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This Paper

• New and theoretically justified inference methods for counterfactual and
synthetic control (CSC) methods
• Synthetic controls
• Penalized regression models
• Factor models
• Times series models
• . . .

• Key feature: double justification
• Exact finite sample validity under strong assumptions
• Approximate validity under weak assumptions
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Classical Synthetic Control
• What is the causal effect of California’s Proposition 99?

• Proposition 99: Anti-tabacco legislation which increased cigarette excise tax,
earmarked tax revenues to health and anti-smoking education, funded anti-smoking
campaigns, spurred clean indoor-air ordinances
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Classical Synthetic Control

• Classic approach: differences-in-differences.
• But what state should we use as control for California?

• Synthetic control (SC) approach (Abadie, Diamond, and Hainmueller, 2010;
Doudchenko and Imbens, 2016; Athey, Bayati, Doudchenko, Imbens, and
Khosravi, 2017): construct a synthetic California.
• Synthetic California = weighted combination of other states
• Weights are constructed to maximize pre-treatment fit.
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Setup and Notation

Aggregate panel data setup:
• J + 1 units (US states), unit j = 1 (California) is treated, units j = 2, . . . , J + 1

are the control units, which constitute the donor pool.
• T0 pre-treatment periods, T∗ post-treatment periods.
• Yjt: observed outcome, YN

jt : counterfactual outcome without treatment.
• Yjt = YN

jt + αtDjt with

Djt =

{
1 j = 1 and t > T0

0 otherwise

• We will omit covariates for simplicity throughout this talk.
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Estimating Synthetic California
• Assume (Doudchenko and Imbens (2016)) that

YN
1t =

J+1∑
j=2

wjYN
jt for t = 1, ...,T,

where T = T0 + T∗ and the weights w = (w2, . . . ,wJ+1)′ can be estimated by

ŵ = arg min
w

T0∑
t=1

Y1t −
J+1∑
j=2

wjYjt

2

s.t. 0 ≤ wj ≤ 1,
J+1∑
j=2

wj = 1

• The treatment effect αt can be estimated as for t ≥ T0 + 1,

α̂t = Y1t − ŶN
1t = Y1t −

J+1∑
j=2

ŵjYjt
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Estimated Weights: Synthetic California

AL 0 NV 0.20
AR 0 NH 0.05
CO 0.01 NM 0
CT 0.11 NC 0
DE 0 ND 0
GA 0 OH 0
ID 0 OK 0
IL 0 PA 0
IN 0 RI 0
IA 0 SC 0
KS 0 SD 0
KY 0 TN 0
LA 0 TX 0
ME 0 UT 0.39
MN 0 VT 0
MS 0 VA 0
MO 0 WV 0
MT 0.23 WI 0
NE 0 WY 0
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Results: Synthetic California

1970 1975 1980 1985 1990 1995 2000
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Proposed Inference Procedure: Simple Case
• Assume (Doudchenko and Imbens (2016)) that

YN
1t =

∑J+1
j=2 wjYjt + ut

Y I
1t =

∑J+1
j=2 wjYjt + αt + ut

∣∣∣∣∣ E(ut) = 0, t = 1, . . . ,T

where {ut} is i.i.d residual and αt is the treatment effect at t.
• Suppose that T∗ = 1. We want to test H0 : αT = αo

T

• Under H0, {YN
1t}T

t=1 is observed because

YN
1T = Y I

1T − αo
T = Y1T − αo

T

• Suppose further that w is known.
• Idea: compute u = (u1, . . . , uT) with ut = YN

1t −
∑

j wjYjt and compare uT to
(u1, . . . , uT0).

• Related to Andrews (2003).
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Proposed Inference Procedure: Simple Case
• Define the test statistic S(u) := |uT | for u = (u1, ..., uT).
• Let Π denote the set of all permutations of {1, . . . ,T} and let

uπ = (uπ(1), . . . , uπ(T)) denote the vector of errors permuted by π ∈ Π.
• Let n = |Π|. A permutation p-value can be obtained as

p̂ =
1
n

∑
π∈Π

1 {S (uπ) ≥ S(u)} =
1
T

T∑
t=1

1 {|ut| ≥ |uT |} .

