to switch clusters. Their results show that enabling these switches leads to improved model
fit. This study investigates whether incorporating time-varying cluster assignments within multi-factor
copula models similarly improves predictive performance. Therefore, the research question is: "How
does incorporating time-varying cluster assignments in a high-dimensional multi-factor copula model
affect predictive performance relative to static clusters based on industry classifications or k-means
clustering?”

To answer this research question, initial clusters were estimated using the k-means algorithm, with
group transitions over time modelled via a hidden Markov model. This dynamic clustering approach
was compared to two benchmark methods: clustering based on Standard Industrial Classification
codes and static k-means clustering. In an empirical analysis, the proposed model was applied to
daily returns from stocks in the S&P 100 index over the period 2015-2024 to evaluate its real-world
performance. Several copula types were considered, including Gaussian, t, and skewed ¢, along with

both static and dynamic factor loadings.

2 Data and Methodology

2.1 Data

The empirical analysis investigates the daily returns of constituents in the S&P 100 index. The
sample period is January 2, 2015, to December 31, 2024, including 7' = 2515 trading days. The
dataset contains N = 98 stocks that were included in the index as of December 31, 2024, and that
were continuously traded throughout the full sample period. A list of all included firms can be found

in Appendix A.



2.2 A Dynamic Multi-Factor Copula Model

This study builds on the skewed-¢ copula model proposed by Oh & Patton (2023). Their approach uses
a multi-factor copula model with G clusters of variables, each with a market and group-specific factor
loading. In addition, it includes a skewness parameter to capture the asymmetric dependence patterns
frequently observed in asset returns. The model is estimated in two stages. First, univariate marginal
distributions are fitted to each time series using an AR(1) process for the conditional mean and a
GJR-GARCH(1,1) model of Glosten et al. (1993) for the conditional variance. In the second stage of
the estimation, conditional on these marginals from the previous stage, the joint dependence among
the transformed variables is modelled using a skewed ¢ copula. Time variation in the copula is captured
by modelling the factor loadings with Generalized Autoregressive Score (GAS) dynamics (Creal et al.,
2013), which updates parameters based on the gradient of the conditional copula log-likelihood.

2.3 Time-Varying Clusters with Markov-switching

The multi-factor copula model assumes G clusters of firms. Clusters can be pre-assigned using industry
classifications. Alternatively, Oh & Patton (2023) estimated them from the data using k-means
clustering, obtaining static groups fixed over the entire sample period. This study extends their
method by modelling cluster memberships as Markov states. Firms can then switch clusters over
time, while temporal dependence is preserved (Frithwirth-Schnatter, 2011). The implementation of
this method is based on Joao et al. (2023), who combine a hidden Markov model (HMM) with a linear
panel model. Here, their approach is adapted for compatibility with a copula model.

Specifically, the cluster membership of firm ¢ is described by the latent process v;:, where v = g
if firm ¢ belongs to cluster g at time t. The initial cluster assignments are set equal to those obtained
by static k-means clustering, as described by Oh & Patton (2023). Let mgrs := P{vit41 =k | vt = 9}
denote the probability of transitioning from state g to state k£ at time ¢. These transition probabilities
arc assumed to be homogeneous across firms and are collected in the transition matrix IT;. Assuming
transitions are more likely between nearby clusters, transition probabilities mg;; are modelled as a

function of distance between clusters:
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where dg;.; denotes the distance between clusters g and k at time ¢ and 6 > 0 is a parameter that
controls how fast the transition probability decays as the distance increases. Distances are based on

the common market factor:
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Since cluster memberships are unobserved, they are inferred using filtered probabilities. These prob-
abilities, denoted by 74 4+ := Plyit = g | F; 0], contain the probability that unit 7 belongs to cluster g
at time ¢, conditional on the observed data up to time ¢, ;. The copula likelihood at time ¢ is then
computed by summing over the likelihood of all possible cluster states, weighted by their predicted
probabilities 7;, ;1. Note that the copula defines a joint distribution over all units simultaneously
and thus does not allow decomposition into individual likelihoods. To address this, the conditional
mixture likelihood is defined (DeSarbo & Cron, 1988). This likelihood accounts for uncertainty in the

cluster assignment of a single unit ¢, while keeping the cluster assignments of all other units fixed at



their previously estimated values:

G
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where c(+) is the likelihood of the static Gaussian copula, I; is the vector of estimated cluster assign-
ments at time ¢ and f‘i,g’t is identical to I except that variable 7 is reassigned to cluster g.

The predicted cluster probabilities 74,1, are updated recursively using the forward algorithm
(Hamilton, 1989). The Markov property implies that the probability that firm 7 is in cluster g at time
t+1 depends on the probability that it is currently in cluster &k, and on the probability of transitioning

from cluster k to ¢:
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The second step of the forward algorithm is updating the filtered probabilities 74, via Bayes’ rule.
The predicted probabilities are combined with the conditional likelihood of the observed data under

each potential cluster assignment for firm ¢, while keeping the cluster assignments of all other firms

fixed: -
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The forward filtering algorithm described in Eqs.(4)-(5) is performed for each variable, after which
each unit is assigned to the cluster with the highest posterior probability:

Vit = arg mgaXTz‘g,ﬂt- (6)

For robustness, the forward filtering algorithm is run repeatedly for all firms, updating their cluster
assignments until no firm switches clusters between iterations. In practice, convergence is typically
achieved after just one iteration.

Regarding the out-of-sample forecasts, each variable is assigned to the cluster with the highest
predicted probability from Eq.(4), after which the probabilities are updated using Bayes’s rule for use

in the next time period.

