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Introductory remarks
After having worked in the profit industry, I continued my career in 2004 as a manager of  
operating rooms (ORs) in a large general teaching hospital in Rotterdam. My experiences 
in industry management taught me to work efficiently, effectively and to excel in service 
to every customer and prospect. With this experience in mind I started my new job on the 
first of January 2004. A job in an environment filled with costly equipment and a range of 
highly skilled professionals such as surgeons, residents, anesthesiologists and OR staff: a 
multi-million euro business within a hospital. Last but not least, a business with customers: 
patients who needed care. Prior to starting the job, I had assumed that processes were 
already efficient and effective, as a result of the relatively high labor and investment costs. 
Being a pilot, I fully realize  what a valuable resource airspace is, particularly when subject 
to high traffic demand. Since airspace is a fixed volume, as is the case with OR capacity, 
managing it is a vital activity for satisfying the needs of the aircraft operators in the most 
efficient and equitable manner using a sophisticated decision support system. As none of 
this appeared to be the case in the OR environment, I conjectured that it must be possible 
to run the OR more efficiently, effectively and in a more patient-centered way. 

 The following examples serve to illustrate my impressions. Due to poor case 
scheduling, OR staff is forced to stand around idly, and expensive nursing, anesthesia and 
support staff are wasted on some of the days. On other days, the OR staff works beyond 
regular working hours to finish the workload on that day. Surgeons/anesthesiologists arrive 
too early or too late in the OR and teams are not always ready at the scheduled time. Capacity 
in the OR is sometimes insufficient for patients who arrive in the emergency department, 
which causes scheduled patients to be denied surgery that day, or for staff to work late. 
Such situations frequently result in nurses, doctors, management and patients becoming 
extremely frustrated. When looking at an OR both in an era in which both cost-containment 
and quality of health care are considered of prime importance, hospitals simply have to 
utilize ORs effectively and efficiently. In 2007, these experiences and impressions motivated 
me to start studying how to control the enormous variation in activities in the OR. I started 
by looking at the variations in case durations, surgical processes, and scheduling processes. 

As this thesis will demonstrate, a fundamental understanding of the variation and 
proper control in the OR makes it possible to improve its efficiency and effectiveness, and 
therefore also improve the quality of care provided to the patients.
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Introduction

Background
The Institute of Medicine (IoM) report 1 “Crossing the Quality Chasm: A New Health System 
for the 21st Century” described many problems in the quality of the United States health 
care delivery system. The report suggests that: “Health care should be: 

- Safe: avoiding injuries to patients from the care that is intended to help them
- Effective: providing services based on scientific knowledge to all who could benefit, 

and refraining from providing services to those not likely to benefit (avoiding 
underuse and overuse, respectively)

- Patient-centered: providing care that is respectful of and responsive to individual 
patient preferences, needs, and values, and ensuring that patient values guide all 
clinical decisions

- Timely: reducing waits and sometimes harmful delays for both those who receive 
and those who give care

- Efficient: avoiding waste, including waste of equipment, supplies, ideas, and energy
- Equitable: providing care that does not vary in quality because of personal 

characteristics such as gender, ethnicity, geographic location, and socioeconomic 
status”.

 The view the IoM has on quality is quite similar to the view expressed in Dutch 
Quality of Care Institutions Act 2: The health care provider offers ‘responsible’ care. 
Responsible care implies care of a high standard, that is appropriate care provided in an 
effective, efficient and patient-centered way and that meets the patient’s actual needs 
(Article 2). To achieve appropriate care, the organizations must demonstrate that there is a 
planned effort to maintain and improve the quality of care in a systematic way. According to 
the act, a systematic way means that at least three steps are to be followed: “(a) the quality of 
care should be measured, for example by means of satisfaction surveys or quality indicators; 
(b) the results of such measurements are to be evaluated against explicit standards or 
goals; and (c) based on this evaluation, the organization is required to make the necessary 
changes in care processes or in their quality policy”. Such a quality management approach 
is intended to provide for a continuous process of quality assessment and improvement 
of care 3,4. According to the Dutch Research for Man and Environment, coordination and 
cooperation in health care and patient safety score relatively low. The efficiency of health 
care in the Netherlands is not optimal and quality is not a driving force in the health care 
market 5.
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The meaning of timelines, efficient and effective health care
According to the IoM, timely access to care is “reducing waits and sometimes harmful delays 
for both those who receive and those who give care”. One of the most serious problems has 
to do with timely access to hospital services. Problems involving access to care manifest 
themselves in a variety of forms, including rejection of patients seeking services. For 
instance, when a patient accesses the hospital, he or she is likely to encounter waits, delays, 
and cancellations. If the patient requires surgery, it is not uncommon to experience waits 
due to stacking of cases in the OR, or to be delayed by more than one day, even on the day 
of surgery itself. The start of the surgery schedule in the morning is often delayed, putting 
pressure on the timeliness of the surgeries of the scheduled patients, more so when non 
scheduled patients arrive from the Emergency Department. As a result, OR staff may need 
to work overtime. 

Having to work frequently beyond regularly scheduled hours due to badly 
scheduled ORs can lead to both overtime costs and intangible costs, the latter resulting 
from dissatisfaction and reduced motivation on the part of the staff 6,7. Another effect of 
delay in care delivery in the OR is the extension of a patient’s length of stay this entails. 
Prolongation of the stay of a patient implies that the occupied bed cannot be given to 
another patient, and hence fewer patients can be served. Not only do increases in the 
length of stay therefore result in extra cost and/or loss of revenue, they are also major 
sources of both patient and provider dissatisfaction with the present care delivery system. 
The variations caused by the various aforementioned problems has been reported to cause 
poor patient flow, emergency department overcrowding and hence limited access to care, 
nurse understaffing/overloading, diminished quality of care and high health care cost 8.

Efficient care “avoids waste, including waste of equipment, supplies, ideas, and 
energy” 1. For the sake of argument, consider a situation where all patients have the same 
disease, the same degree of illness, and respond identically to therapy. Let us further assume 
that all patients are elective patients and all medical practitioners and health care systems 
are standardized. In this highly stylized situation, 100% efficiency in health care delivery 
might be attainable. Within the boundaries of knowledge and technology, there would be 
zero waste 9. In reality, patients vary, have different diseases, and respond differently to 
therapy, etc. The natural variation influences the delivery process. Controlling the variation 
can, however, be useful in making the processes more predictable, and hence increasing 
efficiency. 

Effective care “is based on providing services based on scientific knowledge to all 
who could benefit, and refraining from providing services to those not likely to benefit 
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(avoiding underuse and overuse, respectively)”1. Instruments to achieve organizational and 
workforce excellence are, for example, lean thinking and Six Sigma. Lean is an important 
dimension of quality; all work that doesn’t add value for the customer is defined as waste. 
Six Sigma is a methodology that uses data and statistical analysis to measure analysis and 
improve a company’s operational performance by identifying and eliminating defects to 
enhance customer satisfaction 10. Performance measurement is then needed in, for example, 
identifying and tracking progress against organizational goals, identifying opportunities for 
improvement and comparing performance in benchmarks. 

The meaning of health care quality and how do achieve it
The Donabedian model 11 of structure-process-outcome is generally used as the basis 

for much of the work addressing quality and outcomes. Donabedian framed the concept of 
quality assurance in terms of three types of measures (Figure 1): structure (what do we need 
to have to be able to achieve quality), process (what do we need to do to achieve quality), and 
outcomes (what do we need to achieve). 

FIGURE 1. DONABEDIAN’S MODEL FOR QUALITy

Donabedian notes that any efforts to improve quality need to recognize that health 
care is embedded in, and greatly influenced by, the larger external environment. Structure 
relates to static characteristics such as facilities, equipment, and personnel 12. Process consists 
of activities involved in the process of delivering health care services, including the technical 
and interpersonal actions of health providers and patients as well as organizational processes 
within the health care system 13. In other words, process looks at what takes place during care, 
while outcomes assess the effect on care in regards to a patient’s health. Donabedian suggests 
that each dimension can be judged independently or in conjunction. Furthermore, he says that 
if both structure and process are adequate, one can assume the outcome will be positive. 