• This procedure achieves exact finite sample validity: for α ∈ (0, 1),

P(p̂ ≤ α) ≤ α

• Related to randomization/permutation tests (e.g., Romano (1990), Lehmann and
Romano (2005)) and conformal prediction (e.g., Vovk, Gammerman, and Shafer
(2005), Vovk, Nouretdinov, and Gammerman (2009), Lei, G’Sell, Rinaldo,
Tibshirani, and Wasserman (2017)).
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Exact Validity: Proof
• Let {S(j)(u)}n

j=1 denote the ordered values of {S(uπ) : π ∈ Π}.
• Observe that 1(p̂ ≤ α) = 1(S(u) > S(k)(u)) where k = dn(1− α)e.
• Because S(k)(u) = S(k)(uπ) for all π ∈ Π,∑

π∈Π

1(S(uπ) > S(k)(uπ)) =
∑
π∈Π

1(S(uπ) > S(k)(u)) ≤ αn.

• The i.i.d assumption means that u and uπ have the same distribution ∀π ∈ Π.
• Hence, 1(S(u) > S(k)(u)) is equal in law to 1(S(uπ) > S(k)(uπ)) and we have

α ≥ 1
n

E

(∑
π∈Π

1(S(uπ) > S(k)(uπ))

)
= E

(
1(S(u) > S(k)(u))

)
= E (1(p̂ ≤ α)) .
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Preview of Main Results

• Sharp null hypothesis:

H0 : (αT0+1, . . . , αT) = (αo
T0+1, . . . , α

o
T)

• General class of counterfactual models:

YN
1t = PN

t + ut

Formulation nests synthetic controls, factor models, penalized regression
models, times series models, . . .

• Propose an inference procedure based on estimated PN
t and ut.

• Inference procedure has a double justification:
• Exact validity under exchangeability of {ût}
• Approximate validity under weak assumptions on P̂N

t
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Literature: Inference for Synthetic Control Models

• Finite population approaches
• Randomization/permutation inference approaches for testing sharp null hypotheses
• Key assumptions: treatment assignment (or timing of intervention) is random,

potential outcomes are fixed but unknown
• Some references: Abadie and Gardeazabal (2003), Abadie, Diamond, and

Hainmueller (2010), Abadie, Diamond, and Hainmueller (2015), Doudchenko and
Imbens (2016), Hahn and Shi (2016), Firpo and Possebom (2017)

• Asymptotic approaches
• Asymptotic inference for average effects based on estimated counterfactuals
• Key assumptions: T0 →∞ , T1 →∞, J →∞ plus (sparsity or factor structure)
• Some references: Hsiao, Steve Ching, and Ki Wan (2012), Gobillon and Magnac

(2016), Chan and Kwok (2016), Carvalho, Masini, and Medeiros (2017), Athey,
Bayati, Doudchenko, Imbens, and Khosravi (2017), Li (2017, 2018)
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Setup

Assumption
There exists a sequence of mean unbiased proxies

{
PN

t

}
such that

YN
1t = PN

t + ut

Y I
1t = YN

1t + αt

∣∣∣∣∣ E(ut) = 0, t = 1, . . . ,T

where T = T0 + T∗.

Implicit assumptions:
• Availability of an estimator P̂N

t

• Stochastic shock sequence is stationary under the intervention.
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Example I: Constrained LASSO

• Model (Doudchenko and Imbens (2016)):

PN
t = µ+

J+1∑
j=2

wjYjt, where ‖w‖1 ≤ 1

• Estimator:

P̂N
t = µ̂+

J+1∑
j=2

ŵjYjt,

where (µ̂, ŵ) are obtained using constrained Lasso

(µ̂, ŵ) = arg min
(µ,w)

T0∑
t=1

Y1t − µ−
J+1∑
j=2

wjYjt

2

s.t. ||w||1 ≤ 1
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Example II: Factor Models

• Assume a factor model for all units: for j = 1, . . . ,T ,

YN
jt = λ′jFt + ujt

• Model:
PN

t = λ′1Ft

• Estimator:
P̂N

t = λ̂′1F̂t,

where λ̂1 and F̂t are obtained using standard PCA.
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Example III: Penalized Regression

• Model:

PN
t = µ+

J+1∑
j=2

wjYjt.