2.4 Model Estimation and Evaluation

Joint estimation of the dynamic copula parameters and time-varying group assignments is compu-
tationally demanding. Therefore, a three-stage estimation procedure is used. A description of this
procedure is provided in Appendix B. After estimation, model performance is assessed using the Akaike
Information Criterion, the economic relevance of the clusters, and forecast accuracy.

Forecast accuracy is assessed using two scoring rules: the log-likelihood and the conditional like-
lihood score. The log-likelihood scoring rule of Amisano & Giacomini (2007) measures predictive

performance over the full support of copula model M;, and is defined as

Sl,t(ﬁt7Mi) = log Ct(ﬁt \ éC,hMi)a (7)



where ¢;(-) denotes the copula density at time ¢, and @, is the vector of estimated uniform marginals.
Dependence in the joint lower tail is especially important in risk management and finance, as extreme
losses often occur simultaneously. Therefore, the copula is evaluated using the conditional likelihood

score proposed by Diks et al. (2014), which focuses on the lower tail:
Seie (g, M;) = (log (| 0oy, M;) —log Cy(q | éo,t,]\/fi)) x Iy < q], (8)

where q is an N x 1 threshold vector, Ci(- | ¢y, M;) is the copula distribution, and Iy < q] =
Hfil Ift;+ < ¢;] indicates joint threshold exceedance. Equation (8) thus measures the log-likelihood
of model M; conditional on the event @iy < q, corresponding to the lower tail region [0, ¢1] % - - - X [0, gn].

To allow for time variation, the threshold vector is defined as q; = (G, ..., G ), where g satisfies
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for a specified tail probability ¢, such as 0.05. To compare predictive accuracy across models while
controlling for multiple testing, the Diebold & Mariano (2002) test is combined with the Model Confid-
ence Set procedure of Hansen et al. (2011), which iteratively eliminates the worst-performing models

until a subset of statistically indistinguishable models remains.

3 Results

3.1 Marginal Model

The marginal model is estimated for each individual return series, with detailed results reported Table
3 in Appendix C. Summary statistics show heavy tails and slight negative skewness in the returns (see
Figure 1 in Appendix C), while standardized residuals retain mild skewness and substantial excess
kurtosis, supporting the skewed ¢ model. Heterogeneity in pairwise correlations further motivates a

copula model to capture non-linear and asymmetric dependencies across stock returns.

3.2 In-sample Evaluation of Dynamic and Benchmark Clusters

Using transformed residuals from the marginal model, the copula model is estimated to capture de-
pendence between return series. Time-varying clusters are benchmarked against k-means and industry-
based clusters (one- and two-digit Standard Industry Classification (SIC) codes), using a Gaussian
copula with static factor loadings. Model fit is evaluated with the Akaike Information Criterion (AIC),
where lower values indicate better performance. The optimal value of the transition decay parameter
0 (see Eq. (1)) is found by grid search to be 20.

The results show that time-varying clusters achieve significantly better AIC values than static
clustering methods, confirming the potential of data-driven dynamic group assignments as suggested
by Joao et al. (2023). Figure 2 in Appendix D shows AIC values across different numbers of clusters G,
indicating that 21 is the optimal number of groups for both static and dynamic clusters. Additionally,
a model with only six estimated groups outperforms the 21 two-digit SIC groups, consistent with the
findings of Oh & Patton (2023).



3.3 Estimated Cluster Assignments

To investigate the economic relevance of cluster transitions, the initial static clusters are compared
with the clusters at the end of the sample period. A complete overview of these clusters is provided in
Table 4 and Table 5 in Appendix D, respectively. Factor loadings for the model with dynamic cluster
assignments, estimated for Gaussian, ¢, and skewed t copulas with GAS dynamics, are reported in
Table 6. The static groups show strong alignment with two-digit SIC classifications and generally show
meaningful coherence, although some inconsistencies remain. Allowing for time-varying transitions
via the hidden Markov model resolves several of these inconsistencies. For example, General Electric,
initially clustered with financial firms, is reassigned to group 4 with industrial companies such as
General Dynamics, better reflecting its core business. Improvements are also seen in within-group
correlations, with Figure 3 in Appendix D showing that time-varying clusters yield higher correlations
for General Electric’s group and two other cases.

Across the full sample, 183 transitions are observed, with around 4% of stocks switching each
quarter. Figure 4 and Figure 5 in Appendix E report the fraction of stocks switching each quarter and
the number of transitions per stock, respectively. Transition rates are low early in the sample but rise
from 2020, peaking in early 2021 during the COVID-19 crisis. Elevated rates are also observed in the
second and fourth quarters of 2024, possibly linked to geopolitical and economic uncertainty. About
42.9% of firms never change clusters. A small number of stocks switch repeatedly (“flickering”), likely
reflecting proximity to multiple cluster boundaries. Some groups do not experience changes, such as
groups 12 and 13 (energy and utilities, and oil and gas), which may be related to the steady and

clearly defined nature of these industries.

3.4 Out-of-sample Forecast Performance

Next, the dynamic model is evaluated out-of-sample using a rolling estimation window of 1,000 obser-
vations, resulting in 1,515 out-of-sample observations, ranging from December 21, 2018 to December
31, 2024. Model parameters are re-estimated every 250 observations, and a one-step-ahead copula
density forecast is constructed for each day. For the dynamic clustering model, the transition para-
meter is set to the optimal in-sample value § = 20, which also demonstrated robust performance in
the out-of-sample evaluation.

