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Abstract 

Accurately predicting patient flows is crucial for applications in merger control and health service 

planning. In this study, we compared six methods of predicting the change in patient flows (diversion 

ratios) after hospital closure, using the case of the 2018 bankruptcy of the Slotervaart Hospital in 

Amsterdam, The Netherlands. We focused on three patient groups: cataract, ear, nose, and throat 

(ENT), and intestinal cancer. We used the pre-bankruptcy period January 2016—June 2018 as the 

development set as the hospital had a stable patient inflow in this period. The post-bankruptcy period 

January 2019—December 2020 was used as the test set, when the bankruptcy was finalized. To avoid 

endogeneity caused by the patient following their specialist, we restricted our analysis to patients 

newly referred to the hospital by their general practitioner. We compared predictive performance of 

1) patient flow analysis based on an allocation proportional to the market shares, 2) conditional logit, 

3) mixed logit, 4) least absolute shrinkage and selection operator (LASSO), 5) random forest (RF), and 

6) gradient boosting machine (GBM) based on mean absolute difference (MAD) and on improvement 

in root mean square error (RMSE). Predictive performance was the highest for RF (mean MAD across 

all hospitals ranging from 3.67%-4.08% per patient group, mean RMSE ranging from 0.97%-1.29%). 

GBM followed, with mean MAD ranging from 3.58% to 6.00% and mean RMSE from 0.92% to 1.90%. 

LASSO showed mean MAD of 20%–44% and mean RMSE of 6.2%–14.7%. Conditional logit had mean 

MAD of 22%–44% and mean RMSE of 5.7%–14.7%, while mixed logit performed similarly with mean 

MAD of 22%–44% and mean RMSE of 5.7%–14.78%. Patient flow analysis was the least accurate, with 

mean MAD of 25%–48% and mean RMSE of 7.48%–17.65%. Given its consistently low error rates, RF 

appears to be the most promising method for improving the accuracy of merger and centralization 

decisions.  
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Introduction 

 

Diversion ratios are a critical input for both hospital merger enforcement (Capps, Dranove, & 

Satterthwaite, 2003) and health services planning (Aggarwal et al., 2022). They measure the extent to 

which consumers will substitute from one product or service to another in case of a price rise or the 

withdrawal of a supplier from the market. In the hospital merger context, a high diversion ratio 

between two hospitals means that patients are more willing to switch between them; that is, higher 

diversion ratios indicate that the hospitals are closer substitutes. When negotiating with a hospital that 

has a closely substitutable competitor hospital, a health insurer will generally be able to negotiate 

more favorable prices because, if the hospital demands too high a price, the insurer can credibly 

threaten to shift patients to the competitor hospital (Garmon, 2017). Consequently, mergers involving 

closely substitutable hospitals raise greater competitive concerns. Diversion ratios provide a measure 

of that substitutability (Garmon, 2017). In a health services planning context, diversion ratios can 

inform the allocation of physicians or infrastructure (Aggarwal et al., 2022).  

 

In both settings, conclusions and policy implications will be more accurate as diversions are more 

reliably estimated. Historically, diversions were commonly estimated through patient flow analysis 

using market shares based on postcode-level data (Heida, van Engelsen, Baeten, & van Gent, 2016) 

and choice models, which typically included distance between the patient’s home and the hospital as 

the primary explanatory variable (van der Geest & Varkevisser, 2024). Over the last decade, researchers 

developed machine learning methods that can also provide estimates of diversions (Raval, 

Rosenbaum, & Wilson, 2022). In this paper, we evaluate the predictive performance of six methods of 

computing diversion ratios: 1) patient flow analysis based on historical market shares, 2) conditional 

logit, 3) least absolute shrinkage and selection operator (LASSO), 4) mixed logit, 5) random forest (RF), 

6) gradient boosting machine (GBM). We focus on a specific event, the closure of Slotervaart Hospital 

in Amsterdam, due to bankruptcy on October 25th 2018. For each of the six approaches, we use the 

same pre-closure data to estimate diversion ratios and use those to generate predictions of post-

closure patient flows. To assess the predictive performance of each estimation method, we then 

compare these predicted patient flows to the observed post-closure patient flows originating from the 

4 level postcode areas. We do this for three groups of patients: cataract, ear, nose and throat (ENT), 

and intestinal cancer.  

 

We find that machine learning methods, particularly RF are much more accurate with lower mean 

absolute difference (MAD) as well as lower root mean square error (RMSE), than patient flow analysis, 

conditional logit, LASSO and mixed logit. 

 

Our study builds on the analysis by (Rossi, Whitehouse, & Moore, 2018) who conducted a related 

patient flow study based on GP-referrals and compared GP-referral analysis to choice models. In a 

GP-referral analysis, historical GP-referrals are used to obtain market shares, based on the number of 

patients referred by GPs to each hospital. This analysis was compared with choice models, yielding 

similar results. Due to the minor differences between the two approaches, (Rossi, Whitehouse, & 

Moore, 2018) recommend continuing the use of patient flow analysis based on market shares in 

practice. In addition, our work also relates to (Raval, Rosenbaum, & Wilson, 2021) (Raval, 
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Rosenbaum, & Wilson, 2022) who used disasters such as hurricanes or earthquakes as exogenous 

shocks to hospital patient preferences, when comparing the performance of various machine 

learning and choice models to predict diversion ratios. Specifically, (Raval, Rosenbaum, & Wilson, 

2021) studied several disaster scenarios. They found that machine learning methods are more 

accurate in general, while showing the limits of the methods when the patient choice set is severely 

impacted by disasters (Raval, Rosenbaum, & Wilson, 2021). Although disasters are truly exogenous, 

they often force residents to relocate temporarily, altering their healthcare choices. The choice set of 

these fleeing patients therefore changes not only due to the hospitals that close due to the natural 

disaster, but also due to living at a different address. Relying on permanent addresses in 

administrative data introduces bias in distance-based models, as it misrepresents patients' actual 

locations during the disaster. Therefore, such analyses using disaster-data are less useful for 

competition policy or health system planning, which must address the counterfactual scenario where 

only the hospital is removed from the choice set, without other disruptions.  

 

Literature and setting 

 

The Dutch healthcare system (Kroneman et al., 2016) is characterized by mandatory basic health 

insurance. GPs serve as gatekeepers, meaning that specialist care is reimbursed only after a referral, 

and patients retain the freedom to choose their preferred hospital. Specialist care is delivered through 

various provider types: general hospitals, independent treatment centers (ITCs) offering one or more 

specialties, top-clinical hospitals for complex care, and teaching or academic hospitals for tertiary care. 

While hospitals offer a broad range of services, ITCs are often more specialized to perform mainly 

cataract or hip operations. Insurance companies contract specialist care providers, and care is 

reimbursed based on Diagnosis Treatment Combinations (DTCs). DTCs are similar to DRGs, contain 

information on the diagnosis, medical specialty, treatment, and price.  

 

In 2018, Slotervaart Hospital, a general hospital in Amsterdam, The Netherlands, went bankrupt on 

October 25. The bankruptcy resulted from financial difficulties due to mismanagement, relatively low 

prices, and high fixed costs. As parts/blocks of the care were taken over by other hospitals, the Dutch 

Authority for Consumers and Markets (ACM) had to treat these reallocations of healthcare as a merger 

and conduct a merger investigation (ACM, 2019). The merger investigation was performed using 

patient flow analysis, requiring a geographic market definition and a product market definition (in this 

case groups of patients). As a result of this merger investigation, ACM permitted the specialist 

departments to be relocated to nearby hospitals. As a result of the bankruptcy, the existing and 

potential patients from Slotervaart hospital had to find an alternative hospital for their care. To 

mitigate endogeneity arising from patients’ tendency to follow their specialist, we restrict the analysis 

to initial hospital choices—defined as new referrals from general practitioners, where patients have 

no prior relationship with a specialist—thereby minimizing this source of bias. (Beukers, Kemp, & 

Varkevisser, 2014). This allows us to exploit only the exogenous shock to patient preferences (one 

fewer alternative) and to compare the observed patient choices with the predicted patient choice.  