External Environment
Patients, Societal Values, Politics, 

Resources, Expectations, Health Care 
Professionals, Scientific Discovery, and 

knowledge about Patient Care

Structure Process Outcomes

Feedback
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From surgical planning and process to outcome
Does increased timeliness, and efficient and effective scheduling of surgical cases lead to 
improved outcomes? 

Surgical delay has been shown to be an important determinant of patient satisfaction 
across the continuum of preoperative-operative-postoperative care 14. Delays in scheduled 
surgical cases affect patient satisfaction even more than the intraoperative anesthesia 
experience 15. Delays in surgery resulting from cancellations, bumping of cases and poor 
scheduling can have a significant impact on quality of care for scheduled cases as well 16. 
Delays only add to the patient’s inherent anxiety associated with surgery and engenders 
anger and frustration. The operating room, by its very nature, is an extremely stressful, 
uncertain, dynamic, and demanding environment where staff members need to manage 
multiple highly technical tasks, often simultaneously 16,17. Other factors also impact the 
system within the OR. Examples are individual, group and organizational performance issues 
such as team- and time management, interpersonal skills, leadership, workload distribution, 
dynamic decision making, human machine interface, problem detection, capture of errors 
(slips, mistakes, fixation bias), loss of situational awareness, high mental and physical 
workload, fatigue, environmental stress, production pressure and personal life stress 18. 
Moreover, the dynamics of the OR are complex because they form a point of intersection 
among multiple groups with their own agendas and requirements. Since ORs are relatively 
scarce resources, poor scheduling and misuse of ORs can provide opportunities for conflict 
and competition.

OR staff carry out their sometimes long working days under time pressure. The Joint 
Commission on the Accreditation of Healthcare Organizations has identified time pressures 
to start or complete the procedure as one of four contributing factors to increased wrong site 
surgery 19. Similar to other professions, the undue pressures of time that result from falling 
behind create stress that can lead to cutting corners or inadvertent error. Relative to other 
hospital settings, errors in the operating room can be catastrophic (i.e. wrong site surgery, 
retained foreign body, unchecked blood transfusions). In some cases these errors can result 
in high-profile consequences for the patient, surgeon or hospital 20. In other words, poor 
scheduling and the subsequent induced variation in processes reduces outcome.

Because the approach in this thesis is both from an operational research and logistics 
point of view, it is necessary to position this thesis within a planning framework. This 
positioning will then be described and illustrated.
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Planning framework
The flow of activities in the OR through surgical case planning, directing, and controlling, 
and then back to planning again can be formalized by a planning and control cycle. Because 
there are some differences between industry and service-oriented industries 21,22,23,24 a 
production control framework for hospitals has been developed 21. Characteristic for this 
framework is that patients, processes and chains are the basis for organizing care and it 
deals with balancing effective, efficiency and timely care. The framework is based on an 
analysis of the design requirements for hospital production control systems 25,26 and builds 
on the production control design concepts developed 27. It is then applied in the context 
of the OR. In this thesis the decisions made on the first four levels of the model are given. 
The focus of the thesis is on the fifth level of the production control framework as applied 
to the OR. This level concerns the actual scheduling of patients, given planning rules and 
service requirements for the coming days or weeks. It is concerned with the processes used 
in facilitating day-to-day activities that need to be performed to deliver timely, effective and 
efficient care for the patient. 

FIGURE 2. PRODUCTION CONTROL FRAMEWORK 21
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Aim of the study
Based on the time required to construct schedules as well as the quality of resulting 
schedules 28,29 evidence indicates that case scheduling in practice often is performed poorly 
9,30. Additionally, methods which improve the reliable estimate of surgical cases naturally 
lead to improved timeliness, efficiency, and effectiveness of OR processes 31,32,33,34,35. As stated 
earlier, poor surgical case scheduling and the subsequent induced variation in processes 
reduces  outcome. Reasoning along these lines, W. Edwards Deming concluded that the 
real enemy of quality is variation in processes. A main objective in operations management 
is therefore to identify sources of variation 10.  Though variation exists in every process and 
always will, controlling the identified variation helps managers and clinicians to improve 
efficiency by aligning the health service delivery processes towards the desired results 8.  
Because the OR is a leading source 21 controlling variation of OR schedules and processes has 
the second order effect of reducing variation and improving quality in subsequent processes 
throughout in the hospital.  Indeed, an OR scheduling process  which reduces the census 
variability of the OR, can improve the flow of surgical patients to downstream inpatient 
units, resulting in a more even and predictable patient care burden 36. Furthermore accurate 
preoperative scheduling of surgical episodes is critical to the effort to minimize variability in 
the length of the surgical day and maintain on time starts for cases to follow 36. 

This thesis addresses the issue of improving the outcome of healthcare in the OR by 
modeling and managing variation in medical operations, thereby leading to an increase in 
the timeliness,  efficiency and effectiveness of health care. This can be realized by using a 
planning and control-based activity that focuses continuously on controlling variation. The 
result is twofold: First  through the feedback loop in the production control framework it 
results in a better control of hospital activities 21. Second, it may help to achieve meaningful, 
sustainable improvement of quality of care in the OR and consequently in the subsequent 
delivery health care system. Or to put it in the perspective of the process part of Donabedian’s 
model: this is how to improve the outcome of healthcare. 

Thesis outline
As argued earlier, methods that improve the reliable estimate of surgical case 

durations lead to improved timeliness, efficiency, and effectiveness of OR processes. For 
this reason, three studies are performed, described in chapters  two, three and four.

Chapter two describes how case scheduling can be improved. Gains in OR scheduling 
may be obtained by using accurate statistical models to predict surgical and procedure 
times. The three main contributions of this paper are the following: (i) the validation of 
Strum’s results on the statistical distribution of case durations, including surgeon effects, 
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FIGURE 3.SyNTHESIS OF THE PRODUCTION CONTROL FRAMEWORK AND DONABEDIAN’S MODEL FOR 
QUALITy

using OR databases of two European hospitals, (ii) the use of expert prior expectations to 
predict durations of rarely observed cases and (iii) the application of the proposed methods 
to predict case durations, with an analysis of the resulting increase in OR efficiency. We 
retrospectively review all recorded surgical cases of two large European teaching hospitals 
in the period 2005-2008, involving 85,312 cases and 92,099 hours in total. Surgical times 
tend to be skewed and bounded by some minimally required time. We compare the fit 
of the normal distribution with that of two- and three-parameter lognormal distributions 
for case durations of a range of CPT-anesthesia combinations, including possible surgeon 
effects. For cases with very few observations, we investigate whether supplementing the 
data information with surgeon’s prior guesses helps to obtain better duration estimates. 
Finally, we use best fitting duration distributions to simulate the potential efficiency gains in 
OR scheduling. This chapter appears in: 

Pieter S. Stepaniak, Christiaan Heij, Guido H. H. Mannaerts, Marcel de Quelerij, and 
Guus de Vries. Modeling Procedure and Surgical Times for Current Procedural Terminology-
Anesthesia-Surgeon Combinations and Evaluation in Terms of Case-Duration Prediction and 
Operating Room Efficiency: A Multi-center Study. Anesth Analg 2009;106:1232-45.

Chapter three analyzes the possible dependence of surgeon factors like age, 
experience, gender, as well as modeling team composition on procedure time. The effect of 
these factors is estimated for over 30 different types of medical operations in two hospitals, 
by means of Analysis Of Variance (ANOVA) models for logarithmic case durations. The 
practical significance of several factors on surgical procedure times is tested by comparing 
the quality of predicted case durations for 2009. This chapter appears in:

External Environment
Patients, Societal Values, Politics, Resources, 

Expectations, Health Care Professionals, Scientific 
Discovery, and knowledge about Patient Care

Feedback

Structure Process Outcome
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Pieter S. Stepaniak, Christiaan Heij and Guus de Vries. Modeling and prediction of 
surgical procedure times. Stat Neerl  2010;64:1-18.