Table 1 presents the results of the copula density forecast evaluation across different group sizes
for SIC, static k-means, and dynamic clustering. It reports the time-averaged log-likelihood scores
Si+, 5% left-tail conditional log-likelihood scores S¢+, and p-values from the Model Confidence Set
(MCS). The left panel shows results for static factor loadings, and the right panel for GAS dynamic
loadings. The table shows three interesting results. First, dynamic clustering consistently outperforms
static clustering across all group sizes under the log scoring rule, in line with in-sample results. In
both panels, the model with 21 dynamic groups achieves the highest average log-likelihood, with an
average log-likelihood of 31.44 under static loadings and 31.94 with GAS dynamics. In addition,
both 21-group models achieve an MCS p-value of 1.00, indicating statistically superior predictive
performance relative to all other models. Second, dynamic clustering improves the 5% conditional
log score relative to the static clusters, suggesting better performance in capturing joint downside
risk. However, the improvement is smaller than for the full log-likelihood, and the MCS includes some
static models. Third, allowing for time-varying factor loadings through GAS dynamics leads to further

improvements in both the overall and conditional left-tail log-likelihood, even when combined with



dynamic clustering.

Table 1
One-step ahead copula density forecasts

Static loadings GAS loadings

Full 5% tail Full 5% tail

Si,1(p-val) Sei.1(p-val) S, (p-val) Sei.1(p-val)

SIC 1-digit static 24.80(0.00) 2.395(0.00) 24.89(0.00) 2.297(0.00)
SIC 2-digit static 27.48(0.00) 2.424(0.00) 27.62(0.00) 2.289(0.00)
3 static groups 24.14(0.00) 2.401(0.00) 24.47(0.00) 2.363(0.00)
6 static groups 26.80(0.00) 2.417(0.00) 27.24(0.00) 2.413(0.00)
9 static groups 27.86(0.00) 2.417(0.00) 98.14(0.00) 2.415(0.00)
12 static groups 28.88(0.00) 2.422(0.01) 29.29(0.00) 2.414(0.00)
15 static groups 28.96(0.00) 2.443(0.07) 29.38(0.00) 2.428(0.00)
18 static groups 30.00(0.00) 2.447(0.14) 30.54(0.00) 2.439(0.00)
21 static groups 30.24(0.00) 2.453(0.31) 30.59(0.00) 2.456(0.00)
24 static groups 98.62(0.00) 2.334(0.03) 28.97(0.00) 2.438(0.00)
SIC 1-digit dynamic 97.40(0.00) 2.401(0.00) 27.93(0.00) 2.374(0.00)
SIC 2-digit dynamic 29.95(0.00) 2.436(0.00) 30.22(0.00) 2.418(0.00)
3 dynamic groups 24.93(0.00) 2.289(0.00) 25.58(0.00) 2.405(0.00)
6 dynamic groups 27.48(0.00) 2.348(0.00) 27.95(0.00) 2.417(0.00)
9 dynamic groups 28.14(0.00) 2.412(0.00) 28.62(0.00) 2.418(0.00)
12 dynamic groups 29.06(0.00) 2.419(0.00) 29.43(0.00) 2.421(0.00)
15 dynamic groups 30.30(0.00) 2.451(0.28) 30.76(0.00) 4.497(0.08)
18 dynamic groups 30.56(0.00) 2.453(0.31) 31.02(0.00) 2.509(0.72)
21 dynamic groups 31.44(1.00) 2.459(0.76) 31.94(1.00) 2.516(1.00)
24 dynamic groups 29.68(0.00) 2.464(1.00) 29.89(0.00) 2.483(0.00)

Note: This table reports the accuracy of one-step-ahead copula density forecasts for daily returns of S&P 100 stocks,
using a multi-factor copula model with Student’s t distribution and transition decay § = 20. The mean log score (.S;.+)
and the 5% conditional log-likelihood score (Sei,¢) for the lower tail are shown. p-values from the Model Confidence Set
(MCS) procedure of Hansen et al. (2011) are reported in parentheses, with bold numbers indicating models that belong
to the MCS of their column at a significance level of 5%. The out-of-sample period runs from December 21, 2018, to
December 31, 2024, including 1,515 observations. Note that the 1-digit SIC clusters consist of 8 groups and the 2-digit
SIC clusters contain 21 groups.

To further evaluate out-of-sample forecasting performance, alternative copula specifications were
compared, considering both static versus dynamic (GAS) factor loadings and different copula families
(Gaussian, t and skew t). The significance of differences in out-of-sample likelihoods is assessed using
the Diebold & Mariano (2002) test, with standard errors computed with the Newey & West (1987)
estimator based on 10 lags. All DM-test results can be found in Table 7 and 8 in Appendix F for
static and dynamic clustering, respectively.

Three main findings were obtained. First, all test statistics comparing static and GAS versions of
the HMM models were found to be positive and highly significant, indicating that the incorporation of
GAS dynamics improves the fit across all copula types and group sizes. The effect was observed to be
particularly strong for the skewed ¢ copula relative to the Gaussian and Student’s ¢ copulas. Second,
when copula families were compared under GAS dynamics, the Student’s ¢ copula was consistently
found to outperform both the Gaussian and skewed t copulas across all group sizes. This outcome is
consistent with the findings of Oh & Patton (2023). Third, the skewed ¢ copula was shown to perform
substantially worse in out-of-sample forecasts, in some cases performing even worse than the Gaussian
copula. The poor performance of the skewed t copula may be due to the inherent penalty that forecast

evaluations impose on estimation uncertainty. Unless additional parameters differ significantly from



zero and are estimated with sufficient accuracy, the model may achieve better predictive accuracy by
excluding them altogether. Finally, Table 7 shows that, in general, the patterns observed for dynamic
clusters also hold for static clusters. However, while the skewed ¢ copula still performs poorly, it is

not consistently outperformed by the Gaussian copula across all group sizes.

