
Advances in Cyclic Structural Causal Models

Joris Mooij

j.m.mooij@uva.nl

June 1st, 2018

Joris Mooij (UvA) Rotterdam 2018 2018-06-01 1 / 41

j.m.mooij@uva.nl


Part I

Introduction to Causality
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Causation 6= Correlation
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Many questions in science are causal

Climatology: Economy:

Neuroscience:Medicine:
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Causal Relations

Definition (Informal)

Let A and B be two distinct variables of system. A causes B (A 99KB) if
changing A (intervening on A) leads to a change of B.

Causal graph represents causal relationships between variables graphically.

Example

X1 X2

X1 and X2 are
causally unrelated

X1 X2

X1 causes X2

X1 X2

X2 causes X1

X1 X2

X1 and X2 cause
each other

X1 X2

X3

X1 and X2 have a
common cause X3

X1 X2

X3

X1 and X2 have a
common effect X3

Joris Mooij (UvA) Rotterdam 2018 2018-06-01 5 / 41



Direct vs. indirect causation: example

Each stone causes all subsequent stones to topple.

Each stone only directly causes the next neighboring stone to topple.

Causal graph:

X1 X2 X3 · · · X7 X8 X9
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Direct causation

Let V = {X1, . . . ,XN} be a set of variables.

Definition

If Xi causes Xj even if all other variables V \ {Xi ,Xj} are hold fixed at
arbitrary values, then

we say that Xi causes Xj directly with respect to V
we indicate this in the causal graph on V by a directed edge Xi → Xj

Example

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 does not cause X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}
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Confounders: Example

A (latent) common cause of two variables is called a confounder.
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Confounders: Graphical notation

We denote latent confounders by bidirected edges in the causal graph:

Example

X Y ≡ X Y

H

, X Y

H
H2 H3

, . . .

X Y ≡ X Y

H

, X Y

H
H3

, . . .

X Y ≡ X Y

H

, X Y

H
H2

, . . .
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Cycles: Definitions

Let A,B be two variables in a system.

Definition

If A causes B and B causes A, then we say that A and B are involved in a
causal cycle (“feedback loop”).

Let G be a Directed Mixed Graph with nodes {1, . . . , n} (with directed
and bidirected edges).

Definition

G is cyclic if it contains a directed cycle i1 i2 . . . ik

If G does not contain such a directed cycle, it is called acyclic, and known
as an Acyclic Directed Mixed Graph (ADMG). If in addition, G does not
contain any bidirected edges, it is called a Directed Acyclic Graph (DAG).
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Feedback loops: Toy example

Example (Damped Coupled Harmonic Oscillators)

Two masses, connected by a spring, suspended from
the ceiling by another spring.

Variables: vertical equilibrium positions Q1 and Q2.

Q1 causes Q2.

Q2 causes Q1.

Causal graph:

Q1 Q2

Cannot be modeled with acyclic causal model.

Q1

Q2
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Feedback loops: Climatology

“Part of the uncertainty around future climates relates to important feedbacks
between different parts of the climate system: air temperatures, ice and snow

albedo (reflection of the sun’s rays), and clouds.” [Ahlenius, 2007]
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Feedback loops: Biology

“Feedback mechanisms may be critical to allow cells to achieve the fine balance
between dysregulated signaling and uncontrolled cell proliferation (a hallmark of
cancer) as well as the capacity to switch pathways on or off when needed for
physiologic purposes.” [McArthur, 2014]
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Modeling causality

Question: How to model quantitatively the causal semantics of
equilibrium states of systems, taking into account possible confounders
and feedback loops. . . ?

Here we use Structural Causal Models (SCMs), a.k.a. Structural Equation
Models (SEMs).