Chapter four describes the effect of scheduling consecutive similar cases and the use 
of a fixed team on OR case duration and turnover time. This study on the impact of similar 
consecutive cases on the turnover-, surgical-, and procedure time tests the perception that 
repeating the same manual tasks reduces the duration of these tasks. We hypothesize that 
when a fixed  team works on similar consecutive cases the result will be shorter turnover 
and procedure duration as well as less variation as compared to the situation without a fixed 
team. To test our hypothesis, two procedures were selected and divided across a control 
group and a study group. Patients were assigned at randomly to the study or control group. 
This chapter appears in:

Pieter S. Stepaniak, Christiaan Heij, Wietske Vrijland, Marcel de Quelerij and Guus de 
Vries. Working with a fixed OR team through the day on consecutive similar cases and the 
effect on OR case duration and turnover time: By random assigning patients to study and 
control days. Accepted for publication, Arch Surg (24/09/2009).

Chapter five analyzes the managerial part of the OR. Within the daily dynamics 
of performing different cases in different ORs the first signs of variation are visible when 
one or more scheduled cases are completed later or earlier than scheduled. This results in 
gaps within OR schedules. Actions taken to fill these gaps are, for example, rescheduling 
cases to different ORs, and scheduling emergency cases. These actions are performed by 
the Operating Room Coordinator (ORC). The ORC observes the daily variation and takes 
the above-mentioned actions such that scheduled and non-scheduled cases are performed 
without ending too late in too many ORs at the end of the day. There are observed 
differences among the personalities of the four ORCs with regard to their willingness to 
accept taking on more risk concerning their daily planning. The hypothesis is tested that the 
relationship between the personality of each of the four ORCs and the risk an ORC is willing 
to take of cases running late influences OR efficiency. Sometimes cases are canceled at the 
end of the day by OR management on the argument that it is not cost-effective to proceed 
with a surgery case after regular working hours. It will be shown whether it is more cost-
effective to proceed with a new case which has a chance of finishing in overtime hours than 
to postpone the case. This chapter appears in:

Pieter S. Stepaniak, Guido H. H. Mannaerts, Marcel de Quelerij, and Guus de Vries. The 
Effect of the Operating Room Coordinators Risk Appreciation on Operating Room Efficiency. 
Anesth Analg 2009;108: 1249-56.
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In its influential ‘Crossing the quality chasm’, the Institute of Medicine 1 identifies 
six quality dimensions of health care, among which are efficiency and timeliness. The six 
dimensions together, make quality improvement a complex matter, as interventions which 
yield improvement regarding one dimension may have a negative effect regarding another: 
the quality dimensions form conflicting objectives. In this research we simultaneously 
address efficiency and timeliness of care in the operating theatre. 

We formally model the real time surgery scheduling to minimize a weighted sum of 
cancellation of scheduled cases, overtime cost, moving scheduled cases from the day to the 
service operating room and scheduling emergency/acute cases after an imposed time limit. 
Stepaniak et al. 2 show how risk attitudes of OR planners influence the quality of scheduling. 
We formally model heuristics which are based on different risk attitudes and analyze their 
mutual performance. More generally, we analyze Monte Carlo based optimization methods 
and use  recent  actual data from the St. Franciscus Gasthuis, Rotterdam.

Pieter S. Stepaniak, Ronald van der Velden,  Albert Wagelmans and Joris van de 
Klundert. Quality improvement: balancing the risks of overtime and cancellation of scheduled 
cases. Submitted for publication.

The final concluding remarks, practical implications and reflection are described in 
chapter seven.
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Abstract

Background
Gains in OR scheduling may be obtained by using accurate statistical models to predict 
surgical and procedure times. The three main contributions of this paper are the following: 
(i) the validation of Strum’s results on the statistical distribution of case durations, including 
surgeon effects, using OR databases of two European hospitals, (ii) the use of expert prior 
expectations to predict durations of rarely observed cases and (iii) the application of the 
proposed methods to predict case durations, with an analysis of the resulting increase in 
OR efficiency.

Methods
We retrospectively review all recorded surgical cases of two large European teaching 
hospitals in the period 2005-2008, involving 85,312 cases and 92,099 hours in total. Surgical 
times tend to be skewed and bounded by some minimally required time. We compare the 
fit of the normal distribution with that of two- and three-parameter lognormal distributions 
for case durations of a range of CPT-anesthesia combinations, including possible surgeon 
effects. For cases with very few observations, we investigate whether supplementing the 
data information with surgeon’s prior guesses helps to obtain better duration estimates. 
Finally, we use best fitting duration distributions to simulate the potential efficiency gains in 
OR scheduling. 

Results
The three-parameter lognormal distribution provides the best results for the case durations 
of CPT-anesthesia (surgeon) combinations, with an acceptable fit for almost 90% of the CPTs 
when segmented by the factor surgeon. The fit is best for surgical times and somewhat 
less for total procedure times. Surgeons’ prior guesses are helpful for OR management to 
improve duration estimates of CPTs with very few (less than ten) observations. Compared 
to the standard way of case scheduling using the mean of the three-parameter lognormal 
distribution for case scheduling reduces the mean over-reserved OR time per case up to 
11.9 (11.8-12.0) minutes (55.6%)  and the mean under-reserved OR time per case up to 16.7 
(16.5-16.8) minutes (53.1%). When scheduling cases using the three-parameter lognormal 
model the mean over-utilized OR time is up to 20.0 (19.7-20.3) minutes per OR per day 
lower than for the standard method and 11.6 (11.3-12.0) minutes per OR per day lower as 
compared to the biased corrected mean. 

Conclusion
OR case scheduling can be improved by employing the three-parameter lognormal 

model with surgeon effects and by using surgeon’s prior guesses for rarely observed CPTs. 
Using the three-parameter lognormal model for case duration prediction and scheduling 
significantly reduces both the prediction error and the over-utilized OR time.
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Introduction
The OR is a major production unit in each hospital. For hospitals, the main two operational 
risks of ORs consist of high idle times (i.e., under-utilized OR time) and work outside regular 
hours (i.e., over-utilized OR time). Frequent work beyond scheduled hours does not only 
lead to overtime costs, but also to intangible costs resulting from dissatisfaction and reduced 
motivation of staff. Overtime work is one of the primary reasons for nurses to terminate their 
employment 1, and scheduling conflicts are a major cause of nursing staff turnover 2. Therefore, 
efficient OR management should aim for maximal use of available OR time while preventing 
frequent overtime work 3. OR schedules depend crucially on estimated case durations, and 
statistical models may help to improve these estimates to support management in the cost-
efficient use of expensive surgical resources.

 In the following, we provide a brief review of some relevant results in the literature 
on case duration distributions and case scheduling. Early results found that OR waiting 
times follow a two-parameter lognormal distribution 4 and that OR operation times follow a 
distribution that is normal 5 or lognormal 6. Knowledge of the probability distributions of case 
durations has advanced markedly in the past decade 7,8,9. The single most important source 
of variability in surgical procedure times is surgeon effect. Type of anesthesia, age, gender, 
and American Society of Anesthesiologists risk class were additional sources of variability 7. 
In another study Strum 8 tested surgeries with two component procedures. The  conclusion 
is that dual CPT surgeries were better modeled by the lognormal distribution than by the 
normal distribution. Surgical procedure times are frequently distributed with non-zero start 
times that require a lognormal model with a shifted parameter for best model estimates 9. 
Decision rules based on the skewness and coefficient of variation of the data can be used to 
identify the correct alternative 78% of the time, but do not do any better than a single rule 
based on the skewness 9. The way in which the lognormal location parameter is estimated 
affects the ability of goodness-of-fits tests to correctly recognize the model and the accuracy 
of percentile point values derived from the estimated model 10. 

 In an empirical study 11 is shown that surgical time and total procedure time are 
lognormal distributed. Surgical procedure time fits the lognormal distribution for 93% 
of all CPT codes whereas surgical time fits normal distribution for about 80% of all CPT 
codes studied. For some of the scheduled cases there is few or no data available, making 
statistical modeling difficult. These cases can disproportionately affect decision making 
under uncertainty because not sufficient data-driven recommendations could be obtained. 
A number of studies have tried to solve this problem of few or no cases 12,13. Dexter 12 
validated a practical way to calculate prediction bounds and compared the OR times of all 
cases, even those with few or no historic data for surgeon and the scheduled procedure(s). 
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The conclusion of this study is that when historic data are available, they should be used 
in combination with the scheduled OR time. Historic data provide value in estimating the 
proportional variation in OR time. Finally, the scheduled OR time alone is nearly as good a 
predictor of the expected mean OR time of a new case as the Bayesian method.