3.5 Economic determinants of Forecast Performance

Forecast performance is further evaluated across economic environments using the Conditional Equal
Predictive Ability (CEPA) and Conditional Superior Predictive Ability (CSPA) tests. The CEPA test
of Giacomini & White (2006) examines whether predictive accuracy depends on market conditions,
while the CSPA test proposed by Li et al. (2022) assesses whether any alternative model systematically
outperforms the benchmark. Economic conditions are summarized by market volatility (VIX), cross-
sectional dispersion of returns, and the alpha from the Capital Asset Pricing Model (CAPM).

The detailed results of both tests are shown in Table 9 in Appendix G. The results indicate that
the dynamic clustering model consistently outperforms static benchmarks. Compared to industry-
based clusters, gains are not strongly linked to economic variables. In contrast, when compared to
k-means clusters, improvements in forecasting performance are larger in periods of high volatility, high
dispersion, and greater CAPM alpha, with alpha being most influential. The CSPA test confirms that

dynamic clustering dominates static benchmarks across the entire range of conditions.

4 Conclusion

This paper extends the factor copula model of Oh & Patton (2023) by relaxing the assumption of static
group assignments. Firms often adjust their strategy, enter or exit markets, and engage in mergers
or acquisitions. As a result, the dependence structures among firms may also change over time,
making fixed clusters less realistic. Therefore, this study proposes a copula model that incorporates
time-varying clusters using a hidden Markov model, adapting the approach developed for multivariate
panel data by Joao et al. (2023).

In the empirical application to daily returns of S&P 100 stocks from 2015 to 2024, the dynamic
clustering model consistently outperforms static benchmarks based on SIC codes and k-means cluster-
ing. The improvement appears to be driven by firms that undergo changes in their business activities
or were initially misclassified. These gains are evident in both in-sample and out-of-sample evaluations
and are particularly strong during periods of high volatility, elevated dispersion, and large CAPM al-
pha values. However, the model introduces additional computational demands, not all clusters are
economically interpretable and some firms switch frequently between clusters.

Future research could address the issue of frequent switching between clusters by incorporating
non-Markovian transitions, which prevent switches if a stock has recently switched. Alternatively,
flickering could be reduced by using the non-parametric method of Joao et al. (2024), which uses a
modified version of k-means clustering to ensure temporal stability in clusters. A challenge of the
latter is its high computational cost, as it requires running the k-means algorithm for each point in
time. Another potential extension is to explore whether including additional explanatory variables
improves model performance. Variables such as market capitalization or return on equity could be used
to inform the transition probabilities between clusters, an approach shown to enhance performance
by Joao et al. (2023). Lastly, future work could focus on scaling the model to accommodate larger

datasets containing more firms or other asset classes.
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Appendix A

List of Firms Used in the Empirical Analysis

Table 2

Summary of firms in the S&P 100

Ticker Name  SIC Ticker Name  SIC Ticker Name  SIC
AAPL Apple 35 DHR Danaher 50 MS Morgan Stanley 62
ABBV Abbvie 28 DIS Disney 73 MSFT Microsoft 73
ABT Abbott Lab. 50 DUK Duke Energy 49 NEE Nextera Energy 49
ACN Accenture 67 EMR FEmerson 35 NFLX Netflix 78
ADBE Adobe 73 F Ford 37 NKE Nike 30
AIG Ame Inter 63 FDX Fedex 45 NVDA Nvidia 36
AMD Adv Micro Dev 36 GD Gen Dynamics 37 ORCL Oracle 73
AMGN Amgen 28 GE Gen Electric 35 PEP Pepsico 20
AMT American Tower 48 GILD Gilead 28 PFE Pfizer 28
AMZN Amazon 73 GM General Motors 37 PG Procter Gamble 28
AVGO Broadcom 36 GOOG Alphabet 73 PM Philip Morris 21
AXP Amex 60 GOOGL Alphabet 73 QCOM Qualcomm 36
BA Boeing 37 GS Goldman Sachs 62 RTX RTX 37
BAC Bank of Am 60 HD Home Depot 52 SBUX Starbucks 58
BH Biglari Holdings 58 HON Honeywell Int 50 SCHW Schwab Charles 62
BK Bank of NY 60 IBM IBM 73 SO Southern 49
BKNG Booking 73 INTC Intel 36 SPG Simon Property 67
BLK Blackrock 62 INTU Intuit 73T AT&T 48
BMY Bristol-Myers 28 JNJ Johnson&J 28 TGT Target 53
C Citigroup 60 JPM Jpmorgan 60 TMO Thermo Fisher 38
CAT Caterpillar 35 KO Coca Cola 20 TMUS T-Mobile 48
CHTR Charter Comm 48 LLY Lilly Eli 28 TSLA Tesla 37
CL Colgate Palmo 28 LMT Lockheed Mar 37 TXN Texas Instru 36
CMCSA Comcast 48 LOW Lowes 52 UNH Unitedhealth 63
COF Capital One 60 MA Mastercard 73 UNP Union Pacific 40
Ccop Conocophillips 13 MCD Mcdonalds 58 UPS United Parcel 45
COST Costco 53 MDLZ Mondelez Int 20 USB US Bancorp 60
CRM Salesforce 73 MDT Medtronic 38V Visa 73
CSCO Cisco Sys 36 MET Metlife 63 VZ Verizon 48
CVS C V S Health 59 META Meta 73 WEC Wells Fargo 60
CVvX Chevron 13 MMM 3M 50 WMT Walmart 53
D Dominion En 49 MO Altria Group 21 XOM Exxon Mobil 29
DE Deere 35 MRK Merck 28

SIC Description Num SIC Description Num SIC Description  Num
1 Mining, construct. 24 Transprt, comm’s 137 Services 15
2 Manuf: food, furn. 16 5 Trade 139 Non-classifiable 2
3 Manuf: elec, mach 20 6 Finance, Ins 17 Total 98