 

Accurately predicting future patient flow is important for policymakers particularly in the context of 

evaluating hospital mergers (Capps, Dranove, & Satterthwaite, 2003) or health service planning 



 

4 
 

particularly when complex specialist care is centralized (Aggarwal et al., 2022). Mergers and decisions 

to centralize care significantly impact healthcare affordability as hospital mergers typically lead to 

higher prices (Gaynor, Ho, & Town, 2015) (Dafny, Ho, & Lee, 2019) (Brand, Garmon, & Rosenbaum, 

2023) (Roos, Croes, Shestalova, Varkevisser, & Schut, 2019). In addition to price effects, mergers and 

centralization often negatively affect accessibility (Jiang, Fingar, Liang, Henke, & Gibson, 2021) 

(Aggarwal et al., 2022) and positive or negative implications for quality (Beaulieu et al., 2020) (Baum 

et al., 2022). Therefore, such decisions require thorough evaluations of the potential impact on these 

societal outcomes. During merger control proceedings, competition authorities such as the Federal 

Trade Commission (FTC) or the Dutch Authority for Consumers and Markets (ACM) assess the 

availability of competitors in the area, where patients can potentially seek care, if they are not satisfied 

with the merged hospital.  

 

In order to assess the potential future effects of a merger, competition authorities often rely on 

diversion ratios. Diversion ratios are essentially a measure of substitutability from a patient 

perspective. The substitutability after the merger will decrease with the diversion ratio of the merging 

partner, allowing a merged hospital to increase its negotiated price; proportional to the diversion ratio 

between the merging hospitals (Garmon, 2017). High diversion ratios between the merging parties can 

therefore trigger merger control investigations (Garmon, 2017), underscoring their pivotal role in 

competition policy.  

 

Over the past two to three decades, many countries have seen a large number of hospital mergers 

reviewed by competition authorities. There is extensive empirical literature showing that several 

approved mergers have led to higher prices, indicating that these transactions may have been 

anticompetitive. An illustrative example is the special issue of the International Journal of the 

Economics of Business (2011, vol. 18(1)), in which several FTC staff members present the results of 

event studies (Tenn, 2011) (Haas-Wilson & Garmon, 2011). (Elzinga & Swisher, 2011) argue that the 

widely used Elzinga-Hogaty test may not be appropriate for assessing hospital mergers. Studies outside 

the USA also showed that approved hospital mergers have led to relative price increases after 

completion (ACM, 2017) (Kemp, Kersten, & Severijnen, 2012) (Roos, Croes, Shestalova, Varkevisser, & 

Schut, 2019).  

 

Moreover, the same methods used to obtain diversion ratios in merger control can inform decisions 

on health service planning, considering various outcomes such as price, quality or accessibility 

(Aggarwal et al., 2022). In terms of health service planning, when highly specialized care is 

concentrated, predicting future changes in patient flows is similarly important: Although quality may 

be higher in a farther away hospital, patients may not be able or willing to travel to these centers of 

excellence. Therefore, during the process of health service planning it’s important to account for 

patient’s preferences, when certain types of care are discontinued at various hospital locations. Many 

countries aim to centralize health services (Aggarwal et al., 2022) (Baum et al., 2022) (Versteeg, Ho, 

Siesling, & Varkevisser, 2018), largely based on medical literature showing a connection between 

volume and quality (Morche, Mathes, & Pieper, 2016). Demand models originally developed for 

merger control are increasingly being adapted for health service planning (Aggarwal et al., 2022), 

attempting to address the questions about the optimal tradeoff between distance and quality of care. 

Similarly to merger assessment methods, healthcare planning models also use choice modeling to 
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predict future demand, which can be used to construct diversion ratios that can inform the allocation 

of physicians or infrastructure. From a policy perspective, it is highly desirable that ex-ante diversion 

ratios closely match observed, ex-post patient flows. Accurate predictions enhance the ability of 

antitrust agencies and health policymakers to make informed decisions (Capps et al., 2003) (Balan & 

Brand, 2023) (Garmon, 2017). Ultimately, obtaining post-merger or post-centralization diversion ratios 

is a prediction problem (Athey & Imbens, 2019), comparing various models on their predictive 

performance and selecting the best model(s) may become feasible.   

 

From a prediction perspective, hospital choice can be conceptualized as a multiclass classification 

problem, with specific hospitals being the different classes of the outcome variable. This classification 

problem can be solved using econometric or machine learning models. In multiple settings, machine 

learning models predict choice more accurately than traditional econometric models (Athey & Imbens, 

2019) (Van Cranenburgh, Wang, Vij, Pereira, & Walker, 2021) (Zhao, Yan, Yu, & Van Hentenryck, 2020). 

To predict diversion ratios for hospitals within merger control, traditionally a patient flow analysis and 

increasingly choice models are used (Handel & Ho, 2021) (van der Geest & Varkevisser, 2024) (Raval et 

al., 2021) (Raval et al., 2022). In this study, we test whether merger control and health service planning 

can benefit from these machine learning models. 

 

Methods 

 

Data 

We conducted this study on insurance claim data provided by Vektis business intelligence. Prediction 

models require a development set to build a prediction model and a test set (sometimes called a hold-

out set) not used in the development of the prediction model to test the predictive performance of 

the prediction model (Hastie, Tibshirani, Friedman, & Friedman, 2009). In constructing the dataset, we 

followed the time frame used by competition authorities in merger assessments (U.S. Department of 

Justice and the Federal Trade Commission, 2023) when selecting the development and test set, using 

a relatively short period of time for both. The development set covered the period from January 2016 

to July 2018, during which patient flows were stable prior to the bankruptcy of Slotervaart Hospital. 

The test set included data from January 2019 to December 2020, after the hospital had closed. To avoid 

potential endogeneity—where declining patient numbers might have contributed to the bankruptcy—

we excluded the transition period between August and December 2018, during which patient volumes 

were already decreasing (Figure A1). This time frame also reflects a practical and ethical consideration 

to minimize the use of privacy-sensitive data while maintaining analytical rigor.  

 

As the patient flow analysis requires a product market definition, we grouped services for groups of 

patients. The study population consisted of patients newly referred by general practitioners for 

cataract, ENT and intestinal cancer care, who had no previous relation with the specialist. These three 

patient groups were selected to reflect a range of clinical complexity and provider types. Cataract care 

is relatively low in complexity and often provided by both hospitals and independent treatment centers 

(ITCs), allowing us to examine how models differentiate between routine and more complex cases. 

ENT care spans a broader age range and clinical spectrum, providing a test of robustness across a 

heterogeneous population. Intestinal cancer care typically involves more specialized treatment, where 
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patients may be more willing to travel farther, making it a useful case for testing the influence of 

geographic variables. In addition, the choice set for intestinal cancer changed between the pre- and 

post-periods, offering a realistic scenario to assess model robustness. 

 

To ensure meaningful market share estimates, we defined the relevant geographic market as the 80% 

service area of Slotervaart Hospital prior to its closure, including adjacent zip codes without patients 

to avoid blind spots. Providers with less than 1% market share in this area were excluded because such 

low-volume providers likely represent atypical cases (e.g., patients treated outside their usual region) 

and contribute minimally to overall diversion patterns. Hospitals that merged during the study period 

were treated as a single institution throughout. Each new referral from a GP was treated as a new 

hospital choice, and all analyses were conducted separately for each patient group, reflecting their 

distinct choice sets. The variables used in the models included hospital type, travel distance and time 

(measured from the centroid of the patient’s four-digit postcode), gender, and age (calculated as the 

number of days between the treatment date and the patient’s date of birth).  

 

The claims data used in this study were provided by Vektis Business Intelligence. Due to legal 

restrictions, access to this analysis-dataset is restricted to ACM. However, researchers may construct 

the dataset and replicate the study using the exact same underlying microdata available through 

Statistics Netherlands (CBS), under secure access conditions. 

 

Analyses  

 

First, we used six methods to predict market share and the diversion ratios for the time-period 

following the bankruptcy.  

 

1. Patient flow analysis based on market shares  

2. Conditional logit 

3. Mixed logit 

4. LASSO 

5. Random forest (RF) 

6. Gradient boosting machines (GBM) 

 

Our hypothesis was that all other methods would perform better than the patient flow analysis 

(Garmon, 2017). 