 In another study 14 elective case scheduling at hospitals and surgical centers at 
which surgeons and patients choose the day of surgery, cases are not turned away, and 
anesthesia and nursing staffing are adjusted to maximize the efficiency of use of OR time. In 
this study two patient-scheduling rules are investigated: Earliest Start Time or Latest Start 
Time. The achievable incremental reduction in overtime by having perfect information on 
case duration versus using historical case durations was in this study only a few minutes 
per OR. The differences between Earliest Start Time and Latest Start Time were also only 
a few minutes per OR. There are cases which have a high probability of taking longer than 
scheduled. Increasing the case’s scheduled duration could than reduce over-utilized OR time 
15. Dexter 15 studied surgeons’ and schedulers’ case scheduling behavior to evaluate whether 
such a strategy would be useful. The impact of inaccurate, scheduled case duration on 
staffing costs and unpredictable work hours can be reduced by allocating appropriate total 
hours of OR time (i.e., staffing) for the cases that will get done, regardless of the inaccuracy 
of the scheduled durations of those cases. 

 There are many other studies related to optimally scheduling cases 16,17,18,19,20,21,22,23. 
All these studies contribute to optimizing the use of scarce and costly operating rooms. 
Based on the above studies we can conclude that gains in OR scheduling efficiency may 
be obtained by using accurate statistical models to predict surgical and procedure times. 
Therefore the three main contributions of this paper are the following: (i) the validation of 
Strum’s results on the statistical distribution of case durations, including surgeon effects, 
using OR databases of two European hospitals, (ii) the use of expert prior expectations to 
predict durations of rarely observed cases and (iii) the application of the proposed methods 
to predict case durations, with an analysis of the resulting OR efficiency. 

Material and methods
In this section we first present our database. Then we describe our methods.

Data
We retrospectively reviewed all recorded surgical cases from two large teaching hospitals in 
the period 2005-2008 (total 85,312 cases).
 Because there are differences in case duration based on type of anesthetic used, 
we classify the CPT codes by type of anesthesia: general, local, and regional (8, 24). Monitored 
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anesthesia care is not a type of anesthesia used in the hospitals under study. We use 
the following definitions. Surgical Time: the time from incision to closure of the wound.  
Procedure Time:  time when patient enters the operating suite until the patient leaves the 
OR. To detect the influence of sample size on the Shapiro-Wilk1 test, we divided the sample 
size into very small , small , medium (30 ≤ n < 200), and large (n ≥ 200). In Table 1 we present 
the dataset for hospital A. For every case frequency interval, the number of CPT codes, 
the number of cases, and the total hours spent for these cases in the period 2005-2008 is 
shown.

TABLE 1. OPERATING ROOM HOSPITAL A AND B

 Hospital A Hospital B

Case frequency CPT-codes Cases Hours CPT-code Cases Hours

n ≥ 200 53 22,512 20,248 35 20,417 18,324

30 ≤ n < 200 347 16,388 19,973 287 16,587 19,184

10 ≤ n < 30 454 4,012 6,266 419 3,271 4,641

n < 10 318 1,004 1,717 201 1,121 1,746

Total 1172 43,916 48,204 942 41,396 43,895

Case frequency  (1 CPT code)

n ≥ 200 53 22,512 20,248 35 20,417 18,324

30 ≤ n < 200 253 11,621 13,707 198 13,984 15,187

10 ≤ n < 30 431 3,174 4,518 337 2,912 3,681

n < 10 287 541 823 189 762 1,117

Total 1024 37,848 39,296 759 38,075 38,308

                                                                                                            Hospital A                        Hospital B

Number of CPT-Anesthesia combinations CPT Cases CPT Cases

Anesthesia   685 17,561 579 15,664

General   147 4,310 134 4,408

Local   340 22,045 229 21,324

Regional   1172 43,916 942 41,396

1 CPT-Anesthesia combinations (case frequency  ≥ 10)   

General   433 15,007 294 14,783

Local   157 4,050 85 2,543

Regional   147 18,250 191 19,987

Total   737 37,307 570 37,313

1 For further information concerning the Shapiro-Wilk test we refer to the  statistics section
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Total cases amount to 44,223, of which 289 (0.7%) cases were omitted due to incomplete 
data. In 15 cases (0.03%) the operation was canceled, although the patient received 
anesthesia, and in three cases a donor procedure was performed. In our analyses we have 
43,916 cases (1,172 CPT-anesthesia combinations), with hours totaling 48,204.

 There were 37,848 cases (39,296 hours) with one CPT-anesthesia combination, 
5,177 cases (7,312 hours) with two CPT codes and 891 cases (1,596 hours) with more than 
two CPT codes. Average cases per year with 2-CPTs: 1,294 (median 1,305 min 1,165 max 
1,401). For CPTs with more than two codes the average is 222 cases (median 221, min 201 
max 247).  To eliminate a potential confounding factor2, in our study we considered only 
surgical procedures with a single CPT code.  Therefore, we confined our analysis to 37,307 
cases with a case frequency of ≥ 10 (737 CPT-anesthesia combinations). 
We broke down the CPTs according to the various surgeons (Table 2). 

TABLE 2. NUMBER OF SURGEONS/ANESTHETISTS

Hospital A Hospital B

Specialty

Eye surgery 3 3

Orthopedic 4 4

Ear-nose-throat 2 2

Neurosurgery 2 -

Urology 3 3

General surgery 6 6

Obstetrics and genecology 6 6

Jaw surgery 2 -

Plastic surgery 2 -

Total 30 24

Number of anesthetists 9 10

There are 30 surgeons and 6,349 CPT-anesthesia-surgeon combinations (43,916 cases, 
48,204 hours, Table 3). 

If we differentiate to combinations with at least 10 cases per surgeon and 1 CPT-anesthesia 
code, 1,341 CPT-anesthesia-surgeon combinations remain (32,347 cases, 34,512 hours).  

2 In our analyses, we use only surgeries with one CPT code (as in Strum 12) to avoid possible confounding factors. 
Procedures with for example two CPT codes (CPT1 and CPT2) can be performed in different ways. First CPT1 and 
then CPT2, or vice versa. The sequence can then be a confounding factor.
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TABLE 3. NUMBER OF UNIQUE CPT CODE-ANESTEHSIA -SURGEON COMBINATIONS

Specialty  Hospital A Hospital B

Eye surgery 61 48

Orthopedic 970 1141

Ear-nose-throat 71 59

Neurosurgery 41 0

Urology  174 137

General surgery 2108 1244

Obstetrics and genecology 2420 1844

Jaw surgery 47 0

Plastic surgery 457 0

Total  6349 4473

Cases  43,916 41,396

Hours  48,204 43,895

Irrespective of the number of CPT codes: of the 1,172 CPT codes there are 318 CPT-
anesthesia combinations (1,004 cases, 1,717 hours) which were performed less than ten 
times in a period of four years. Of the 43,916 cases scheduled, for 46 cases (0.1%) the actual 
procedure code was different than the scheduled code. In 132 cases (0.3%) the actual 
surgeon was different than the scheduled surgeon. 

 In Table 1 the data set for hospital B is presented. Total cases amount to 41,916, of 
which 520 (1.2%) cases were omitted due to incomplete data. The analysis is limited to 41,396 
cases (942 CPT-anesthesia combinations, 43,895 hours). There were 38,075 cases (38,308 
hours) with only one CPT code, 2,707 cases (4,531 hours) with two CPT codes and 614 cases 
(1,056 hours) with more than two CPT codes. Average cases per year with 2-CPTs: 676 (median 
687 min 634 max 699). For CPTs with more than two codes the average is 153 cases (median 
151, min 143 max 166). As in hospital A, we considered only cases with one CPT code and each 
CPT-anesthesia combination with a case frequency of 10 or more. We confined our analysis 
to 37,313 cases (570 CPT-anesthesia codes). There are 24 surgeons (Table 2) and 4,473 CPT-
anesthesia-surgeon combinations (41,396 cases, 43,895 hours Table 3). 