Note: This table reports the ticker symbol, company name, and the first two digits of the SIC code for the firms included
in the empirical analysis. The sample consists of firms that were constituents of the S&P 100 index as of December 31,
2024, and that were continuously traded throughout the full sample period (2015-2024). Firms that underwent mergers
or splits during the sample period are excluded. SIC codes correspond to those assigned as of the midpoint of the sample
period (December 31, 2019). For firms that changed their ticker symbol or name, the most recent identifiers are reported.
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Appendix B

Estimation procedure

Due to the computational complexity of jointly estimating dynamic copula parameters and time-
varying group assignments, a three-stage estimation procedure is adopted. In the first stage, the
initial cluster assignments and copula parameters are estimated following Oh & Patton (2023). Static
group assignments ', are obtained by applying k-means clustering to the full sample using a mis-
specified static Gaussian copula. Conditional on these initial clusters, the copula parameters ¥ =
WM, wM Wl WG oM M o BY 1, (] are estimated by maximizing the log-likelihood of the

skewed t copula:

T
W = argmax }_ log Coew to(Wi 9 | I1). (9)
t=1
The skewed ¢ copula nests both the Gaussian and symmetric ¢ copulas as special cases. In both the
simulation study and the empirical analysis, all three copulas are estimated for comparison.

In the second stage, time-varying cluster assignments are estimated. For each time period ¢, the
filtered probabilities 7;,,, are updated using the forward algorithm in Eqs. (4)-(5), again based on
the misspecified static Gaussian copula. FEach stock is then assigned to the cluster with the highest
posterior probability, yielding the current group assignment I,.

In the third stage, the dynamic factors loadings are updated using the Generalized Autoregressive
Score dynamics, based on the copula parameters obtained in the first stage. GAS adjusts the load-
ings in response to new information by leveraging the gradient of the log-likelihood function of the

conditional copula. The update equations take the form:

M Olog CSkewt,t(Xt; Ry, v, C)

AN =wi+a ST +B8MNM, forg=1,....G (10)
g,t
dlogc x¢; Ry, v,
)\gt+1 = wgc +a% & Skew(;’;\(c 6 R, v, ) + 50)\&, forg=1,...,G (11)
g7t

where x; = Tsiéw(ut; v,(), and cgkewt t(X¢; Re, v, () denotes the conditional skewed t copula density.
Finally, given the current factor loadings and group assignments, the log-likelihood of each observation
is computed.

With respect to the remaining parameters, the number of clusters G must be chosen. Although
the Akaike Information Criterion (AIC) is commonly used, it may overestimate the number of clusters
(Frithwirth-Schnatter, 2011). Therefore, the optimal number of clusters is also validated based on
out-of-sample forecasting performance. In theory, the number of clusters could vary over time if all
firms were to transition out of a given cluster, implying G = G- However, to preview the results,
this has not occurred in practice, likely because the initial static clustering provides a sufficiently
accurate starting point. Moreover, maintaining a fixed number of clusters over time is common in
literature and appears to be a reasonable assumption (Frithwirth-Schnatter, 2011; Joao et al., 2023).
The decay parameter § in Eq. (1), which controls the dynamics of cluster transitions, is selected by

evaluating model performance over a grid of values.
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Appendix C
Summary Statistics and Marginal Model Results
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Figure 1. Distribution of S&P 100 returns. The left panel displays the daily value-weighted market returns
over the full sample period from 2015 to 2024. The right panel shows the distribution of the returns, along
with a fitted Gaussian distribution.

Table 3
Summary statistics for the marginal model

Cross-sectional distribution

Mean 5% 25% Median 75% 95%
Panel A: Marginal moments
Mean 0.001 0.000 0.000 0.001 0.001 0.001
Std 0.018 0.012 0.015 0.017 0.020 0.026
Skewness -0.028 -0.786 -0.228 0.079 0.237 0.819
Kurtosis 15.000 8.201 10.676 13.352 17.703 28.429
Panel B: Marginal model parameters
Constant 0.001 0.000 0.000 0.001 0.001 0.001
AR(1) -0.020 -0.052 -0.038 -0.019 -0.004 0.014
wx10% 0.009 0.002 0.004 0.006 0.011 0.023
@ 0.034 0.001 0.016 0.028 0.043 0.085
K 0.091 0.016 0.062 0.089 0.119 0.161
I6] 0.893 0.799 0.871 0.897 0.929 0.957
£ 4.558 3.555 3.950 4.415 4.941 6.128
Y -0.035 -0.092 -0.063 -0.036 -0.010 0.025
Panel C: Correlations of standardized residuals
Pearson 0.288 0.127 0.214 0.274 0.347 0.484
Spearman 0.330 0.152 0.251 0.316 0.398 0.535

Note: This table reports the cross-sectional distribution of summary statistics from 98 daily return series spanning
January 2, 2015 to December 31, 2024. Panel A reports the distribution of the first four moments of the returns, Panel B
shows the estimated parameters from the marginal models, and Panel C provides a summary of the pairwise correlations
among the standardized residuals.
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Appendix D

Comparison between Static and Dynamic Clusters

-0 17—

X — 1-digit SIC (8 groups) |1

—11 F — - 2-digit SIC (21 groups) H
-++ Static k-means

—12 | — K-means + HMM B
N . :

i:) —13 3 \\ .............. ]
§, ey ] \‘ v s JPOE T .
g g " 5
NSRS N :
. \, ]

~16 | \, .