• Estimator:

P̂N
t = µ̂+

J+1∑
j=2

ŵjYjt,

where

(µ̂, ŵ) = arg min
(µ,w)

T0∑
t=1

Y1t − µ−
J+1∑
j=2

wjYjt

2

+ P(w)
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Further Examples

• Interactive FE models
• Matrix completion models
• Dynamic models such as AR-models, neural net, fused times-series-panel

models
• . . .
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Hypothesis of Interest and Test Statistic
• Hypothesis of interest:

H0 : (αT0+1, . . . , αT) =
(
αo

T0+1, . . . , α
o
T

)
• Data under the null: Z = (Z1, . . . ,ZT)′, where Zt =

(
YN

1t ,Y
N
2t , . . . ,Y

N
J+1t

)′
and

YN
1t =

{
YN

1t t ≤ T0

Y1t − αo
t t > T0.

• Obtain P̂N
t under the null (i.e., using Z) and compute

û = (û1, . . . , ûT)
′
, ût = YN

1t − P̂N
t , t = 1, . . . ,T.

• Test statistic (other choices are possible)

S(û) =

(
1√
T∗

T∑
t=T0+1

|ût|q
)1/q

.

In applications, we set q = 1.
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Computing p-Values by Permuting Residuals

• For each π ∈ Π, let ûπ = (ûπ(1), . . . , ûπ(T))
′ denote the vector of permuted

residuals.
• The p-value is

p̂ = 1− F̂ (S(û)) , where F̂ (x) =
1
|Π|

∑
π∈Π

1 {S (ûπ) < x} .

• Can test H0 : αt = αo
t for t > T0 using Z = (Z1, . . . ,ZT0 ,Zt)

′

• Confidence sets can be constructed by test inversion.
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Permutations

We consider two types of permutations:
• The set of all permutations, which we call i.i.d. permutations, Πall.
→ more elements, requires i.i.d. {ut}

• The set of all (overlapping) moving block permutations, Π→. The elements of
Π→ are indexed by j and the permutation πj does the following:

πj(i) =

{
i + j if i + j ≤ T
i + j− T otherwise.

→ fewer elements, allows weakly dependent {ut}
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Graphical Illustration Πall and Π→
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• Example of Π→. Consider T = 5, i.e., {1, 2, 3, 4, 5}.
• {1, 2, 3, 4, 5} → {2, 3, 4, 5, 1}
• {1, 2, 3, 4, 5} → {3, 4, 5, 1, 2}
• {1, 2, 3, 4, 5} → {4, 5, 1, 2, 3}
• {1, 2, 3, 4, 5} → {5, 1, 2, 3, 4}
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Exact Validity under Strong Assumptions

Theorem (Exact Validity)
Suppose that the null hypothesis is true. Suppose that {ût}T

t=1 is exchangeable with
respect to Π under the null hypothesis. Then

P (p̂ ≤ α) ≤ α.
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When can we expect exchangeable û?

Lemma
Suppose that ût = g(Zt, β̂), where β̂ = β̂({Zt}T

t=1) is an estimator for the model
parameter. If
• {Zt}T

t=1 is i.i.d or exchangeable under Π.

• β̂({Zt}T
t=1) is invariant under permutations.

then û = (û1, ..., ûT) is exchangeable under Π.

• Most of estimates will be invariant to permutations of the data, e.g., LASSO,
Synthetic Control, etc.

• Model-free performance guarantee: size control even if estimator is
misspecified or inconsistent.
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Approximate Validity: High-level Conditions

Assumption (Weak Dependence)
Assume

1. {ut}T
t=1 are i.i.d., or

2. {ut}T
t=1 are stationary and strong mixing.