 If we differentiate to combinations with at least 10 cases per surgeon, 1,147 
CPT-anesthesia-combinations remain (30,274 cases, 32,927 hours). Of the 41,396 cases 
scheduled, in 28 cases (0.07%) actual procedure code was different than the scheduled 
code. In 89 cases (0.2%) the actual surgeon was different than the scheduled surgeon. Next 
we describe in detail what we have studied and how the study is performed.
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Fitting the normal, two- and three-parameter lognormal models for 1-CPT-anesthesia-
surgeon combinations with case frequency ≥ 10 
We repeat Strums’ work 9,10,11 for the normal, two- and three-parameter log-normal modeling 
of surgical procedure times.  Repeating Strums’ work is important scientifically because 
replication of research is a way to refine our understanding of modeling surgical cases.  
The three-parameter lognormal model is of interest because surgical procedure times are 
frequently distributed with non-zero start times that require a lognormal model with a shift 
parameter for best model estimates 9,11. A non-zero start time means that minimum surgical 
procedure times, even for the simplest procedures, are strictly positive. As is assumed 11, the 
percentage of cases that fit the lognormal model can be even higher when segmented by 
the factor surgeon. Therefore we validate whether performed procedure times and surgical 
times of CPT-anesthesia-surgeon combinations fit a normal, two-parameter or three-
parameter lognormal distribution. 
The general formula for the lognormal model can be described as follows:

for x > θ, where θ = shift parameter for duration data θ > 0. The case where θ equals zero 
is called the two-parameter lognormal model. For the three-parameter lognormal model, 
we estimate the shift parameter by using a modified version of the approach of Spangler 
10. The shift parameter describing the location or origin of the random variable is important 
for decision making because it provides a lower bound on values of the random variable 10. 
First for every CPT-anesthesia (surgeon) combination we calculate the natural logarithm of 
surgical time and procedure time. We then use the bisection method to estimate the shift 
parameter. That way we estimate three parameters for each combination of surgeon(s) and 
procedure(s). The bisection method we used is as follows:

Set LOWER=0

Set UPPER = smallest observed value

Initial Guess= (LOWER+UPPER)/2

Subtract GUESS from all observed values, take the logarithm, and estimate the mean 
and standard deviations. Then recalculate the Shapiro Wilk p-value ( = p new). We repeat this 
iteratively using bisection to find the shift parameter that results in the largest value of the 
p-value. We choose to stop the iteration if (p new – p old )/ p new x 100% < 1% or if p new   <   p old.  

If the final p-value is larger than 0.05, we do not reject the hypothesis of the normal model.

H2 
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Estimation with Specialist Prior Guess
If very few data are available (n < 10), it may help to use prior information to get more 
reliable estimates of the time distribution. Therefore we present a method to estimate the 
mean procedure time from prior and actual data for procedures with less than 10 cases. As is 
commonly known, Bayes’s theorem provides a mechanism for combining a prior probability 
distribution for the states of nature with sample information to provide a revised (posterior) 
probability distribution about those states of nature. These posterior probabilities are then 
used to make better decisions. Our approach differs with that of Dexter 12,25 in the  way 
that we use the surgeon’s prior statement on the distribution in terms of quantiles of the 
operation time. To get the prior information required, we asked surgeons to make a prior 
statement on the distribution of the procedure time for cases with a frequency less than 10.
 
 For a given procedure, we asked surgeons in the period October – December 2008 
before they started the scheduled case to make an estimation in terms of quantiles (25%, 
50%, 75% and 95%) of the time distribution of a procedure. With this information we were 
able to update our uncertainty in the light of new evidence. In the analyses we use the two-
parameter lognormal model where the mean and variance is calculated from a weighted 
mean of the actual data and the prior data. Further we assume that the specialists do not 
remember the previous operation times, so that all realized times (past and current) can 
be treated as containing similar information. Next we explain our model for using prior 
information in mathematical terms.

 Let T denote the procedure time  and let ln(T) be its natural logarithm. Assuming a 
two-parameter lognormal model for the procedure time, it follows that ln(T) is normal with 
mean μ and variance σ2. We now have to combine the prior and actual data information 
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For example, with two prior estimates made by specialist 1 and 2 we estimate the following 
model:

where  [ -0.675  0  0.675  1.645] is the vector with corresponding z-values. This vector 
provides the regressor needed to estimate location and scale of the lognormal prior 
distribution corresponding to the quantiles. The vector is repeated for each specialist.

When we have data for j specialists, hence 4j times, we get 4j equations with given values 
on the left-hand side and with unknown values of m and s. This can be seen as a regression 
model with two unknown parameters, m (the constant term) and s (the slope). By applying 
regression, it is well known that the constant term m will be the sample mean of the 
Ln(Quantiles) values and that the slope s can also be computed quite easily.   

The prior mean of the operation time is exp(m + 0.5 s2 )  and the prior variance is 
(exp(s2) - 1) exp(2m + s2). The prior standard deviation is  [(exp(s2) - 1) exp(2m + s2)]0.5.
 We take the value of m  as the prior mean  xs* and the value s-2  of  as τ . The posterior mean 
is then given by the formula: 

The resulting weight is w = τ / (τ + n)and the posterior mean is equal to: 

Note that this is the posterior mean of the log times. The mean of the actual times is given 
by exp(μ* + 0.5σ*2) , where σ*2  is the posterior variance. The prior variance is s2  and the data 
variance is σ2. An intuitive method is to weight these two values in the same way as was 
done for the mean, so that

Combining these results, we get: the posterior for the operation times is lognormal with 
mean μ* and variance σ*2. The mean of the operation times is then given by:
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Improving coupling between estimates of scheduled time and the actual procedure time
When reserving OR time for a procedure, the OR management needs to balance the costs 
of reserving too much time against the costs of reserving too little 26.  If too much time is 
allocated to a case, expensive OR capacity is likely to be wasted, leading to a decrease in 
OR utilization 12,13,14,16,17,21,22,23,27. With too little allocated capacity to a surgical case, the OR 
schedule must be modified, resulting in idle OR times in operation rooms and increased 
demand for anesthesiologists, nurses and support staff. Improving coupling between 
estimates of scheduled time and the actual time reduces the prediction error of a scheduled 
surgical case. By using a simulation we compare the effect on the prediction error of 
scheduling cases when applying three different case modeling methods. The first method of 
estimating scheduled case durations is based on taking the trimmed mean time of the last 
10 case durations. 

 The second method uses the bias-corrected scheduled OR time. This method 
is  based on the following linear regression based on data 2005-2007: Actual OR time = 
intercept + slope * (scheduled OR time). This regression shows how much better it is for 
purposes of choosing how long to schedule a case (as compared to lower/upper prediction 
bounds or times remaining in cases) to use statistically based methods as compared to 
simple adjustment of the scheduled OR time. The last method uses the mean of the three-
parameter lognormal model.

 To make it possible to compare the outcome of the three methods, only procedures 
are used with a case frequency of 10 or more, with 1 CPT-anesthesia code and fitting the 
three-parameter lognormal model. We use the data available (from the sample). Historical 
data from 2005-2007 is used and then the window is expanded to include predictions made 
on each day in 2008 using data from 2005-2007 and from 2008 till the day prior to making 
the prediction. The originally scheduled sequence of cases was not changed. For instance, 
when scheduling an Inguinal hernia repair (Lichtenstein) on January 2nd 2008, only historical 
data up to and including January 1st 2008 is used. The actual time on January 2nd is used for 
scheduling this procedure in for January 4th.  The difference between the actual OR time 
of a procedure is compared with the scheduled procedure time as calculated by each the 
of the three methods. If the actual  procedure time is larger than the scheduled time, that 
procedure is under-reserved. Otherwise it is over-reserved. For each method, the  number 
of under- or over-estimated procedures is counted as the mean under- and overestimated 
time per case. Differences in the mean under- and over-estimated time per case between 
the three methods were tested with an paired T-test. 
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OR Inefficiency
Operating room inefficiency is defined as the sum of under-utilized OR time and over-utilized 
OR time, multiplied by the relative costs of overtime 16,23,26.  Under-utilized time is hours of 
staffed operating time at straight time wages, but not used for surgery, set-up or clean-up 
of the OR. Over-utilized time is hours after operating room time, staffed at overtime. The 
relative cost of overtime in our study is 1.50.  The cost per hour of over-utilized OR time 
includes: indirect costs, intangible costs, and retention and recruitment costs incurred on a 
long-term basis due to staff working late.  Due to fixed OR capacity in our hospital (8AM – 4 
PM), the short-term objective in maximizing OR efficiency is to reduce over-utilized OR time 
15. In hospital A for example the mean end time of all ORs running after 4 PM is 4.19 (±17) 
minutes 3. 