In the patient flow analysis, the diversion ratio following the removal of Slotervaart Hospital is 

calculated using proportional allocation based on pre-closure market shares, as follows (Rossi, 

Whitehouse, & Moore, 2018) (Shapiro, 2010) (Willig, Salop, & Scherer, 1991):  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 𝐷̂𝑗𝑘 =  ∑
𝑠̂𝑖𝑘

1 − 𝑠̂𝑖𝑗
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Where 𝐷̂𝑗𝑘 is the diversion ratio from j (Slotervaart) to hospital k, 𝑠̂𝑖𝑘 is the probability that patient i 

chooses hospital k and ŝij for hospital j, equal to the market share of the hospitals. In this case the 

market share 𝑠̂𝑖𝑘 for the future is assumed to be the same as before the merger. In other words, the 

market share after the merger is the same as the market share before the merger, and per patient the 

predicted probability of choosing a hospital does not change. The diversion ratio is commonly 

expressed as a percentage, and we follow that in this study. This is the simplest method to obtain 

diversion ratios, does not require patient-level information and will be used as a baseline for 

comparisons.  

 

With the choice models, we predict the individual choice probabilities and aggregate them to obtain 

market shares for the development set. In the test set, in case the model predicted the Slotervaart 

hospital, we used the second choice to obtain market shares. The market shares yielded diversion 

ratios according to the formula above, using the predicted market shares. To fit the choice models, we 

used hospital-type dummies as alternative specific constants, age, sex, travel time by car and distance 

between the patient and hospital as patient-specific variables. We included both travel time and 

distance in order to account for the fact that in a large urban area cars may not be the preferred 

method of traveling to the hospital. Although including both travel time and distance introduces 

multicollinearity, it does not bias the coefficients and ensures consistency with machine learning 

models, which are not affected by this issue. In addition, we also included quadratic terms for time 

and distance in the choice models. We fitted the following conditional logit model with interactions 

between patient and hospital characteristics:  

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 𝑈𝑖𝑗 = 𝑧𝑖𝑗𝛼 +  𝑥𝑖𝛿𝑗  + 𝛾𝑧𝑖𝑗𝑥𝑖  + 𝑐𝑗  + 𝜖𝑖𝑗 

 

where zij are hospital-specific variables and α coefficients for z, xi patient-specific variables and δj 

coefficients for x and cj the alternative specific constants and γ is the coefficient of zijxi.and 𝜖𝑖𝑗 the error 

terms. 

 

In addition, we performed a mixed logit analysis assuming a correlation between time and distance: 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 𝑈𝑖𝑗 = 𝑤𝑖𝑗𝛽𝑖  + 𝑧𝑖𝑗𝛼  +  𝑥𝑖𝛿𝑗  + 𝜖𝑖𝑗 

 

where wij are hospital-specific variables and βi random coefficients that vary between patients. 

 

Following the choice models, we also performed three machine learning models: LASSO, RFs, and 

GBM. A background on machine learning models is provided in the Appendix. Here, we repeatedly 

split the development set using a repeated cross-validation setup, where a random sample of 20% is 

used to split the development dataset into a training and a validation set, 5 times. The machine 

learning models use the validation sets to assess the accuracy of the models, and improve on them. 
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The first machine learning model was a LASSO regression applied to the conditional logit model 

(Friedman, Hastie, & Tibshirani, 2010). Briefly, the LASSO avoids overfitting and increases prediction 

accuracy by decreasing the size of small coefficients.  

 

Subsequently, we fitted a RF (Breiman, 2001) (Hastie, Tibshirani, Friedman, & Friedman, 2009) using 

the previous variables. To maximize predictive performance on the test set, we used hyperparameter 

tuning, varying the number of trees between 100, 200, 500 and 1000, the number of variables 

between 5 and 6, and minimal node sizes (number of observations) between 2 and 10. The most 

accurate models were 500 trees, 6 variables, and a minimum node size of 2.  

 

Finally, we fit a GBM model. GBM is similar to RF, only that it builds trees sequentially, considering the 

residuals in the previous step (Friedman, 2001). The following hyperparameters were used to obtain 

optimal predictive performance: 500 trees (varied between 100 and 500), interaction depth of 2 

(varied between 1 and 3), shrinkage of 0.1 (varied between 0.1 and 0.2) and minimum number of 

observations (node sizes) between 2 and 10. In both models, we use grid search, which means that we 

tested all combinations of the hyperparameters specified previously (Hastie, Tibshirani, Friedman, & 

Friedman, 2009). 

  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

We treated all models as multiclass classifiers, assigning patients to hospitals based on predicted 

probabilities. Accuracy is defined as the proportion of correct predictions (True Positive and True 

negatives) out of the total number of predictions (true positives, true negatives, false positives and 

false negatives) made and is a key metric of machine learning models (Equation 4). We interpret the 

hit ratios as accuracy (Van Cranenburgh, Wang, Vij, Pereira, & Walker, 2021) and compute the 

coefficients and variable importance (Breiman, 2001), the counterpart of the coefficients in the RF and 

GBM models. Variable importance is a measure of the decrease of model performance (e.g. accuracy) 

if the variable is removed. Variable importance was assessed via permutation, measuring the drop in 

model accuracy when each variable was randomly shuffled (Breiman, 2001). The values are non-

normalized raw effect sizes, calculated independently per variable and do not sum to 100%. 

Subsequently, we compared the models in terms of absolute difference between the predicted and 

observed diversion ratio. We evaluated model performance using two standard metrics: MAD and 

RMSE. MAD captures the average magnitude of prediction errors, while RMSE penalizes larger errors 

more heavily. These are defined as follows: 

 

MAD = 1/𝑛 ∑|𝑦ᵢ −  ŷᵢ| 𝑓𝑟𝑜𝑚 𝑖 = 1 𝑡𝑜 𝑛 

RMSE = √(1/𝑛 ∑(𝑦ᵢ −  ŷᵢ)² 𝑓𝑟𝑜𝑚 𝑖 = 1 𝑡𝑜 𝑛) 

Where yᵢ is the observed diversion ratio and ŷᵢ is the predicted diversion ratio for hospital i. 

We calculated the observed diversion ratio according to the formula used by Raval et.al. (Raval, 

Rosenbaum, & Wilson, 2021):  
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =  
𝑠𝑘

post
− 𝑠𝑘

pre

𝑠𝑗
pre  

 

where sk
post is the post-bankruptcy share of hospital k, sk

pre is the pre-bankruptcy share of hospital k, 

and sj
pre is the pre-bankruptcy share of Slotervaart hospital j. By construction, the observed diversion 

ratio can be positive or negative, reflecting increases or decreases in patient share post-closure. We 

present the percentage point difference versus the observed diversion ratios by subtracting the 

observed diversion ratio from the diversion ratio obtained from the models. 

 

Subsequently, we made a comparison in terms of RMSE, when compared to the patient flow analysis. 

Here, we use the following formula (Raval, Rosenbaum, & Wilson, 2021): 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 ∆𝑅𝑀𝑆𝐸 = 1 − (
𝑅𝑀𝑆𝐸𝑠𝑚𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝑠𝑚𝑎𝑟𝑘𝑒𝑡 𝑠ℎ𝑎𝑟𝑒

) 

 

Where 𝑅𝑀𝑆𝐸𝑠𝑚𝑜𝑑𝑒𝑙
 is the RMSE of the conditional logit, mixed logit, RF and GBM methods, and 

𝑅𝑀𝑆𝐸𝑠𝑚𝑎𝑟𝑘𝑒𝑡 𝑠ℎ𝑎𝑟𝑒
 is the RMSE of the patient flow analysis. By construction, values below 0 are worse 

than the patient flow analysis, 0 is the same as the patient flow analysis and 1 (100%) is perfect 

prediction.  

 

In addition, we performed two sensitivity analyses: 1) an analysis where we extended the pre-period 

included in the development set (January 2014—July 1 2018) and the post-period in the test set 

(January 2019—December 2022) by two years, and 2) an analysis where we divided the dataset into 

nearby and faraway patients, based on the median driving time of 15 minutes.  

 

All analyses were performed in R version 4.1.3.  

 

Results 

Descriptives 

Our choice set included 30,316 cataract choices, 47,344 ENT choices, and 8,939 intestinal cancer 

choices in the pre-period, and 21,335, 34,278 and 5,374 choices respectively for the post period. Table 

A1 shows the number of claims per year. Hospital type and gender ratio were comparable between 

the pre- and post-periods across all patient groups. Travel time and distance slightly increased in the 

post-period, as did patient age (Tables 1 and 2).  
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[Table 1 about here] 

 

[Table 2 about here] 

 

Figure 1a and Figure 1b 

 

Figure 1a displays provider types per choice set, providing insight into the competitive landscape. 