We present recent theoretical advances regarding cyclic SCMs:

SCMs are causal models of fixed points of ODEs [Mooij et al., 2013]

Marginalization: summarizing a subsystem [Bongers et al., 2016]

Markov property: generalizing d-separation [Forré and Mooij, 2017]

We use this to develop an algorithm for causal discovery.
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Part II

Structural Causal Models
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Definition

Definition (Wright 1921, Pearl, 2000; [Bongers et al., 2016])

A Structural Causal Model (SCM), also known as Structural Equation
Model (SEM), is a tuple M = 〈X ,E, f ,PE〉 with:

1 a product of standard measurable spaces X =
∏

i∈I Xi

(domains of the endogenous variables)

2 a product of standard measurable spaces E =
∏

j∈J Ej
(domains of the exogenous variables)

3 a measurable mapping f : X × E → X
(the causal mechanism)

4 a probability measure PE =
∏

j∈J PEj on E
(the exogenous distribution)

Definition

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..
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Example

Example

Augmented functional graph Ga(M):

X1X2

X3 X4

X5

E1E2

E3

E4

E5

Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

Formally:

(X ,E, f ,PE) =
(
∏5

i=1 R,
∏5

j=1 R, (f1, . . . , f5),
∏5

j=1 PEj )

Informally:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .
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(Augmented) Functional Graphs

Definition

The components of the causal mechanism usually do not depend on all
variables: for i ∈ I,

Xi = fi (XpaIi
,EpaJi

)

where fi only depends on paIi ⊆ I (the endogenous parents of i) and
paJi ⊆ J (the exogenous parents of i).

Definition

The augmented functional graph Ga(M) of an SCMM is a directed graph
with nodes I∪̇J and an edge k → i iff k ∈ paIi ∪̇pa

J
i is a parent of i ∈ I.

Definition

The functional graph G(M) of an SCM M is a directed mixed graph with
nodes I, directed edges k → i iff k ∈ paIi , and bidirected edges k ↔ i iff
paJi ∩ paJk 6= ∅.
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Interventions

To interpret an SCM as a causal model, we also need to define its
semantics under interventions.

Definition (Perfect Interventions, [Pearl 2000])

The perfect intervention do(XI = ξI ) enforces XI to attain value ξI .

This changes the SCM M = 〈X ,E, f ,PE〉 into the intervened SCM
Mdo(XI =ξI ) = 〈X ,E, f̃ ,PE〉 where

f̃i =

{
ξi i ∈ I

fi (XpaIi
,EpaJi

) i /∈ I .

Interpretation: overriding default causal mechanisms that normally
would determine the values of the intervened variables.
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Interventions (Example)

Example

Observational (no intervention):
Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .

Intervention do(X3 = ξ3):
Functional graph G(Mdo(X3=ξ3)):

X1X2

X3 X4

X5

Structural Causal Model Mdo(X3=ξ3):

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = ξ3 PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .
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Distributions

Definition

A pair of random variables (X ,E ) is a solution of SCM M if
PE = PE and the structural equations X = f (X ,E ) hold a.s..

Definition

We call the set of probability distributions of the solutions X of an SCM
M the observational distributions of M.

A perfect intervention on M may change the distributions.

Definition

We call the family of sets of probability distributions of the solutions of
Mdo(I ,ξI ) (for I ⊆ I, ξI ⊆ X I ) the interventional distributions of M.

Crucial difference with more usual statistical models: SCMs simultaneously
model the distributions under all perfect interventions on a system.
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Causal Graph

Proposition

If M has no self-loops, the causal graph of M is a subgraph of the
functional graph G(M).

In that case, generically:

The directed edges in G(M) represent direct causal effects w.r.t. I;

The bidirected edges in G(M) represent the existence of confounders
w.r.t. I;

A direct causal relation Xi → Xj w.r.t. I can be detected
experimentally by intervening on all variables XI\{j} except Xj , and
testing if the marginal distributions of the solutions on Xj depend on
the value to which Xi is set.
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Part III

SCMs model fixed points of ODEs

Joris Mooij (UvA) Rotterdam 2018 2018-06-01 23 / 41



Modeling (Random) ODE fixed points with an SCM

Theorem ([Mooij et al., 2013, Bongers and Mooij, 2018])

An ODE describing a dynamical system induces an SCM that models its
fixed points, and how these change under perfect interventions.