 We analyzed the effect of the different methods of case duration prediction on the 
OR efficiency. In the first method we use the trimmed mean of the last 10 case durations, 
in the second method we used the bias-corrected scheduled OR time and the mean of the 
three-lognormal model in the last method.  Case scheduling with original cases in 2008 were 
used. For each method add-on elective cases with their concomitant turnover times were 
daily scheduled. Best Fit Descending was used, an off-line algorithm in which add-on elective 
cases are sorted based on longest to shortest with fuzzy constraints. Cases were considered 
in the order specified by the algorithm. If no OR had sufficient open time available for the 
case, but sufficient open time was available in the OR with the most remaining time provided 
the scheduled duration of the case was shortened by ≤ 15 min, then the case was assigned 
to the OR with the most remaining time 28. 

 For all cases (2 or more CPTs, and procedures with case frequency < 10) that are 
not meeting the criteria, we used the actual case duration as the scheduled duration (i.e., 
perfect retrospective knowledge). After scheduling the cases and knowing the actual OR 
times of these same cases the mean over-utilized OR time was calculated considering each 
OR-day to be independent of all others. Differences in the mean over-utilized OR time 
between the three methods were tested with an paired  T-test.

Statistics and software
The null hypothesis of the Shapiro-Wilk test statistic (W)  is that a sample is from a normally 
distributed population. Thus p < 0.05 for W rejects this supposition of normality. Most 
authors agree that this is the most reliable test for non-normality for small to medium-sized 
samples 29,30,31,32,33,34,35,36,37. 
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 To perform the Shapiro-Wilk test we use StatsDirect statistical software. Further 
we used SPSS15, Excel 2007, and COBOL.  Normal probability plots where examined visually 
for those CPT-anesthesia-(surgeon) combinations that were not well-fitted by either the 
normal or lognormal models. We analyzed QQ-PP and Box plots to confirm the results of 
the Shapiro-Wilk test. Examination of the calculated skewness and kurtosis, and of the 
histogram, boxplot, and normal probability plot for the data may provide clues as to why 
the data failed the Shapiro-Wilk. In our database, start and end of anesthesia time, surgical 
time and procedure time are recorded exactly (to the minute). D’Agostino 29 pointed out that 
the Shapiro-Wilk test can be affected by rounding.

Results

Fitting the normal, two- and three-parameter lognormal models 
In some of the procedures we found outliers. In the database there is a so-called “remark 
field” in which unexpected events during an OR are filled in. The outliers we encountered 
were due to logistical problems (16 times) in the OR, surgeon arriving late (12 times) and OR 
team not ready (4 times). These outliers can be seen as incidental therefore we removed 
these data.  Table 4 shows the results of fitting CPT-anesthesia groups to the normal and the 
two-, three-parameter lognormal models for both hospitals separately.
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TABLE 4. TABULAR COMPARISON OF SAMPLE SIZE AND SHAPIRO-WILK GOODNESS-OF-FIT P-VALUES FOR THE 
NORMAL MODEL FOR PROCEDURE TIME AND SURGICAL TIME (1 CPT-ANESTHESIA COMBINATIONS) 

Normal model       
Hospital A        

Procedure time p < 0,05 p ≥ 0,05 CPT codes

Small 10≤ n<30 271 36.8% 160 21.7% 431 58.5%

Medium 30≤ n<200 153 20.8% 100 13.6% 253 34.3%

Large n ≥200 34 4.6% 19 2.6% 53 7.2%

Total  458 62.1% 279 37.9% 737 100.0%
Surgical time

Small 10≤ n<30 204 27.7% 227 30.8% 431 58.5%

Medium 30≤ n<200 124 16.8% 129 17.5% 253 34.3%

Large n ≥200 22 3.0% 31 4.2% 53 7.2%

Total  350 47.5% 387 52.5% 737 100.0%

Hospital B        

Procedure time

Small 10≤ n<30 194 34.0% 143 25.1% 337 59.1%

Medium 30≤ n<200 138 24.2% 60 10.5% 198 34.7%

Large n ≥200 34 6.0% 1 0.2% 35 6.1%

Total  366 64.2% 204 35.8% 570 100.0%

Surgical time

Small 10≤ n<30 146 25.6% 191 33.5% 337 59.1%

Medium 30≤ n<200 100 17.5% 98 17.2% 198 34.7%

Large n ≥200 15 2.6% 20 3.5% 35 6.1%

Total  261 45.8% 309 54.2% 570 100.0%

2-Parameter lognormal model      
Hospital A        

Procedure time

Small 10≤ n<30 179 24.3% 252 34.2% 431 58.5%

Medium 30≤ n<200 112 15.2% 141 19.1% 253 34.3%

Large n ≥200 21 2.8% 32 4.3% 53 7.2%

Total  312 42.3% 425 57.7% 737 100.0%
Surgical time

Small 10≤ n<30 121 16.4% 310 42.1% 431 58.5%

Medium 30≤ n<200 89 12.1% 164 22.3% 253 34.3%

Large n ≥200 14 1.9% 39 5.3% 53 7.2%

Total  224 30.4% 513 69.6% 737 100.0%
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Hospital B  

Procedure time p < 0,05 p ≥ 0,05 CPT codes

Small 10≤ n<30 101 17.7% 236 41.4% 337 59.1%

Medium 30≤ n<200 86 15.1% 112 19.6% 198 34.7%

Large n ≥200 29 5.1% 6 1.1% 35 6.1%

Total  216 37.9% 354 62.1% 570 100.0%

Surgical time

Small 10≤ n<30 84 14.7% 253 44.4% 337 59.1%

Medium 30≤ n<200 64 11.2% 134 23.5% 198 34.7%

Large n ≥200 9 1.6% 26 4.6% 35 6.1%

Total  157 27.5% 413 72.5% 570 100.0%
3-Parameter lognormal model

Hospital A  

Procedure time

Small 10≤ n<30 86 11.7% 345 46.8% 431 58.5%

Medium 30≤ n<200 41 5.6% 212 28.8% 253 34.3%

large n ≥200 16 2.2% 37 5.0% 53 7.2%

Total  143 19.4% 594 80.6% 737 100.0%
Surgical time

Small 10≤ n<30 67 9.1% 364 49.4% 431 58.5%

Medium 30≤ n<200 37 5.0% 216 29.3% 253 34.3%

Large n ≥200 13 1.8% 40 5.4% 53 7.2%

Total  117 15.9% 620 84.1% 737 100.0%

Hospital B  

Procedure time

Small 10≤ n<30 52 9.1% 285 50.0% 337 59.1%

Medium 30≤ n<200 31 5.4% 167 29.3% 198 34.7%

Large n ≥200 19 3.3% 16 2.8% 35 6.1%

Total  102 17.9% 468 82.1% 570 100.0%

Surgical time

Small 10≤ n<30 38 6.7% 299 52.5% 337 59.1%

Medium 30≤ n<200 35 6.1% 163 28.6% 198 34.7%

Large n ≥200 8 1.4% 27 4.7% 35 6.1%

Total  81 14.2% 489 85.8% 570 100.0%
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If we look at hospital A for the CPT-anesthesia combinations, then procedure times fit the 
normal model 37.9% and surgical time 52.5%. The fits for the two-parameter lognormal 
model (p ≥ 0.05) are respectively 57.7% and 69.6%. For the three-parameter lognormal 
model, the fits for procedure time (p ≥ 0.05) are 80.6% and 84.1% for surgical time.  If 
we differentiate to CPT-anesthesia-surgeon combinations, then procedure times fits the 
two-parameter lognormal model (p ≥ 0.05) in 70.4% of the combinations. The results for 
surgical times are 79.6% (Table 5.  For the three-parameter lognormal model, the fits for the 
procedure time are 87.6% and 90.7% for surgical time. The results for hospital B are roughly 
in line with those for hospital A.
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TABLE 5. TABULAR COMPARISON OF SAMPLE SIZE AND SHAPIRO-WILK GOODNESS-OF-FIT P-VALUES 
FOR THE NORMAL MODEL FOR PROCEDURE TIME AND SURGICAL TIME (1 CPT-ANESTHESIA-SURGEON 
COMBINATIONS)