Figure 1b presents the number of patients per postcode area treated at Slotervaart Hospital during 

the pre-period, categorized by patient group. During the pre-period, Slotervaart Hospital held a market 

share of 5.7% for cataract referrals, 9.6% for ENT referrals, and 1% for intestinal cancer referrals. Table 

A2 in the appendix shows the market shares per hospital for all three groups of patients. 

 

Main results of the development set 

 

[Table 3 about here] 

 

Table 3 shows the results of the conditional logit and mixed logit analyses for all three patient groups. 

Both the conditional logit and mixed logit models indicate a statistically significant negative 

relationship between distance and provider choice. For ENT and intestinal cancer patients, there is also 

a negative relationship between travel time and provider choice, while cataract patients appear willing 

to travel longer in terms of time, even if the physical distance is shorter. Furthermore, there is a 

significant relationship between hospital type and choice. The interaction between age and distance 

is significant for cataract and intestinal cancer, but not for ENT. The interaction between age and time 

is significant only in the mixed logit analysis of ENT. A significant relationship between gender and 

distance was observed only among cataract patients, suggesting that women are more willing to travel 

further for cataract surgery. Table A3 shows the shrunk coefficients for the LASSO algorithm.  

 

[Table 4 about here] 

 

Table 4 presents the relative variable importance scores for each predictor across the three patient 

groups—cataract, ENT, and intestinal cancer—using RF and GBM models. These scores reflect each 

variable’s contribution to predictive performance and serve as a guide for variable inclusion. The values 

represent non-normalized raw effect sizes and do not sum to 100%. The most important variables are 

geographic variables. Distance consistently emerges as the most influential variable, followed by travel 

time, though the latter is notably less important in GBM models. Demographic variables such as age 

contribute less overall but still enhance predictive performance, particularly in the intestinal cancer 

group (2.7%). Institutional characteristics (type of hospital) also carry substantial predictive value and 

vary in importance across patient groups. The relevance of independent treatment centers (ITCs) is 
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especially pronounced for cataract patients, while academic hospitals appear most predictive for ENT 

care, as expected. 

 

[Table 5 about here] 

 

The accuracy of the different models is summarized above in table 5, for the development as well as 

for the test set. The accuracy scores are presented as percentages and represent the proportion of 

correctly predicted patient flows for each medical specialty within the development dataset, averaged 

across the 5 validation folds. In general, accuracy scores in the test set are not substantially lower than 

those in the development set, indicating that the model is not overfitted. For the RF and GBM models, 

the accuracy is similar for all three patient groups, with the RF model being somewhat better in the 

ENT group. On the contrary, the conditional logit and mixed logit models show lower accuracy scores, 

particularly in the cataract and intestinal cancer patient groups. Conditional logit performs slightly 

better for ENT patients and slightly worse for cataract than mixed models. The performance of the 

LASSO in the development set is slightly worse than the conditional logit. Accuracy of the models in 

the test set is similar or lower than in the development set, with the exception of the LASSO, where 

test set performance is higher.  

 

Model performance 

The MAD and RMSE values are calculated per hospital, and the figures summarize their distribution 

across the test set. This allows us to assess not only average performance but also variability in 

prediction accuracy. 

 

[Figure 2 about here] 

 

Figure 2 shows a comparison of the MADs between the predicted diversion ratios—based on the 

patient flow analysis, conditional logit, LASSO, mixed logit, RF, and GBM—and the observed diversion 

ratios for three distinct patient groups. Each boxplot displays the distribution of MADs across hospitals, 

with the thick line indicating the median error and the thin lines representing the interquartile range. 

Outliers are shown as individual points. The units are percentage points, and each point corresponds 

to a hospital in the test set. In all three patient groups, the RF method yielded the smallest average 

error, with GBM performing slightly worse. The other four methods—patient flow analysis, conditional 

logit, LASSO, and mixed logit—showed the largest errors in the cataract group. Specifically, mean MAD 

values for cataract were 48%–49% for the patient flow and choice models, compared to 3%–4% for the 

machine learning models. 

 

[Figure 3 about here] 
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Figure 3 illustrates the relative improvement in RMSE across hospitals for each model compared to the 

baseline patient flow analysis. This combined Cleveland and box-and-whiskers plot displays the 

distribution of RMSE values in percentage points, where each point represents a hospital. The thick 

lines indicate the median improvement, thin lines show the interquartile range, and individual points 

denote outliers. Values above zero reflect better performance than the baseline. In terms of RMSE, the 

greatest improvement was achieved by the RF method, closely followed by GBM across all three 

patient groups. The choice models RMSE values were generally similar to the patient flow analysis, 

though it performed slightly worse for ENT patients. Notably, the machine learning models 

occasionally produced exact predictions. The largest difference in mean RMSE was observed in the 

Cataract group, with values ranging from 14%–17% for the patient flow and choice model, compared 

to just 1%–2% for the machine learning models. 

 

Sensitivity analysis  

 

Appendix 2 shows the effect of various alternative specifications on the main results. Figures A2 and 

A3 show the effects of including a longer pre- and post-period. The comparison between the prediction 

models is very similar to the base-case results. Compared to the base-case analysis, the predictive 

properties of the choice models deteriorate in all three patient groups, with the MAD values almost 

doubling. For the machine learning models, the deteriorations can also be seen, but the magnitude is 

somewhat smaller. When looking at RMSE values, these are slightly worse for the dataset containing a 

longer pre-post period, particularly for the cataract patient group.  

 

Figures A4 and A5 in the appendix show the comparison between nearby patients and far-away 

patients. Compared to the base-case scenario, in all three patient groups we can see an increased MAD 

values, with the MAD values of the faraway patients being about 10-20 times the values of the nearby 

patients. In these datasets, the LASSO performs similarly to the other methods. RMSE is worse in both 

groups compared to the original dataset, in the nearby set it is twice as bad, in the faraway patient 

group the RMSE is 10-20 times as large. Comparing the model types, machine learning algorithms still 

perform better in the two groups than the market-share method, although this difference becomes 

marginal in the faraway group. The performance of the choice models is consistently worse than the 

patient flow analysis. The LASSO also performs differently compared to the base-case scenario, on 

average it is worse than the other models, with a far smaller interquartile range. 

 

We performed another sensitivity analysis where we combined all three patient groups. Again, RF 

performed best, but the GBM, the two choice models and LASSO all performed worse than the patient 

flow analysis (Appendix figures A6-A7).  

 

To support the main analyses, we also report MAD and RMSE results at the individual hospital level 

using Cleveland plots (Appendix Figures A8–A9), which confirm the relative performance patterns 

observed in the aggregate results. 
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Discussion 

 

Summary of results 

 

This study has compared six methods of calculating diversion ratios: 1) based on patient flow analysis, 

2) conditional logit, 3) mixed logit, 4) LASSO, 5) RF and 6) GBM. These methods were compared on a 

dataset within a defined geographic, mostly urban area in and around Amsterdam. In addition, we 

compared the methods within specific patient groups. Of the methods considered, RF predicted the 

observed diversion ratio with the closest precision in all patient groups and this was consistent across 

all sensitivity analyses. In all patient groups the patient flow analysis performed the worst, with the 

exception of the sensitivity analysis combining all three patient groups.  

 

Interpretation 

 

We find that using RF leads to the smallest prediction error, thus outperforms the other methods. 

Extending the time frame reduced model accuracy, likely due to changes in the choice set that 

introduced additional variability, supporting the use of a relatively short timeframe for the analysis. 

The comparability of choice models and patient flow analysis is consistent with (Rossi, Whitehouse, & 

Moore, 2018), who also found that GP referral analysis based on patient flow analysis were similar to 

choice models (Garmon, 2017). 