D:{
Ẋi (t) = fi (Xpai ),
Xi (0) = (X0)i

i ∈ I

Ddo(XI =ξI ):{
Ẋi (t) = 0,
Xi (0) = ξi

i ∈ I{
Ẋi (t) = fi (Xpai ),
Xi (0) = (X0)i

i /∈ I

MD:

Xi = Xi + fi (Xpa(i)) i ∈ I

MDdo(XI =ξI )
:

Xi = ξi i ∈ I

Xi = Xi + fi (Xpa(i)) i /∈ I

intervention

fixed points

intervention

fixed points

do(I , ξI ) do(I , ξI )
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From ODE to SCM: Example

Example (Damped coupled harmonic oscillators)

m1 m2 m3 m4

k0 k1 k2 k3 k4

X = 0 X = L

ODE D:

Ẍi =
ki
mi

(Xi+1 − Xi − li )−
ki−1

mi
(Xi − Xi−1 − li−1)− bi Ẋi

Induced SCM MD:

Xi =
ki (Xi+1 − li ) + ki−1(Xi−1 + li−1)

ki + ki+1

Causal graph of induced SCM G(MD):

X1 X2 X3 X4
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Part IV

Marginalization of SCMs
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Marginalization (Example)

Example

SCM for complete system:
Functional graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

X1 = f1(E1) PE1 = . . .
X2 = f2(E1,E2) PE2 = . . .
X3 = f3(X1,X2,X5,E3) PE3 = . . .
X4 = f4(X1,X4,E4) PE4 = . . .
X5 = f5(X3,X4,E5) PE5 = . . .

Marginalizing out X2,X4:

Functional graph G(M\{2,4}):

X1

X3

X5

Marginalization M\{2,4}:

X1 = f1(E1) PE1 = . . .
PE2 = . . .

X3 = f3(X1, g2(E1,E2),X5,E3) PE3 = . . .
PE4 = . . .

X5 = f5(X3, g4(X1,E4),E5) PE5 = . . .
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Structural Causal Models: Unique Solvability

Definition

An SCM M is uniquely solvable w.r.t. a subset C ⊆ I if there exists a
PE -almost surely unique, measurable mapping gC : X paIC\C

× EpaJC
→ X C

such that for PE -almost every e ∈ E, for all xpa(L)\L ∈ X pa(L)\L:

gL(xpa(L)\L, epa(L)) = fL(gL(xpa(L)\L, epa(L)), xpa(L)\L, epa(L)) .

Informally: the set of structural equations for C has a unique solution for
(almost) any input.

Example

An SCM with structural equations X1 = X1, X2 = E1, X3 = X3 + X1

is only uniquely solvable w.r.t. {X2}.

Example

Acyclic SCMs are uniquely solvable w.r.t. any set of endogenous variables.
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Marginalization

Definition ([Bongers et al., 2016])

If M = 〈X ,E, f ,PE〉 is uniquely solvable w.r.t. L ⊆ I, then it has a
marginalization M\L = 〈X I\L,E, f \L,PE〉, where the marginal causal

mechanism f \L is obtained by substituting the solution function gL for XL
in terms of XO (with O := I \ L) and E into the causal mechanism f :

f \L(xO, e) := fO
(
gL(xpa(L)\L, epa(L)), xO, e

)
.

The marginalization preserves the causal semantics (restricted to the
remaining part of the system, I \ L):

Theorem ([Bongers et al., 2016])

The marginalization M\L is interventionally equivalent to M w.r.t. I \ L.
In other words, for any perfect intervention on a subset of I \ L, M\L and
M admit the same solutions (marginalized onto X I\L).
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Marginalization: Latent Projection of Functional Graph

The functional graph G(M\L) of the marginalization of M on I \ L is
always a subgraph of the latent projection of G(M) on I \ L:

Definition

For a DMG G and a subset L ⊆ I of nodes, the latent projection G\L is
defined as the DMG with nodes I \ L and edges

i → j iff there is a directed path i → `1 → · · · → `k → j in G with
`1, . . . , `k ∈ L
i ↔ j iff there is a path i ← `1 ← · · · ← `k1 ↔ `k1+1 → · · · → `k2 → j
in G with `1, . . . , `k1 , . . . , `k2 ∈ L
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Part V

Markov Properties of SCMs
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The generalized directed global Markov property

We introduce a notion σ-separation that generalizes d-separation:

σ-separation implies d-separation.

For acyclic graph, σ-separation is equivalent to d-separation.