Assumption (Consistency)
Let there be sequences of constants δT and γT converging to zero. Assume that with
probability 1− γT ,

(1) the mean squared estimation error is small, ‖P̂N − PN‖2
2/T ≤ δ2

T ;

(2) for T0 + 1 ≤ t ≤ T, the pointwise errors are small, |P̂N
t − PN

t | ≤ δT ;
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Approximate Validity under Weak Assumptions

Theorem (Approximate Validity)
We assume that T∗ is fixed and T0 →∞. Suppose that Assumption 5 holds. Impose
Assumption 4.1 if Πall is used. Impose Assumption 4.2 if Π→ is used. Then,

|P (p̂ ≤ α)− α| ≤ C
(

(T∗/T0)1/4 log T + δT +
√
δT + γT

)
,

where C > 0 is a constant (not depending on T0).

• Clearly, |P (p̂ ≤ α)− α| → 0 as T0 →∞.
• The convergence is uniform in underlying distribution since the above bound

holds in finite samples.
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Proof Sketch
• The following two conditions imply the results. Let n→∞.

(E) With probability 1− γ1n:

F̃(x) :=
1
n

∑
π∈Π

1{S(uπ) < x},

is approximately ergodic for F(x) = P (S(u) < x), namely

sup
x∈R

∣∣F̃(x)− F (x)
∣∣ ≤ δ1n,

(A) With probability 1− γ2n:
(1) n−1 ∑

π∈Π [S(ûπ)− S(uπ)]
2 ≤ δ2

2n;
(2) |S(û)− S(u)| ≤ δ2n;

• Show that (E) holds for Πall with i.i.d. {ut} and for Π→ with weakly dependent
{ut}.

• Show that assumption (A) is implied by the assumptions on P̂N
t
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Sufficient Conditions (constrained LASSO)

• Fix the parameter spaceW ⊆ {v ∈ RJ : ‖v‖1 ≤ K}.

• Example: synthetic control usesW = {v ∈ RJ : v ≥ 0 and ‖v‖1 = 1}.

• Assume that PN
t =

∑J+1
j=2 wjYjt for some w ∈ W .

• Estimator: P̂N
t =

∑J+1
j=2 ŵjYjt, where

ŵ = arg min
w

T0∑
t=1

Y1t −
J+1∑
j=2

wjYjt

2

s.t. w ∈ W

• Lemma: Assumption (Consistency) is satisfied if

• Moment conditions and weak dependence on ut and Yjt.
• log J = o(Tc), where c > 0 is a constant. (Allow J � T .)

• No sparsity requirement on w.
• Once we chooseW , we do not need to choose tuning parameters (unlike Lasso).
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ŵ = arg min
w

T0∑
t=1

Y1t −
J+1∑
j=2

wjYjt

2

s.t. w ∈ W

• Lemma: Assumption (Consistency) is satisfied if

• Moment conditions and weak dependence on ut and Yjt.
• log J = o(Tc), where c > 0 is a constant. (Allow J � T .)

• No sparsity requirement on w.
• Once we chooseW , we do not need to choose tuning parameters (unlike Lasso).

Chernozhukov, Wüthrich and Zhu Conformal Inference for Counterfactual and Synthetic Controls June 1, 2018 28 / 55



Introduction Methodology Theory Monte Carlo Simulations Empirical application References

Sufficient Conditions (constrained LASSO)

• Fix the parameter spaceW ⊆ {v ∈ RJ : ‖v‖1 ≤ K}.
• Example: synthetic control usesW = {v ∈ RJ : v ≥ 0 and ‖v‖1 = 1}.

• Assume that PN
t =

∑J+1
j=2 wjYjt for some w ∈ W .

• Estimator: P̂N
t =

∑J+1
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Sufficient Conditions (in Paper)

The paper also provides sufficient conditions for the following models:
• Pure factor models
• Interactive FE models
• Matrix completion via nuclear norm penalization
• (Non-)linear AR models
• Fused models: panel data models with AR errors
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Competitors

• Classical SC model w/o intercept (a special case of Constrained LASSO)
• Simple factor model w/o covariates
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Simulation Setup

• DGPs similar to Hahn and Shi (2016).
• Factor model for controls + SC model for treated unit

(a) Sparse weights
(b) Dense weights

• Factor model for all units
(a) Common support
(b) No common support

• Focus on: H0 : αT0+1 = 0
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DGP1a,b: SC Models

• For j = 2, ..., J + 1, let

Yjt = αj + θt + γ′j δt + εjt,

where αj = j/J, θt ∼ N(0, 1), δt ∼ N(0, 1) is a scalar, γj = j/J.
• The treated outcome is generated as