: N\, ]

—17 :— \"'\ — .7 —:
—18 : PR RSP R S S SR S . ]

5 10 15 20 25

Number of groups (G)

Figure 2. AIC values as a function of the number of groups (G) for static clustering and dynamic clustering
combining k-means with a hidden Markov model. For comparison, AIC values corresponding to the 1-digit
and 2-digit SIC-based groupings, comprising 8 and 21 groups, respectively, are also shown. Lower AIC values
indicate a better model fit. The y-axis is scaled by 1074,
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Table 4

Estimated group assignments with static clustering

Group Ticker Name SIC Group Ticker Name SIC
1 ABBV  Abbvie 28 8 CAT  Caterpillar 35
ABT  Abbott Lab. 28 EMR  Emerson 36
AMGN  Amgen 28 FDX  Fedex 45
BMY  Bristol-Myers 28 UNP  Union Pacific 40
GILD Gilead 28 UPS  United Parcel 45
JNJ  Johnson&J 28
LLY Lilly Eli 28 9 AMZN  Amazon 73
MDT  Medtronic 38 BKNG  Booking 73
MRK  Merck 28 META  Meta 73
PFE  Pfizer 28 NFLX  Netflix 78
TMO  Thermo Fisher 38
UNH  Unitedhealth 63 10 ACN  Accenture 73
CSCO  Cisco Sys 36
2 BAC Bank of Am 62 IBM IBM 73
BK  Bank of NY 60 ORCL  Oracle 73
C  Citigroup 62
COF  Capital One 60 11 COST  Costco 53
GS  Goldman Sachs 62 CVS CV S Health 59
JPM  Jpmorgan 60 TGT  Target 53
MET  Metlife 63 WMT  WalMart 53
MS  Morgan Stanley 60
SCHW  Schwab Charles 62 12 D Dominion En 49
USB  US Bancorp 60 DUK  Duke Energy 49
WFC  Wells Fargo 60 NEE  Nextera Energy 49
SO  Southern 49
3 AMT  American Tower 67
CL  Colgate Palmo 28
KO Coca Cola 20 13 COP  Conocophillips 13
MDLZ  Mondelez Int 20 CVX  Chevron 29
MO  Altria Group 21 XOM  Exxon Mobil 29
PEP  Pepsico 20
PG  Procter Gamble 28 14 AIG  Ame Inter 63
PM  Philip Morris 21 AXP Amex 61
SPG  Simon Property 67 GE  Gen Electric 35
4 BA  Boeing 37 15 BH Biglari Holdings 58
GD  Gen Dynamics 37 TMUS  T-Mobile 48
HON  Honeywell Int 37 TSLA  Tesla 37
LMT  Lockheed Mar 37
MMM 3M 38 16 MCD  Mcdonalds 58
RTX RTX 37 NKE Nike 30
SBUX  Starbucks 58
5 ADBE  Adobe 73
CRM  Salesforce 73 17 F  Ford 37
INTU  Intuit 73 GM  General Motors 37
MA  Mastercard 73
MSFT  Microsoft 73 18 GOOG  Google 73
V  Visa 73 GOOGL  Google 73
6 AAPL Apple 35 19 DE Deere 35
AMD  Adv Micro Dev 36 INTC Intel 36
AVGO  Broadcom 36
NVDA Nvidia 36 20 BLK  Blackrock 62
QCOM  Qualcomm 36 DHR  Danaher 38
TXN  Texas Instru 36
21 HD  Home Depot 52
7 CHTR  Charter Comm 48 LOW  Lowes 52
CMCSA  Comcast 48
DIS Disney 48
T AT&T 48
VZ  Verizon 48

Note: This table reports the estimated static group assignments for 21 groups, as determined by the AIC-selected
optimal number of clusters. For firms that have changed their ticker symbol or name, the most recent identifiers are
shown. Groups are ordered by the number of stocks.
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Table 5

Estimated final group assignments with dynamic clusters

Group Ticker Name SIC Group Ticker Name SIC
1 ABBV  Abbvie 28 9 AAPL  Apple 35
ABT  Abbott Lab. 28 AMZN  Amazon 73
AMGN  Amgen 28 COST  Costco 53
BMY  Bristol-Myers 28 LLY Lilly Eli 28
GILD  Gilead 28 META  Meta 73
JNJ  Johnson&J 28 NFLX  Netflix 78
KO Coca Cola 20
MRK  Merck 28 10 ACN  Accenture 73
PEP  Pepsico 20 CSCO  Cisco Sys 36
PFE  Pfizer 28 HON  Honeywell Int 37
IBM IBM 73
2 BAC Bank of Am 62 MMM 3M 38
BK  Bank of NY 60
C  Citigroup 62 11 CHTR  Charter Comm 48
COF  Capital One 60 CMCSA  Comcast 48
GS  Goldman Sachs 62 CVS CV S Health 59
JPM  JPMorgan 60 MDLZ  Mondelez Int 20
MET  Metlife 63 MDT  Medtronic 38
MS  Morgan Stanley 60 UNH  Unitedhealth 63
USB  US Bancorp 60
WFC  Wells Fargo 60 12 D Dominion En 49
DUK  Duke Energy 49
3 AMT  American Tower 62 NEE  Nextera Energy 49
CL  Colgate Palmo 60 SO Southern 49
DIS Disney 62
PG  Proctor Gamble 60 13 COP  Conocophilips 13
PM  Philip Morris 62 CVX  Chevron 29
SPG  Simon Property 60 XOM  Exxon Mobil 29
T AT&T 63
VZ  Verizon 60 14 AIG  Ame Inter 63
WMT  Walmart 60 AXP  Amex 61
BA  Boeing 37
4 GD  Gen Dynamics 37
GE  Gen Electric 35 15 BH  Biglari Holdings 58
LMT  Lockheed Mar 37 TMUS  T-Mobile 48
RTX RTX 37 TSLA  Tesla 37
5 ADBE  Adobe 73 16 BKNG  Booking 73
CRM  Salesforce 73 NKE Nike 30
INTU  Intuit 73 PCLN  Priceline 73
MSFT  Microsoft 73 SBUX  Starbucks 58
ORCL  Oracle 73
17 F  Ford 37
6 AMD  Adv Micro Dev 36 GM  General Motors 37
AVGO  Broadcom 36
INTC Intel 36 18 GOOG  Google 73
NVDA  Nvidia 36 GOOGL  Google 73
QCOM  Qualcomm 36
TXN  Texas Instru 36 19 DE  Deere 35
MCD  Mcdonalds 58
7 DHR  Danaher 38
TGT  Target 53 20 BLK  Blackrock 62
TMO  Thermo Fisher 38 MA  Mastercard 73
SCHW  Schwab Charles 62
8 CAT  Caterpillar 35 UNP  Union Pacific 40
EMR  Emerson 36 V  Visa 73
FDX  Fedex 45
UPS  United Parcel 45 21 HD  Home Depot 52
LOW  Lowes 52