 

Our study is also similar to Raval (Raval, Rosenbaum, & Wilson, 2021), who compared machine learning 

models and choice models in the context of a disaster scenario. Raval et al. finds that machine learning 

models perform somewhat better when the choice set has small changes, and choice models perform 

better when the choice set has large changes (50-80% of the choice set is destroyed). Our results align 

more with the scenario investigated by Raval et al. when the choice set has small changes. To further 

explore the limits of machine learning models, it is instructive to compare the setting between a 

disaster-scenario and a case such as ours, which can be realistically expected when performing a 

merger assessment or a health service planning exercise. There are three aspects which impact the 

performance of machine learning models: 1) stability of the choice set, 2) stability of patient 

population in terms of travel time and 3) how the dataset was constructed.   

 

In contrast to the Sumter Regional Hospital tornado scenario (Americus, GA, March 2007), which 

caused the largest change in the choice set (destroyed hospital share ~50%) where for some patients 

50-80% of the choice set is removed, the choice set in this current study was largely unchanged. In 

addition to the change in the set of choices caused by the Slotervaart bankruptcy, there was no change 

in cataract and ENT providers and there was only a limited change in intestinal cancer providers. Such 

a pattern in the data is consistent with merger control investigations, where the expected changes are 

limited. When considering healthcare planning scenarios, major changes in the choice set are only 

possible in extreme cases when certain healthcare services which were previously available in a large 

number of hospitals are concentrated to a handful centers of excellence.  
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Second, our results are consistent with the literature finding that travel time/distance is the most 

important predictor in choice models (Capps, Dranove, & Satterthwaite, 2003) (Versteeg, Ho, Siesling, 

& Varkevisser, 2018) (Aggarwal et al., 2022), but it is unclear if it aligns with the results of the Raval 

study, where the variable importance of distance is not reported (Raval, Rosenbaum, & Wilson, 2021). 

In the disaster context, the patients themselves are also frequently forced to move, which may be a 

factor in the performance of the machine learning models after a hurricane or earthquake. If the 

patients were no longer at their home address, the nearest hospital will change, which is a change in 

the data that machine learning models cannot account for. This is important, as administrative data do 

not typically contain temporary addresses of the people and uses inaccurate distance data. While 

(Raval, Rosenbaum, & Wilson, 2021) perform a robustness check between areas impacted by a disaster 

(where patients were forced to move) and areas not impacted, it does not account for which patients 

actually moved, which may have happened as a precautionary measure in areas not directly impacted 

by a disaster as well. Furthermore, the removal of impacted areas not only shows a difference in the 

model performance, but also introduces additional complications, such as changes in patient flow 

analysis (Raval, Rosenbaum, & Wilson, 2021). In contrast, in our current study, the most important 

predictors (distance and time) did not change between the pre- and post periods, allowing the 

machine learning models to perform better than the choice models. 

 

Third, the results depend on the underlying data. Compared to Raval (Raval, Rosenbaum, & Wilson, 

2021) , who compared the models on a binned dataset, grouping together patients with similar age 

and distance categories, combined with hospital type and other characteristics, we focused on creating 

a unique observation per patient by increasing the precision of the travel time, distance and age 

variables, which were exactly computed. The granular data, combined with the non-linear 

relationships allowed the RF and GBM models to reach less biased predictions. In addition, this study, 

the only time when RF predictions were not clearly superior to the patient flow analysis is the case of 

the faraway patients. There, all models had major difficulty in predicting the diversion ratios. A possible 

explanation for that could be that those patients live outside of the urban core of Amsterdam, and 

subjective terms such as “near” and “far” may lead to other choice of providers. This dense urban 

setting may explain the better performance of machine learning models, as the granularity may be 

necessary to capture the complexity of these settings, in contrast to more general settings of Raval 

et.al. (Raval, Rosenbaum, & Wilson, 2021) where choice models perform adequately. Another factor 

relates to the dataset’s spatial structure: it resembles a ring of postcodes located 15–30 minutes from 

Slotervaart Hospital, with no observations from the immediate surrounding area. 

 

Policy implications and extensions 

While choice models are grounded in economic theory, machine learning models prioritize predictive 

accuracy, which may offer practical advantages in policy applications. There were numerous critiques 

over the years in the choice-modelling literature (Van Cranenburgh, Wang, Vij, Pereira, & Walker, 2021) 

concerning prediction models. In the past explainability was lacking, making acceptance of these 

models by researchers and policy-makers, despite potential superior predictive performance, more 

difficult. However, this has been remedied with variable importance measures (Van Cranenburgh, 

Wang, Vij, Pereira, & Walker, 2021), which we have also used in this paper. In addition, machine 
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learning models allow us to exploit a possibly nonlinear relationship between travel time and physical 

distance, which seems to drive the better predictive performance of the RF and GBM models.  

 

An important consideration in regulatory decision-making is the asymmetry in the consequences of 

prediction errors. As event studies on hospital mergers show, approving a merger that should have 

been blocked may lead to irreversible harm, such as higher prices (Tenn, 2011) (Haas-Wilson & 

Garmon, 2011) (Elzinga & Swisher, 2011)(ACM, 2017) (Kemp, Kersten, & Severijnen, 2012) (Roos, 

Croes, Shestalova, Varkevisser, & Schut, 2019) (Brand, Garmon, & Rosenbaum, 2023) reduced 

accessibility (Jiang, Fingar, Liang, Henke, & Gibson, 2021) (Aggarwal et al., 2022),or lower quality of 

care (Beaulieu et al., 2020) (Baum et al., 2022). 

. And a consummated hospital merger is difficult to reverse. While not conclusive, this general trend 

suggests that the use of less accurate models could make it more difficult for enforcement bodies to 

make correct enforcement decisions(Raval, Rosenbaum, & Wilson, 2016). In contrast, blocking a 

merger that would have generated efficiency gains may delay or forgo potential benefits, but these 

effects are generally less harmful to consumers in the short term. Therefore, minimizing false positives 

(i.e., erroneous approvals) is particularly important in this context. Our findings suggest that machine 

learning models, particularly RF, reduce prediction error and may thus help regulators avoid such costly 

mistakes. 

 

Our method aligns with standard approaches used in merger evaluations and hospital centralization 

studies. Therefore, for hospital mergers and studies on hospital centralization, we would recommend 

using RF. 

 

Our results can be extended for other policy-relevant applications within merger control. More reliable 

market share predictions have other uses beyond diversions, such as using Willingness to pay WTP 

analysis to evaluate hospital mergers (Garmon, 2017). Additionally, incorporating more precise 

diversion ratios into WTP and Upward Pricing Pressure UPP models allows for more sophisticated 

merger simulations (Balan & Brand, 2023), which may potentially predict prices after mergers more 

accurately (Garmon, 2017).  

 

Strengths and limitations 

A major strength of this study is that it models a realistic case when the choice set changes due to 

bankruptcy, an event similar to the situation when a merged provider closes a hospital location. Also, 

in contrast to a more data-driven machine learning studies, in this current study, we included variables 

determined by the choice models, which was more hypothesis-driven and supported by domain 

knowledge. As a result, the machine learning models drew on variables which were shown to 

consistently predict hospital choice in many studies, and potentially amplified the predictive power. 

Such an analysis can be performed on claims data, or more widely available discharge data containing 

patient address and various patient characteristics, as well as hospital characteristics. When providers 

discontinue a service, centralize specialist care, but also in merger cases it is a distinct possibility that 

the care at the old hospital location is not available after the event. Furthermore, the results held even 

considering the major disruptions in patient flows due to COVID (De Graaff et al., 2022). Furthermore, 
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in the intestinal cancer setting, three other alternative providers exited the market in the post period, 

so we could also exploit the effect of a somewhat dynamic choice set, further supporting the 

robustness of the results. Currently, machine learning models can be used to predict the market 

structure after a merger or centralization, as well as the diversion ratios. On a practical level, machine 

learning models do not require the construction of a choice set with all possible alternatives, allowing 

the analysis to be performed on a smaller dataset, potentially reducing analysis time.  

 

The first limitation of this study is that it only looked into one hospital bankruptcy, while hospital 

closure may be more prominent. Bankruptcies are relatively rare in the Dutch healthcare sector, and 

bankrupt hospitals are usually merged with nearby hospitals, keeping their original location open. The 

Slotervaart bankruptcy is the only case when an entire hospital completely disappeared from its 

original location. Using this case allows us to test the model on an exogenous case, in contrast to more 

gradual process that may lead to hospital closure, where the effects of the closure itself cannot be 

identified due to the large changes in choice set. Therefore, the exact results may be different in other 

hospitals. In addition, it only examined three groups of patients, and in other groups of patients 

different results may emerge. Second, predictions suffer in quality when looking only at patients who 

live far away from Slotervaart. Further research is needed to uncover the reasons for this pattern. 