Normal model        

Hospital A        

Procedure time p < 0.05 p ≥ 0.05 CPT codes

Small 10≤ n<30 329 24.5% 322 24.0% 651 48.5%

Medium 30≤ n<200 371 27.7% 310 23.1% 681 50.8%

Large n ≥200 8 0.6% 1 0.1% 9 0.7%

Total  708 52.8% 633 47.2% 1,341 100.0%

Surgical time  

Small 10≤ n<30 228 17.0% 423 31.5% 651 48.5%

Medium 30≤ n<200 329 24.5% 352 26.2% 681 50.8%

Large n ≥200 7 0.5% 2 0.1% 9 0.7%

Total  564 42.1% 777 57.9% 1,341 100.0%

Hospital B  

Procedure time

Small 10≤ n<30 318 27.7% 226 19.7% 544 47.4%

Medium 30≤ n<200 301 26.2% 295 25.7% 596 52.0%

Large n ≥200 6 0.5% 1 0.1% 7 0.6%

Total  625 54.5% 522 45.5% 1,147 100.0%

Surgical time  

Small 10≤ n<30 219 19.1% 325 28.3% 544 47.4%

Medium 30≤ n<200 261 22.8% 335 29.2% 596 52.0%

Large n ≥200 5 0.4% 2 0.2% 7 0.6%

Total  485 42.3% 662 57.7% 1,147 100.0%

2-Parameter lognormal model

Hospital A  

Procedure time

Small 10≤ n<30 201 15.0% 450 33.6% 651 48.5%

Medium 30≤ n<200 189 14.1% 492 36.7% 681 50.8%

Large n ≥200 7 0.5% 2 0.1% 9 0.7%

Total  397 29.6% 944 70.4% 1,341 100.0%

Surgical time  

Small 10≤ n<30 101 7.5% 550 41.0% 651 48.5%

Medium 30≤ n<200 167 12.5% 514 38.3% 681 50.8%

Large n ≥200 5 0.4% 4 0.3% 9 0.7%

Total  273 20.4% 1068 79.6% 1,341 100.0%
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Hospital B  

Procedure time p < 0.05 p ≥ 0.05 CPT codes

Small 10≤ n<30 221 19.3% 323 28.2% 544 47.4%

Medium 30≤ n<200 127 11.1% 469 40.9% 596 52.0%

Large n ≥200 4 0.3% 3 0.3% 7 0.6%

Total  352 30.7% 795 69.3% 1,147 100.0%

Surgical time  

Small 10≤ n<30 124 10.8% 420 36.6% 544 47.4%

Medium 30≤ n<200 146 12.7% 450 39.2% 596 52.0%

Large n ≥200 3 0.3% 4 0.3% 7 0.6%

Total  273 23.8% 874 76.2% 1,147 100.0%

3-Parameter lognormal model

Hospital A  

Procedure time

Small 10≤ n<30 77 5.7% 574 42.8% 651 48.5%

Medium 30≤ n<200 84 6.3% 597 44.5% 681 50.8%

Large n ≥200 5 0.4% 4 0.3% 9 0.7%

Total  166 12.4% 1175 87.6% 1,341 100.0%

Surgical time  

Small 10≤ n<30 57 4.3% 594 44.3% 651 48.5%

Medium 30≤ n<200 64 4.8% 617 46.0% 681 50.8%

Large n ≥200 4 0.3% 5 0.4% 9 0.7%

Total  125 9.3% 1216 90.7% 1,341 100.0%

Hospital B   

Procedure time

Small 10≤ n<30 81 7.1% 463 40.4% 544 47.4%

medium 30≤ n<200 95 8.3% 501 43.7% 596 52.0%

Large n>200 3 0.3% 4 0.3% 7 0.6%

Total  179 15.6% 968 84.4% 1,147 100.0%

Surgical time  

Small 10≤ n<30 57 5.0% 487 42.5% 544 47.4%

medium 30≤ n<200 89 7.8% 507 44.2% 596 52.0%

Large n ≥200 2 0.2% 5 0.4% 7 0.6%

Total  148 12.9% 999 87.1% 1,147 100.0%
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We tried to understand why surgical time fits the normal and two- and three-param-
eter lognormal models better than is the case for procedure time. Procedure time consists 
of three main activities: administering anesthesia, preparation the patient for surgery, and 
performing the actual surgery.  For the cases under study, the proportion of surgery time 
is on average 75% of the total procedure time. For preparation time and anesthesia time, 
these percentages are respectively 18% and 7%.  While preparing the patient for surgery, 
relatively more persons of the OR staff are involved in various activities and protocols as 
compared with administering anesthesia and surgery. To gain a better understanding of this, 
for every CPT-anesthesia code we tested both the anesthesia time and preparation time for 
the two-parameter lognormal model. 

With p ≥ 0.05, 92.5% of anesthesia time is lognormal distributed, whereas 17.6% of 
the preparation time shows a fit to the lognormal model. Hence preparation time is mod-
eled badly as compared with anesthesia time. This could explain why procedure time is less 
modeled for the lognormal model than surgical time.

Table 6 is a paired comparison of the two- and three-parameter lognormal models and 
the normal model using the Friedman test. We compared the normal model with the two-
parameter lognormal model and the three-parameter model. The two-parameter lognormal 
model was superior to the normal model for modeling procedure time and surgical time. 
The three-parameter lognormal is superior to the two-parameter lognormal model and 
normal model. Surgical time is estimated better than procedure time when modeling with 
both the two- and three-parameter lognormal models and the normal model.
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TABLE 6. FRIEDMAN RESULTS FOR PAIRED COMPARISON OF THE SHAPIRO- WILK P-VALUE FOR THE 
NORMAL, LOGNORMAL AND THREE-PARAMETER LOGNORMAL FOR PROCEDURE AND SURGICAL TIMES

Hospital A
Hypothesis Ln2(pt) = Ln2(st) N (pt) = N (st) Ln2(st) = N(st) Ln2(pt) = N(pt)
Friedman test statistic 41 335 247 298

Kendall’s W 0.015 0.228 0.051 0.095

Rank sum 1315-1847 1121-1901 1598-1279 1761-1357

p value 0.0039 0.0011 0.0038 0.0117

Hospital B

Hypothesis Ln2(pt) = Ln2(st) N (pt) = N (st) Ln2(st) = N(st) Ln2(pt) = N(pt)

Friedman test statistic 28 241 161 202

Kendall’s W 0.151 0.625 0.094 0.597

Rank sum 895-981 1002-1354 1204-906 1364-994

p value 0.0084 0.0033 0.0128 0.0094

Hospital A

Hypothesis Ln3(pt) = Ln3(st) Ln3(st) = Ln2(st) Ln3(pt) = Ln2(pt)

Friedman test statistic 121 501 498

Kendall’s W 0.011 0.064 0.054

Rank sum 1528-1978 1705-1125 1814-1134

p value 0.0021 0.0004 0.0003

Hospital B

Hypothesis Ln3(pt) = Ln3(st) Ln3(st) = Ln2(st) Ln3(pt) = Ln2(pt)

Friedman test statistic 87 435 477

Kendall’s W 0.131 0.101 0.314

Rank sum 904-1041 1304-879 1415-987

p value < 0.000 < 0.000 < 0.000

Hospital A

Hypothesis Ln3(st) = N(st) Ln3(pt) = N(pt)

Friedman test statistic 89 298

Kendall’s W 0.0047 0.0059

Rank sum 1487-897 1948-1007

p value < 0.000 < 0.000

Hospital B

Hypothesis Ln3(st) = N(st) Ln3(pt) = N(pt)

Friedman test statistic 147 198

Kendall’s W 0.0089 0.0021

Rank sum 1487-879 1546-921

p value <0.000 <0.000
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Estimation with Specialist Prior Guess
In the results section we focus (arbitrarily) on the Total Thyreoidectomy procedure (Table 
7). The results of other procedures are found in Table 8.  The two procedure times  (261 and 
198 minutes) are realized after combining the prior statements of the specialists with the 
previously realized times. As we have data for two specialists, and therefore 8 times, we get 
8 equations with given values on the left-hand side, the values in the column “Ln(Quantiles) 
(Table 7) ”, and with unknown values of m and s.  In Table 7 we show the output of SPSS. The 
R-squared of this regression is 0.85, indicating a good fit. 