Note: This table reports the estimated dynamic group assignments for 21 groups at the end of the sample period.
For firms that have changed their ticker symbol or name, the most recent identifiers are shown. Cluster numbers are
consistent with the original numbering assigned in the static clustering.
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Table 6

Estimation results for the optimal 21 group model

Panel A: Parameter estimation accuracy

Gaussian Skew t

est. s.e. est. s.e. est. s.e.
wiw 0.052 0.003 0.007 0.001 0.006 0.001
wéw 0.105 0.007 0.016 0.003 0.013 0.001
wé‘/f 0.053 0.003 0.007 0.001 0.006 0.001
wi‘/[ 0.074 0.005 0.011 0.001 0.009 0.001
wé‘/[ 0.083 0.005 0.012 0.002 0.008 0.001
wé‘/[ 0.072 0.005 0.010 0.000 0.009 0.001
w;w 0.055 0.004 0.008 0.001 0.007 0.001
wé‘/[ 0.081 0.005 0.012 0.001 0.010 0.001
wg/[ 0.061 0.004 0.009 0.001 0.007 0.001
w% 0.078 0.005 0.011 0.001 0.009 0.001
w{‘/f 0.053 0.003 0.008 0.001 0.006 0.001
w{‘g 0.050 0.003 0.007 0.002 0.006 0.001
w% 0.084 0.005 0.012 0.001 0.010 0.001
w{‘f{ 0.073 0.005 0.011 0.001 0.009 0.001
wi‘g[ 0.039 0.002 0.005 0.001 0.005 0.001
w% 0.064 0.004 0.009 0.002 0.008 0.001
w% 0.105 0.007 0.016 0.001 0.013 0.002
w{‘gf 0.520 0.032 0.076 0.002 0.063 0.008
w{‘g 0.063 0.004 0.011 0.002 0.009 0.001
w% 0.078 0.005 0.009 0.001 0.014 0.002
w% 0.118 0.007 0.017 0.003 0.008 0.001
wlc 0.003 0.001 0.002 0.001 0.002 0.000
wg 0.005 0.001 0.002 0.001 0.004 0.001
wg 0.003 0.001 0.003 0.001 0.003 0.000
wf 0.003 0.001 0.002 0.001 0.002 0.000
w5c 0.003 0.001 0.003 0.001 0.003 0.000
wﬁc 0.003 0.001 0.003 0.001 0.003 0.000
w7c 0.002 0.001 0.002 0.001 0.002 0.000
wg 0.002 0.001 0.002 0.001 0.002 0.000
wgc 0.002 0.001 0.003 0.001 0.003 0.000
wﬁ) 0.001 0.000 0.002 0.001 0.002 0.000
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Table 6

Estimation results for the optimal 21 group model, continued

Panel A: Parameter estimation accuracy

Gaussian t Skew ¢

est. s.e. est. s.e. est. s.e.
w§ 0.002 0.001 0.002 0.001 0.002 0.000
w§y 0.007 0.001 0.006 0.002 0.006 0.001
w$y 0.007 0.001 0.007 0.002 0.007 0.001
w§ 0.002 0.001 0.002 0.001 0.002 0.000
w§i 0.001 0.001 0.001 0.001 0.000 0.000
ws 0.002 0.001 0.002 0.001 0.002 0.000
w$ 0.006 0.001 0.005 0.001 0.001 0.001
w$y 0.037 0.006 0.034 0.007 0.034 0.004
wy 0.002 0.001 0.001 0.001 0.001 0.001
w$) 0.000 0.000 0.000 0.000 0.001 0.001
w$i 0.007 0.001 0.006 0.002 0.006 0.002
aM 0.033 0.001 0.011 0.003 0.010 0.001
BM 0.917 0.005 0.987 0.008 0.990 0.002
a® 0.006 0.001 0.008 0.002 0.008 0.001
B¢ 0.995 0.005 0.995 0.008 0.996 0.001
v 0.034 0.003 0.034 0.001
¢ -0.398 0.001
Panel B: Estimation details
log £ 86643.05 89266.23 87968.92
AIC -173194 -178438 -175841
BIC -172926 -178164 -175562
Time (clustering) (hrs) 1.23 1.23 1.23
Time (copula) (hrs) 2.71 2.98 2.68
EM iterations 95.54 95.54 95.54

Note: This table reports the estimated parameters and standard errors for the multi-factor copula model with dynamic

group assignments, estimated via a Hidden Markov Model. Results are presented for the Gaussian, ¢, and skew-t copulas.