Another limitation of this study is that it does not include an outside option. Establishing travel time 

and travel distance for an outside option would be highly inaccurate, and in an urban area such as 

Amsterdam, only a handful of patients make use of the outside option, primarily when needing 

medical care on holiday or when visiting family. In addition, the inelasticity of healthcare (Koc, 2004) 

leads to the fact that patients in general will not forgo healthcare if the most preferred alternative is 

no longer available.  

 

Finally, while our findings are robust within the context of the Slotervaart Hospital closure, their 

generalizability to other hospital markets or time periods may be limited. The Dutch healthcare system 

is characterized by strong GP gatekeeping, dense urban hospital networks, and relatively short travel 

distances, which may not reflect conditions in more rural or decentralized systems. Moreover, the 

Slotervaart case involved a complete and abrupt hospital closure, whereas many mergers or 

centralization efforts retain physical locations and staff, potentially leading to different patient 

responses. As such, while the predictive superiority of machine learning models is evident in this 

setting, further validation in other institutional and geographic contexts is warranted. 

 

Future research 

 

This study could be extended to include other patient groups as well. Furthermore, in addition to 

merger cases, predicting patient flows is also interesting in other settings, such as when health systems 

concentrate highly specialized care and hospitals close specific departments at certain locations. 

Therefore, future research should explicitly focus on how well choice models or machine learning 

models predict patient flows after centralizing care. In addition to these machine learning models, 

future research using more complex deep-learning models may be beneficial. This will especially be 

useful if such models gain on interpretability in the future.  
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Conclusion 

 

In essence, this paper provides a framework for selecting and validating prediction models to predict 

future diversion ratios within the context of hospital merger evaluation and health services planning. 

Specifically, in the case of the Slotervaart bankruptcy, RF has performed slightly better than GBM and 

far better than conditional logit, mixed logit, and patient flow analysis in predicting observed diversion 

ratios. Although the theoretical advantages of choice modelling are clear, the predictive accuracy of 

the RF model is far superior. In addition, the market shares required for diversion ratios and various 

other merger control indicators, such as the WTP estimates or UPP estimates are also yielded by this 

model. When the goal is to predict future market shares and diversion ratios, RF appears to be the 

most effective method.  
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Tables 

Table 1 Hospital level characteristics 

 

Pre (January 1 2016-31 June 2018 Post (January 1 2019-December 31 
2020) 

Cataract       

 

Number of 
claims 

Percent 
claims 

Size of 
choice set 
per 
category 

Number of 
claims 

Percent 
claims 

Size of 
choice set 
per 
category 

Top-clinical 1111 3.66 1 845 3.96 1 

Teaching 
hospital 8378 27.64 1 4808 22.54 1 

ITC 15589 51.42 5 13668 64.06 5 

General 
hospital 5238 17.28 3 2014 9.44 2 

ENT       

 

Number of 
claims 

Percent 
claims 

Size of 
choice set 
per 
category 

Number of 
claims 

Percent 
claims 

Size of 
choice set 
per 
category 

Teaching 
hospital 14420 30.46 1 10997 32.08 1 

Academic 3906 8.25 2 2166 6.32 2 

ITC 7965 16.82 3 8048 23.48 3 

General 
hospital 21053 44.47 5 13067 38.12 4 

Intestinal 
cancer       

 

Number of 
claims 

Percent 
claims 

Size of 
choice set 
per 
category 

Number of 
claims 

Percent 
claims 

Size of 
choice set 
per 
category 

Top-clinical 659 7.37 1 638 11.87 1 

Teaching 
hospital 2017 22.56 1 1450 26.98 1 

Academic 412 4.61 2 280 5.21 2 

ITC 2013 22.52 5 1376 25.6 3 

General 
hospital 3622 40.52 6 1404 26.13 4 

Other 216 2.42 1 226 4.21 1 

       

ENT= ear, nose and throat, ITC=Independent treatment center 
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Table 2 Patient level characteristics 

 

 

 

  Pre Post  

Cataract                          

  
Number Perc. Mean SD Min Max Number Perc. Mean SD Min Max 

p-
values 
(t-test) 

Patients 30316           21335            

Female 17779 59%         12311 58%          

Distance 
(km) 

  
  

15.31 16.09 0.00 65.61   
  

18.33 16.85 0.00 67.07 
<0.001 

    

Time (min 
driving) 

  
  

16.26 11.61 0.00 48   
  

18.48 12.17 0.00 47 
<0.001 

    

Age   
  

72.09 10.26 0.13 102.86   
  

72.29 10.05 0.16 104.03 
0.004 

    
ENT                      

  Number  Perc. Mean SD Min Max Number Perc. Mean SD Min Max  

Patients 47344           34278            
Female 23773 50%         17189 50%          
Distance 
(km) 

    8.05 7.81 0 57.83     9.35 8.86 0 61.15 
<0.001 

Time (min 
driving)     11.02 6.75 0 45     12.11 7.27 0 49 

<0.001 

Age     32.76 25.52 0.04 105.14     34.95 24.83 0.05 103.00 <0.001 
Intestinal 
cancer 

                        
 

  Number Perc. Mean SD Min Max Number Perc. Mean SD Min Max  

Patients 8939           5374            

Female 4171 47%         2544 47%          
Distance 
(km) 

    11.19 10.06 0 82.36     13.30 10.53 0 70.00 
<0.001 

Time (min 
driving) 

    13.21 7.45 0 55     14.62 7.57 0 46 
<0.001 

Age     63.38 12.50 0.59 100.59     63.80 12.52 1.00 100.81 0.031 
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Table 3 Results of the conditional logit and mixed logit analyses in the development set 

 Cataract ENT Intestinal Cancer  
 Conditional Logit Mixed Logit Conditional Logit Mixed Logit  Conditional Logit Mixed Logit 

Variable   
    

Distance (km)   
    

Linear Term -0.353*** (0.027) -0.352*** (0.027) -0.178*** (0.008) -0.087*** (0.010) -0.124*** (0.030) -0.178*** (0.049) 

Quadratic Term 0.001*** (0.0001) 0.001*** (0.0001) -0.001*** (0.0001) -0.004*** (0.0002) -0.0004** (0.0002) -0.010*** (0.001) 

Academic*Distance 0.168*** (0.012) 0.167*** (0.011) 0.135*** (0.010) 0.104*** (0.009) 0.191*** (0.019) 0.130*** (0.020) 

Top-clinical*Distance 0.110*** (0.020) 0.109*** (0.020) 
  

0.050** (0.025) 0.008 (0.031) 

Teaching*Distance 0.168*** (0.012) 0.167*** (0.011) 0.108*** (0.006) 0.069*** (0.007) 0.111*** (0.012) 0.089*** (0.014) 

ITC*Distance 0.241*** (0.012) 0.241*** (0.012) 0.178*** (0.008) 0.104*** (0.009) 0.168*** (0.013) 0.111*** (0.014) 

Other*Distance   
  

0.128*** (0.023) 0.086*** (0.023) 

Age*Distance -0.001*** (0.0004) -0.001*** (0.0004) 0.0002* (0.0001) -0.0001 (0.0001) -0.001*** (0.0004) -0.003*** (0.001) 

Female*Distance 0.018** (0.007) 0.018** (0.007) -0.001 (0.006) 0.001 (0.007) 0.011 (0.011) -0.0005 (0.017) 

Time   
    

Linear Term 0.069** (0.033) 0.068** (0.033) -0.139*** (0.010) -0.233*** (0.012) -0.045 (0.038) -0.124** (0.055) 

Quadratic Term -0.001*** (0.0002) -0.001*** (0.0002) 0.0002 (0.0002) -0.0003 (0.0003) -0.001 (0.0004) 0.002*** (0.001) 

Academic*Time   -0.075*** (0.011) -0.013 (0.011) -0.074*** (0.024) 0.015 (0.026) 

Top-clinical*Time 0.079*** (0.019) 0.081*** (0.020) 
  

0.020 (0.028) -0.051 (0.039) 