Y1t =

{∑J+1
j=2 wjYjt + ut if t = 1, ...,T0

αt +
∑J+1

j=2 wjYjt + ut if t = T0 + 1, . . . ,T

where w is sparse (DGP1a) or dense (DGP1b).
• Two different variants:

• ut
iid∼ N(0, 1) and εjt

iid∼ N(0, 1)
• AR(1) models for ut and εjt
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DGP2a,b: Factor Models

• For j = 2, ..., J + 1, let

Yjt = αj + θt + γ′j δt + εjt,

where αj = j/J, θt ∼ N(0, 1), δt ∼ N(0, 1) is a scalar, γj = j/J.
• The treated outcome is generated as (DGP2a)

Y1t = 0.5 + θt + 0.5δt + ε1t,

or as (DGP2b)
Y1t = −0.5 + θt − 0.5δt + ε1t,

• Two different variants:
• εjt

iid∼ N(0, 1)
• AR(1) model for εjt
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Size DGP1a (Sparse SC Model)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.09
T0 = 50 0.10 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.10
T0 = 100 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.11 0.10

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.10 0.11 0.11 0.12 0.12 0.12 0.11 0.11 0.11
T0 = 50 0.12 0.12 0.12 0.13 0.12 0.12 0.12 0.13 0.12
T0 = 100 0.12 0.11 0.11 0.13 0.11 0.10 0.13 0.11 0.11
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Size DGP1b (Dense SC Model)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.09 0.10
T0 = 50 0.09 0.10 0.08 0.09 0.09 0.09 0.09 0.11 0.08
T0 = 100 0.11 0.09 0.11 0.11 0.09 0.10 0.11 0.09 0.10

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.11 0.12 0.10 0.13 0.13 0.14 0.12 0.13 0.10
T0 = 50 0.12 0.13 0.12 0.11 0.12 0.12 0.13 0.12 0.12
T0 = 100 0.11 0.10 0.11 0.10 0.11 0.11 0.11 0.11 0.11

Chernozhukov, Wüthrich and Zhu Conformal Inference for Counterfactual and Synthetic Controls June 1, 2018 35 / 55



Introduction Methodology Theory Monte Carlo Simulations Empirical application References

Size DGP2a (Factor Model w/ Common Support)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.09 0.09 0.10 0.09 0.09 0.10 0.10 0.09 0.10
T0 = 50 0.11 0.09 0.10 0.11 0.10 0.10 0.11 0.09 0.10
T0 = 100 0.09 0.11 0.10 0.09 0.10 0.10 0.09 0.11 0.11

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.12 0.12 0.11 0.12 0.13 0.13 0.12 0.12 0.11
T0 = 50 0.13 0.12 0.12 0.13 0.12 0.12 0.13 0.14 0.13
T0 = 100 0.12 0.12 0.12 0.12 0.11 0.11 0.13 0.12 0.12
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Size DGP2b (Factor Model w/o Common Support)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.10 0.11 0.09 0.09 0.10 0.09 0.10 0.10 0.09
T0 = 50 0.10 0.11 0.10 0.10 0.11 0.09 0.10 0.11 0.09
T0 = 100 0.11 0.09 0.11 0.10 0.10 0.12 0.11 0.10 0.10

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.11 0.12 0.11 0.12 0.12 0.11 0.11 0.10 0.09
T0 = 50 0.10 0.12 0.11 0.10 0.11 0.11 0.11 0.12 0.11
T0 = 100 0.10 0.11 0.13 0.11 0.10 0.11 0.11 0.12 0.10
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Power DGP1a (Sparse SC Model)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.49 0.45 0.43 0.38 0.38 0.39 0.50 0.47 0.46
T0 = 50 0.57 0.55 0.55 0.50 0.47 0.49 0.57 0.57 0.56
T0 = 100 0.61 0.58 0.59 0.56 0.51 0.50 0.61 0.59 0.60