The model was estimated on the full sample using 21 groups, selected as optimal based on the Akaike Information

Criterion (AIC). Panel B reports model fit measures, computational time, and the number of EM iterations. All

estimations were performed on a machine with an Apple M1 processor (8 cores).
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Figure 3. Model-implied rank correlations over the full sample period. The upper panel displays correlations
for group 4 (from Table 4), comparing static clusters with dynamic clusters from the Markov-switching model.
The middle panel and lower shows the same comparison for group 6 and 10, respectively. The results are
obtained from the model with GAS dynamics and the Gaussian copula.
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Appendix E

Transition Dynamics
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Figure 4. Timing of cluster transitions. The black bars indicate the fraction of stocks that are estimated to
change groups for each quarter between 2015Q1 and 2024Q4. The red line reports the average transition

frequency over the full sample.
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Figure 5. Histogram of cluster transitions counts per stock.
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Appendix F

Diebold-Mariano test results

Table 7
Comparison of different copulas for static clustering

Static vs. GAS Copula shape

Gaussian t skewt Guvs. t G vs. skewt t vs. skewt
SIC 1-digit 3.170 3.704 27.771 12.223 -3.025 -18.945
SIC 2-digit 1.905 3.728 31.834 12.748 10.320 -8.435
3 groups 0.327 1.632 24.721 11.212 9.305 -9.1612
6 groups 3.017 4.294 30.483 12.466 11.088 -6.035
9 groups 3.807 5.172 7.481 12.741 6.647 -17.572
12 groups 3.574 5.117 11.443 13.057 7.085 -17.954
15 groups 3.058 4.528 22.474 12.276 -5.912 -17.475
18 groups 5.412 6.968 34.708 12.238 10.625 -7.451
21 groups 4.218 6.680 35.023 12.582 9.942 -7.051
24 groups 3.532 6.140 20.083 12.996 -5.367 -20.002

Note: This table reports Diebold-Mariano ¢ statistics for pairwise comparisons of models with static clusters using their
out-of-sample log-likelihood. The left panel compares models assuming static factor loadings with those using GAS
dynamics, for a Gaussian, t and skew-t copula and for a variety of choices for the number of groups. The right panel
compares the different copula shapes, using GAS dynamics in all cases, across a variety of choices for the number of
groups. In a comparison labelled “A vs. B,” a positive t-statistic implies that model B outperforms model A, whereas a
negative t-statistic suggests that model A performs better than model B.

Table 8
Comparison of different copula’s for dynamic clustering

Static vs. GAS Copula shape

Gaussian t skewt Guvs. t G vs. skewt t vs. skewt
SIC 1-digit 11.497 11.404 30.732 11.858 -8.489 -19.712
SIC 2-digit 5.601 5.605 21.014 12.843 -7.388 -18.094
3 groups 5.129 4.852 21.643 11.879 -5.861 -18.594
6 groups 5.833 5.249 18.869 12.299 -7.487 -19.124
9 groups 6.058 5.424 13.251 12.900 -9.863 -14.459
12 groups 5.121 4.140 20.386 13.246 -6.182 -18.543
15 groups 4.974 4.618 25.893 12.363 -6.521 -17.847
18 groups 5.841 6.795 32.697 12.290 -7.342 -17.624
21 groups 6.767 7.261 31.105 12.906 -6.699 -21.958
24 groups 5.489 6.434 29.453 11.358 -7.231 -21.762

Note: This table reports Diebold-Mariano t statistics for pairwise comparisons of models with dynamic HMM clusters
using their out-of-sample log-likelihood. The left panel compares models assuming static factor loadings with those using
GAS dynamics, for a Gaussian, ¢ and skew-t copula and for a variety of choices for the number of groups. The right
panel compares the different copula shapes, using GAS dynamics in all cases, across a variety of choices for the number
of groups. In a comparison labeled “A vs. B,” a positive t-statistic implies that model B outperforms model A, whereas
a negative t-statistic suggests that model A performs better than model B.
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Appendix G
Giocomini & White and CSPA test results

Table 9
Economic determinants of forecast performance

Dynamic vs. SIC 2-digit Dynamic vs. static k-means
Intercept 1.716 1.716 1.716 1.716 1.349 1.349 1.349 1.349
(s.e.) (0.107) (0.107) (0.107) (0.106) (0.112) (0.111) (0.103) (0.104)
[t-stat] [16.106] [16.106]  [16.058]  [16.181]  [12.094] [12.182] [13.103]  [12.925]
VIX -0.056 -0.142 0.226 -0.016
(s.e.) (0.082) (0.099)  (0.104) (0.124)
[t-stat] [-0.683] [-1.437) [2.168] [-1.039]
Dispersion 0.057 0.235 0.657 0.328
(s.e.) 0.090 (0.126) (0.155) (0.130)
[t-stat] [0.631] [1.872] [4.243] [2.528]
Abs. alpha -0.096 -0.188 0.895 0.750
(s.e.) (0.092) (0.105) (0.118) (0.124)
[t-stat] [-1.038] [-1.791] [7.589] [6.043]
R% (%) 0.030 0.030 0.086 0.368 0.393 3.325 6.164 6.599
GW p-valuearr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GW p-valuesr,oprs 0.495 0.528 0.299 0.403 0.000 0.000 0.000 0.000

CSPA p-value 0.000 0.000 0.000 - 0.000 0.000 0.000 -

Note: This table reports the results of the Giacomini & White (2006) tests and the Li et al. (2022) (CSPA) tests.
The benchmark model is the model with 21 time-varying clusters with GAS dynamics and a student ¢ copula. The
conditioning variables are the VIX index, the dispersion (cross-sectional standard deviation of returns) and the absolute
value of the cross-sectional average CAPM alpha. For the GW tests, conditioning variables are standardized to ensure

the comparability of the test statistics.
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