Inspired by ideas by [Spirtes, 1996], we show:

Theorem ([Forré and Mooij, 2017])

If an SCM M is uniquely solvable w.r.t. every strongly connected
component in G(M), then the generalized directed global Markov property
holds for any solution X of M with respect to the functional graph G(M):

A
σ
⊥
G(M)

B |Z =⇒ XA ⊥⊥
PX

XB |XZ A,B,Z ⊆ I.
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Markov properties: σ-separation

Definition (σ-separation, [Forré and Mooij, 2017])

In a DMG G, a path
← ←

i1 → · · · → in↔ ↔

is called σ-blocked by a set of nodes Z iff

one or both end nodes i1, in are in Z , or

it contains a collider ik−1
→
↔ ik

←
↔ ik+1 with ik 6∈ anG(Z ), or

it contains a non-collider with ik ∈ Z :

ik−1
→
←
↔

ik → ik+1, ik−1 ← ik
→
←
↔

ik+1,

where the child ik+1 (resp. ik−1) is not in scG(ik).

We say that A is σ-separated from B by Z , denoted A⊥σ B |Z , if every
path with one end node in A and one end node in B is σ-blocked by Z .
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Markov properties: Example

Example

Functional graph G(M):

X1 X2

X3X4

SCM M:

X1 = f1(X4,E1) = X4 + E1

X2 = f2(X1,E2) = X1 · E2

X3 = f3(X2,E3) = X2 + E3

X4 = f4(X3,E4) = X3 · E4

X1⊥d X3 |X2,X4

but

X1 6⊥σ X3 |X2,X4

So for any solution X of the SCM M, in general we do not have that
X1 ⊥⊥ X3 |X2,X4.

In general: No σ-separations between nodes within the same strongly
connected component.
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Directed global Markov property

Stronger statements can be derived for special cases:

Theorem ([Forré and Mooij, 2017])

If an SCM M satisfies at least one of the following three conditions:

1 M is linear, its exogenous variables have a density with respect to
Lebesgue measure, and M is solvable w.r.t. I;

2 all endogenous variables are discrete-valued, M is uniquely solvable
w.r.t. each ancestral subgraph of G(M);

3 M is acyclic;

then the directed global Markov property holds for any solution X of M
with respect to the functional graph G(M):

A
d
⊥
G(M)

B |Z =⇒ XA ⊥⊥
PX

XB |XZ A,B,Z ⊆ I.
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Part VI

Causal Discovery from Data
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Constraint-based Causal Discovery

From the pattern of conditional independences in the data we can
reconstruct a set of possible causal graphs describing the data generating
mechanism.

X1 X2 X3 X4

2 0.1 0.2 0.5
2 0.13 0.21 0.49
2 0.23 0.21 0.51
5 0.5 0.19 0.52
5 0.6 0.18 0.51
2 0.2 0.22 0.92
2 0.23 0.21 0.99
5 0.53 1.2 0.95
5 0.55 1.19 0.97

data

X2 6⊥⊥ X4

X2 ⊥⊥ X4 |X3

X1 ⊥⊥ X2

X1 6⊥⊥ X2 |X3

. . .

CIs
X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

. . .

causal models

[Forré and Mooij, 2018]: the first causal discovery algorithm that can
handle cycles, nonlinear relationships, latent (confounding) variables and
data from different (interventional) contexts.
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First Results on Synthetic Data [Forré and Mooij, 2018]

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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ROC curves for edges

5 interventions  (area = 0.95)
3 interventions  (area = 0.90)
1 interventions  (area = 0.85)
0 interventions  (area = 0.75)

Figure: ROC curves for detecting direct causal relations from observational and
interventional data.
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Conclusion and Outlook

Motivated by:

SCMs are a popular framework for causal modeling,

SCMs can model confounders and causal feedback,

we developed theory for cyclic SCMs regarding:

SCMs for modeling fixed points of ODEs
[Mooij et al., 2013, Bongers and Mooij, 2018],

Marginalization [Bongers et al., 2016],

Markov property (σ-separation) [Forré and Mooij, 2017].

Based on this theory, we developed an algorithm for causal discovery from
data [Forré and Mooij, 2018], that can handle:

Cycles

Nonlinear relationships

Latent (confounding) variables

Data from different (interventional) contexts
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