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.56 0.55 0.55 0.49 0.50 0.52 0.59 0.58 0.57
T0 = 50 0.59 0.57 0.58 0.54 0.55 0.55 0.62 0.60 0.62
T0 = 100 0.62 0.60 0.60 0.59 0.58 0.55 0.64 0.62 0.63
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Power DGP1b (Dense SC Model)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.53 0.53 0.53 0.38 0.43 0.47 0.50 0.50 0.50
T0 = 50 0.59 0.59 0.58 0.52 0.54 0.57 0.58 0.57 0.57
T0 = 100 0.61 0.61 0.60 0.55 0.58 0.60 0.60 0.59 0.60

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.63 0.63 0.66 0.52 0.57 0.64 0.61 0.61 0.62
T0 = 50 0.64 0.65 0.67 0.56 0.61 0.62 0.64 0.64 0.66
T0 = 100 0.63 0.65 0.66 0.58 0.60 0.61 0.64 0.64 0.65
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Power DGP2a (Factor Model w/ Common Support)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.49 0.52 0.51 0.32 0.41 0.46 0.46 0.48 0.49
T0 = 50 0.55 0.55 0.58 0.45 0.52 0.57 0.55 0.54 0.55
T0 = 100 0.54 0.57 0.59 0.49 0.55 0.60 0.55 0.57 0.60

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.60 0.62 0.64 0.49 0.57 0.63 0.58 0.61 0.62
T0 = 50 0.61 0.63 0.65 0.53 0.58 0.62 0.61 0.64 0.65
T0 = 100 0.61 0.63 0.67 0.54 0.59 0.63 0.61 0.63 0.67
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Power DGP2 (Factor Model w/o Common Support)

i.i.d. data with ρε = ρu = 0
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.16 0.17 0.19 0.21 0.28 0.37 0.37 0.38 0.38
T0 = 50 0.18 0.20 0.21 0.26 0.39 0.46 0.43 0.44 0.45
T0 = 100 0.18 0.22 0.25 0.28 0.40 0.51 0.44 0.47 0.50

Weakly dependent data with ρε = ρu = 0.6
Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.21 0.23 0.28 0.30 0.36 0.45 0.43 0.42 0.46
T0 = 50 0.23 0.25 0.29 0.34 0.43 0.52 0.47 0.48 0.51
T0 = 100 0.22 0.24 0.28 0.35 0.45 0.54 0.47 0.50 0.51
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Effect of EDR Laws on Voter Turnout

• Revisit analysis in Xu (2017)
• Background on election day registration (EDR) laws:

• Voting in US is typically a two step procedure: (1) registration, (2) voting
• The two steps usually require separate trips→ costly
• EDR: allows for registration when arriving at the polling station.
• Enacted in 1970s: Maine, Minnesota and Wisconsin
• Enacted in 1990s: Idaho, New Hampshire and Wyoming
• Enacted before 2012 election: Montana, Iowa and Connecticut

• State-level turnout data, excluding Hawaii, Alaska and North Dakota.
• From 1920 to 2012, only presidential elections.

• Separate analysis for all nine treated states
• Controls: all states which never introduced EDR
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Raw Data
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No-Effects Hypothesis

H0 : (αT0+1, . . . , αT) = (0, . . . , 0)

Moving Block Permutations i.i.d. Permutations
Synth.Control Factor Model Constr.Lasso Synth.Control Factor Model Constr.Lasso

CT 0.08 0.29 0.04 0.08 0.29 0.04
IA 0.04 0.25 0.29 0.01 0.20 0.26
ID 0.83 0.04 0.42 0.70 0.04 0.44
ME 0.04 1.00 0.83 0.00 1.00 0.91
MN 0.04 0.96 0.58 0.00 0.93 0.54
MT 0.38 0.33 0.96 0.32 0.26 0.90
NH 0.04 0.21 0.38 0.00 0.09 0.33
WI 0.04 0.92 0.17 0.00 0.72 0.05
WY 0.46 0.25 0.62 0.42 0.37 0.65
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Conclusions

• We propose a general inference procedure for counterfactual and synthetic
control (CSC) methods.

• The proposed procedure has a double justification.
• The proposed method exploits the times series dimension of the problem.
• The proposed method works in conjunction with many different CSC methods.
• Our procedure works well in finite samples.
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Thank you!
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