Teaching*Time -0.033*** (0.013) -0.032*** (0.012) 0.063*** (0.007) 0.122*** (0.008) 0.069*** (0.014) 0.082*** (0.019) 

ITC*Time -0.072*** (0.012) -0.072*** (0.012) -0.068*** (0.009) -0.006 (0.010) 0.006 (0.016) 0.057*** (0.019) 

Other*Time   
  

0.074** (0.030) 0.117*** (0.030) 

Age*Time -0.0003 (0.0004) -0.0003 (0.0004) -0.0001 (0.0001) 0.0003** (0.0002) 0.0002 (0.001) -0.0004 (0.001) 

Female*Time -0.027*** (0.009) -0.027*** (0.009) 0.004 (0.007) 0.002 (0.009) -0.020 (0.014) -0.031* (0.018) 

Interaction Terms   
    

Distance*Distance  -0.024 (0.018) 
 

0.102*** (0.008) 
 

0.380*** (0.023) 

Distance*Time  0.042* (0.024) 
 

0.021** (0.010) 
 

-0.107*** (0.021) 

Time*Time  0.002 (0.006) 
 

0.057*** (0.006) 
 

0.114*** (0.015) 

Observations 30,767 30,767 47,344 47,344 8,982 8,982 

R2 0.421 0.421 0.504 0.510 0.328 0.340 

Log Likelihood -37,753.580 -37,752.230 -50,446.430 -49,810.320 -15,082.250 -14,815.060 

LR Test 54,807.070*** (df = 41) 54,809.770*** (df = 44) 102,470.700*** (df = 44) 103,742.900*** (df = 47) 14,728.530*** (df = 63) 15,262.900*** (df = 66) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 4 Variable importance* for the RF and GBM models 

 Cataract  ENT  Intestinal 
cancer 

 

 RF tuned GBM RF tuned GBM RF tuned GBM 

Age 0.285% 0.743% 0.355% 0.271% 0.608% 2.700% 

Female 0.038% 0.013% 0.031% 0.003% 0.087% 0.143% 

Time 34.297% 12.319% 33.263% 5.310% 26.910% 8.536% 

Distance (km) 46.723% 43.996% 42.923% 38.723% 39.081% 36.815% 

Top-clinical 4.267% 6.045%     11.130% 9.631% 

Teaching 37.149% 30.575% 40.060% 32.900% 31.250% 23.924% 

Academic     10.910% 9.415% 5.113% 5.086% 

ITC 27.953% 6.308% 22.081% 13.469% 24.835% 9.769% 

Other         3.180% 3.336% 

*decrease in predictive accuracy if the variable is removed.  

Table 5 Accuracy of the models on the development and test sets 

Development set Test set 

 Cataract ENT Intestinal 
cancer  

Cataract ENT Intestinal 
cancer  

RF 0.96 0.96 0.93 0.96 0.95 0.94 

GBM 0.96 0.94 0.93 0.96 0.94 0.94 

Conditional 
logit 

0.51 0.64 0.44 0.44 0.64 0.45 

LASSO 0.45 0.59 0.42 0.49 0.64 0.47 

Mixed logit 0.54 0.63 0.44 0.46 0.65 0.45 
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Figures 

Figure 1 a Location of the hospitals within the geographic market 

 

Figure 1 b Number of patients per 4 level postcode
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Figure 2 Mean Absolute difference between estimated and actual diversion ratios for three patient 

groups 

 

Distribution of absolute errors between predicted and observed diversion ratios across hospitals (n = 

20). Boxplots show median, interquartile range, and outliers. Units are percentage points. 
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Figure 3. Percent improvement in RMSE versus the observed diversion ratios 

 

Distribution of RMSE values for each model across hospitals. RMSE is calculated per hospital and 

expressed in percentage points. Models are color-coded consistently with Figure 2. 
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Appendix 

 

Appendix 1 

 

Figure A1 Weekly number of claims 
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Appendix 2 Background on Prediction models, LASSO, RF and GBM models.  

1. Basic set-up of the prediction dataset  
 

The initial dataset is split into a development set, where the model will be developed, and a test set, 

or hold-out set for final evaluation. The development set is further divided into a training and 

validation sets. 

Within the development set, in order to assess the performance of the model, 5-fold cross-validation 

is employed. This technique involves dividing the development set into five equally sized subsets or 

"folds." The model is trained and validated five times, each time using a different fold as the 

validation set and the remaining four folds as the training set. The performance metrics, such as 

accuracy, precision, and recall, are averaged across the five iterations to obtain a more robust 

estimate of the model's performance. This approach is well-documented in the literature, with Athey 

& Imbens (2019) highlighting its effectiveness in ensuring model generalization. Kohavi (1995) also 

emphasizes the importance of cross-validation in providing a reliable estimate of model 

performance, while Refaeilzadeh et al. (2009) discuss its role in preventing overfitting. 

During each fold of the cross-validation, the model is trained on the training set, and its performance 

is evaluated on the validation set. Hyperparameters are tuned based on the validation performance 

to optimize the model's configuration. This process is crucial for preventing overfitting and ensuring 

that the model performs well on unseen data. 

Once the model has been trained and validated using cross-validation, it is evaluated on the test set. 

The test set provides an unbiased estimate of the model's performance on new, unseen data, 

allowing for a final assessment of its effectiveness. 

Overall, this setup ensures that the model is trained effectively, hyperparameters are tuned properly, 

and the model's performance is evaluated accurately, aligning with best practices in machine 

learning. 

2. LASSO  
 

LASSO, which stands for Least Absolute Shrinkage and Selection Operator, is a type of linear 

regression that incorporates regularization to enhance the prediction accuracy and interpretability of 

the statistical model it produces. It is particularly useful when dealing with datasets that have a high 

number of predictors. 

LASSO extends traditional linear regression by adding a regularization term to the loss function used 

in ordinary least squares regression. This regularization term is known as the L1 penalty, which 

imposes a cost on the absolute size of the regression coefficients. The amount of regularization 

applied is controlled by a tuning parameter, often denoted by lambda (Friedman, Hastie, & 

Tibshirani, 2010). 

The L1 penalty has two main effects. First, it shrinks the coefficients of less important features 

towards zero, which can reduce the variance of the estimates and potentially improve prediction 

accuracy. Second, it can shrink some coefficients to exactly zero, effectively performing feature 

selection by excluding irrelevant variables from the model. This is particularly useful in high-

dimensional settings where the number of predictors exceeds the number of observations (Hastie, 

Tibshirani, & Friedman, 2009). 
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The optimization problem for LASSO is typically solved using coordinate descent, an iterative 

algorithm that updates one coefficient at a time while holding the others fixed. This approach is 

computationally efficient and well-suited for high-dimensional data (Friedman, Hastie, & Tibshirani, 

2010). 

The resulting LASSO model is often easier to interpret than traditional linear regression models 

because it tends to produce sparser models with fewer non-zero coefficients. This can make it easier 

to identify the most important predictors (Hastie, Tibshirani, & Friedman, 2009). 

In summary, LASSO extends traditional linear regression by incorporating regularization through the 

L1 penalty, which helps to improve prediction accuracy and interpretability, especially in datasets 

with many predictors. For more detailed information, you can refer to the works by Friedman, Hastie, 

and Tibshirani (2010) and Hastie, Tibshirani, and Friedman (2009). 

 

3. Random Forests (RF) 
Random Forests (RF) is an ensemble learning method particularly suited for health economics due to 

its ability to handle complex datasets with interactions and non-linear relationships between 

variables, such as patient characteristics, provider attributes, and healthcare outcomes. RF operates 

by combining multiple decision trees to enhance predictive accuracy and mitigate overfitting, a 

common challenge in health economics datasets (Breiman, 2001). 

The RF algorithm employs a bootstrap procedure to generate multiple subsets of the original dataset, 

with each subset used to train an individual decision tree. At each split in a tree, a random subset of 

predictors is evaluated to determine the optimal split, introducing additional randomness and 

fostering diversity among the trees. This process, known as random feature selection, is instrumental 

in capturing the intricate relationships within healthcare data. The final prediction is derived by 

aggregating the predictions from all trees, typically through majority voting for classification tasks or 

averaging for regression tasks. This aggregation step is pivotal as it reduces variance and bolsters the 

model's robustness, making it well-suited for the variability often encountered in health economics 

data (Hastie et al., 2009). 

One of the standout advantages of RF in health economics is its capacity to automatically identify 

and incorporate interactions and non-linear relationships between variables, eliminating the need for 

manual feature engineering. This feature is invaluable for exploring complex healthcare datasets and 

developing predictive models that can inform policy decisions and resource allocation. Furthermore, 

RF provides measures of variable importance, which can aid in understanding the key drivers of 

healthcare outcomes and costs, thereby facilitating targeted interventions (Breiman, 2001). 

Hyperparameter tuning is an essential component of RF, involving the adjustment of various 

parameters to optimize model performance. The number of trees in the forest is a critical 

hyperparameter; increasing the number of trees generally enhances the model's stability and 

accuracy. Another important hyperparameter is the number of predictors considered for splitting at 

each node, which influences the diversity of the trees. Splitting rules, such as Gini impurity for 

classification or mean squared error for regression, dictate the criteria for splitting nodes. The 

minimal node size, which specifies the minimum number of observations required in a terminal 

node, is also crucial for controlling the model's complexity and preventing overfitting (Hastie et al., 

2009). 

4. Gradient Boosting Machines (GBM) 
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Gradient Boosting Machines (GBM) is another ensemble learning method that builds trees 

sequentially, with each new tree aiming to correct the errors of the previous trees. This sequential 

learning approach makes GBM particularly effective for improving predictive performance in health 

economics, where accurate predictions are crucial for informed decision-making (Friedman, 2001). 

GBM employs gradient descent to minimize the loss function, iteratively refining the model by fitting 

each new tree to the residuals (errors) of the combined ensemble of all previous trees. This process 

allows the model to learn from its mistakes and gradually improve its predictions, making it well-

suited for the complex and often noisy data encountered in health economics. 

GBM's ability to handle complex interactions and non-linear relationships, similar to RF, is a 

significant advantage in health economics. However, GBM often achieves higher predictive accuracy 

than RF due to its sequential learning approach, making it a valuable tool for predicting healthcare 

outcomes, costs, and utilization patterns. GBM can be applied to both classification and regression 

tasks and can accommodate different types of loss functions, offering flexibility in modeling various 

healthcare phenomena (Chen & Guestrin, 2016). 

Hyperparameter tuning is equally important in GBM, where several parameters need to be adjusted 

to optimize model performance. The number of trees is a key hyperparameter, determining the 

number of sequential trees built by the model. The interaction depth, which defines the maximum 

depth of each tree, controls the model's complexity and aids in capturing interactions between 

variables. Shrinkage, also known as the learning rate, is a factor that scales the contribution of each 

tree, helping to prevent overfitting by slowing down the learning process. The minimal node size, 

which specifies the minimum number of observations required in a terminal node, is another crucial 

hyperparameter for controlling the model's complexity (Friedman, 2001). 

However, GBM is more computationally intensive and time-consuming, especially for 

hyperparameter tuning, compared to RF. This is due to the sequential learning process, which 

requires fitting each new tree to the residuals of the previous trees, a computationally expensive 

task. Additionally, GBM is prone to overfitting if not properly tuned, making it essential to carefully 

adjust the hyperparameters and validate the model's performance on a separate dataset. Despite 

these challenges, GBM's high predictive accuracy makes it a valuable tool for health economics 

research and applications (Chen & Guestrin, 2016). 

Both RF and GBM are powerful tools for health economists, offering robust and flexible solutions for 

predictive modeling tasks. Their ability to handle complex datasets and capture intricate 

relationships makes them invaluable for informing policy decisions, resource allocation, and 

intervention strategies in healthcare. 
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Appendix 3 additional descriptives  

 

Table A1 Total number of claims per year 

Patient group 2016 2017 2018 2019 2020 

Cataract 12297 11840 12448 11884 9451 

ENT 18673 18743 19856 20987 13291 

Intestinal cancer 3658 3463 3649 2980 2394 
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Table A2 Market shares per hospital in the pre- and post-periods for the three patient groups 

 

 Cataract ENT Intestinal cancer 

Competitor 
number 

Pre Post Pre Post Pre Post 

Slotervaart 5.8% 0.0% 7.4% 0.0% 10.8% 0.0% 

Academic 1 0.0% 0.0% 3.9% 3.2% 1.9% 2.6% 

Academic 2 0.0% 0.0% 4.3% 3.2% 2.8% 2.6% 

Teaching 1 27.6% 22.5% 30.5% 32.1% 22.6% 27.0% 

Top-clinical 1 3.7% 4.0% 0.0% 0.0% 7.4% 11.9% 

General 1 5.2% 2.2% 7.1% 2.9% 5.1% 0.0% 

General 2 0.0% 0.0% 0.0% 0.0% 1.6% 4.5% 

General 3 6.3% 7.2% 9.6% 11.5% 5.6% 3.3% 

General 4 0.0% 0.0% 10.3% 12.6% 7.9% 7.1% 

General 5 0.0% 0.0% 10.0% 11.2% 9.5% 11.3% 

ITC 1 15.2% 24.5% 0.0% 0.0% 8.0% 14.4% 

ITC 2 0.0% 0.0% 0.0% 0.0% 5.3% 0.0% 

ITC 3 0.0% 0.0% 0.0% 0.0% 2.1% 0.0% 

ITC 4 11.7% 12.5% 0.0% 0.0% 0.0% 0.0% 

ITC 5 0.0% 0.0% 0.0% 0.0% 1.3% 1.2% 

ITC 6 0.0% 0.0% 10.7% 12.0% 0.0% 0.0% 

ITC 7 0.0% 0.0% 3.1% 5.9% 0.0% 0.0% 

ITC 8 0.0% 0.0% 2.9% 5.5% 0.0% 0.0% 

ITC 9 7.0% 10.5% 0.0% 0.0% 0.0% 0.0% 

ITC 10 7.0% 7.9% 0.0% 0.0% 0.0% 0.0% 

ITC 11 0.0% 0.0% 0.0% 0.0% 5.9% 10.1% 

ITC 12 10.4% 8.7% 0.0% 0.0% 0.0% 0.0% 

Other 1 0.0% 0.0% 0.0% 0.0% 2.4% 4.2% 

 

  



 

37 
 

Appendix 4 shrunk LASSO coefficients  

Table A3 Shrunk LASSO coefficients  
 

Cataract ENT Intestinal cancer 

Variable 
   

Distance (km) 
   

Linear Term -0.162 -0.162 -0.082 

Quadratic Term 0.001 0.001 0 

Academic*Distance 
 

0.075 0.122 

Top-clinical*Distance 0 
 

0.008 

Teaching*Distance 0.019 0.039 0.066 

ITC*Distance 0.077 0.005 0.1 

Other*Distance 
  

0.097 

Age*Distance 0 0 -0.001 

Female*Distance 0 0 0 

Time 
   

Linear Term -0.039 -0.052 -0.048 

Quadratic Term 0 0 0 

Academic*Time 
 

0 -0.026 

Top-clinical*Time 0.091 
 

0.016 

Teaching*Time 0.082 0.068 0.038 

ITC*Time 0 0.01 0.016 

Other*Time 
  

0.055 

Age*Time 0 0 0 

Female*Time -0.001 0 0 
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Appendix 5 Sensitivity analyses  

Using multiple years of data 

Figure A2 Mean Absolute difference between Estimated and actual diversion ratios for three patient 

groups using January 2014—July 1 2018 as the training data and January 2019—December 2022 as 

the test set  
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Figure A3. Percent improvement in RMSE versus the observed diversion ratios for three patient 

groups using January 2014—July 1 2018 as the training data and January 2019—July 1 2022 as the 

test set  
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Nearby vs. far away patients 

Figure A4 Mean Absolute difference between Estimated and actual diversion ratios for three patient 

groups after splitting the group into “nearby” and “faraway”  

 

Nearby            Far away 

 

Figure A5. Percent improvement in RMSE versus the observed diversion ratios for three patient 

groups after splitting the group into “nearby” and “faraway”  

Nearby        Far away 
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All patient groups 

Figure A6 MAD plot for all patient groups 

 

Figure A7 RMSE 
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Appendix 6 Results per hospital 

Figure A8 Cleveland plot per hospital MAD 

 

Figure A9 RMSE plot per hospital 
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