TABLE 7. ESTIMATION OF THE MEAN PROCEDURE TIME FROM PRIOR AND ACTUAL DATA 
(TOTAL THyREOIDETOMy)

Actual Ln(Actual) Specialist Quantiles Ln(Quantiles)

268 5.591 1 100 4.605

126 4.836 1 150 5.011

378 5.935 1 170 5.136

311 5.740 1 200 5.298

172 5.147 2 110 4.7

361 5.889 2 160 5.075

162 5.088 2 200 5.298

261 5.565 2 220 5.394

Dependent variable: Ln(Quantiles)

Descriptive statistics of actual data (SPSS)

Coefficients t Sig.

 B Std. Error   

Constant 4.947 0.047 105.804 0

Z vector 0.287 0.049 5.835 0.001

 N Minimum Maximum Mean Std. Dev.

Time 9 126 378 248.56 89.972

Ln(Time) 9 4.836 5.935 5.453 0.382

The outcomes are m = 4.947 and s = 0.287. In other words, the prior statements of the 
specialists can be translated as a lognormal model with a mean of 4.947 and a standard 
deviation of 0.287. The prior mean of the operation time is  147 minutes, and the prior 
variance is 1.847. The prior standard deviation is  43 minutes. We take the value of m = 
4.947 as the prior mean xs* and the value of 1/s2 = 1/0.28722 = 12.14 as τ.  The resulting 
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weight is w = 0.574, and the posterior mean (equation 4, Methods)  is equal to 5.162.
The prior variance s2 is  0.0824, and the data variance is  0.1459. Weighing these two values 
as was done for the mean (equation 4, Methods)  gives a value of 0.109 for  σ*2. Combining 
these results, we get  the posterior for the operation times which is lognormal distributed 
with mean μ*= 5.162, and variance σ*2= 0.109. The mean of the operation times is then 
184 minutes. Note that the prior mean was 147 minutes, and the data mean time was 249 
minutes. The posterior mean of 184 lies closer to the prior mean than to the data mean. 
This is because the prior distribution has a relatively small standard deviation (43 minutes) 
as compared to that of the data (90 minutes) and because the number of data points (9) 
is small.  If we wish to determine, for instance, a 95% upper bound for the operation time, 
then this is done by estimating the 95% bound for the log-times. In our example, the log-
time has normal posterior with μ* = 5.162 and variance σ*2 = 0.109, so that σ* = 0.330. Then 
the 95% upper bound for the log-time is μ* + 1.645 σ* = 5.705. The bound for the time itself 
is then  exp(5.705) = 300 minutes.

Table 8 present the results for the data mean (SD), prior [mean time, SD] and posterior 
[mean time, SD] for 30 procedures. From this table we see that the posterior mean is a 
weight of the data mean and the prior mean. The variance of the posterior mean always lies 
between the data variance and prior variance. 

TABLE 7. RESULTS OF THE ESTIMATION OF THE MEAN PROCEDURE TIME FROM PRIOR AND ACTUAL 
DATA

Procedure A B C D E F G H

Osteochondritis dissecans knee 4 2 41 16 55 12 51 14

Corticotomy chin 4 2 80 30 74 22 77 25

Strumectomy 9 2 211 53 200 46 205 48

Nephrectomy (abd/via lumb, open) 9 2 214 43 205 49 210 48

Parathyreoidectomy 8 1 158 28 182 44 174 38

Nerve repair 5 3 177 61 141 39 158 47

Recto-Sigmoidresection Hartman 8 1 176 26 143 48 161 34

Extirpatie glandula submandibularis 9 2 93 22 72 22 83 22

Stomach resection/Cholecystectomy 5 1 198 23 186 39 187 36

Distal Tibia 4 2 128 48 81 24 86 30

PTFE loop 4 2 191 101 171 87 172 96

Liver surgery 4 2 154 61 128 39 134 44

Sigmoid resection (open) 3 2 232 62 225 46 226 51

End. Stageringslymfadenectomy 8 2 156 25 159 40 157 40
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Latissimus dorsi lap upper body 4 1 275 45 279 40 277 41

Total Thyreoidectomy 7 2 249 90 147 43 184 62

Transversectomy 7 2 145 42 168 38 165 39

Lymph dissection 9 2 171 55 91 40 136 47

Ileastomy 3 2 149 45 91 40 111 42

Rec. AP colon intraperitoneaal 6 2 95 54 88 26 91 53

PKLND,Stag. lymfadenectomy 8 2 274 158 228 60 238 110

Arhrodese knee 3 1 239 45 224 34 229 39

Intracondylaire Humerus 4 1 107 30 95 44 93 37

Debulking 4 2 260 74 124 51 153 70

Ureterimplantation 4 1 203 90 205 57 194 71

Nissen fundoplication 4 1 234 36 239 41 235 40

Rectosigmoidresection 4 1 231 70 172 21 173 25

Enteroanastomosis 3 1 215 175 137 37 156 57

Reconstructive surgery by Roux y 5 2 332 134 300 61 311 78

Endoscopic hemicolectomy 8 3 224 79 216 48 219 57

Explanation A Historical number of cases

B Number of prior estimates

C Data mean (min)

D Historic data mean (min)

E Prior mean (min)

F Prior SD

G Posterior mean

H Posterior SD

Improving coupling between estimates of scheduled time and the actual procedure 
timeIn hospital A (Table 9), under the standard method the mean over-reserving per case 
is 22.9 (22.5-23.3) minutes while the mean under-reserving is 21.6 (21.3-22.0) minutes.  
The result of the regression is:  actual OR time = 18.16 + 0.88 * (scheduled OR time) with 
standard error of the constant 0.30 and slope 0.04 (p < 0.0001), R-squared 0.55. Applying 
the biased regression then the mean over-reserving per case is 16.3 (16.2-16.5) minutes 
while the mean under-reserving is  12.6 (12.4-12.7) minutes. For the three lognormal model 
the results are 12.9 (12.7-13.0) over-reserving and  9.6 (9.5-9.7) under-reserving. The mean 
over- and under-reserving between the three methods are significant ( p < 0.001). The 
results for hospital B are in line with hospital A.
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TABLE 8:IMPROVING COUPLING BETWEEN ESTIMATES OF SCHEDULED AND THE ACTUAL TIME

Hospital A

History: 2005-2007, cases used for scheduling 2008 (n= 10,664)

Method

1 2 3 Effect

Method Standard Regres. 3-par (1)-(2) (1)-(3)

Total hours of over-reserving 2,284 2,401 1,041 -5.1% 54.4%

# cases over-reserving 5,992 8,815 4,845 -47.1% 19.1%

Average over-reserving/case (min) 22.9 16.3 12.9 28.8% 43.7%

SD (min) 21.4 9.4 8.4

Total hours of under-reserving 1,534 387 765 74.8% 50.1%

# cases under-reserving 4,255 1,849 4,780 56.5% -12.3%

Average under-reserving/case (min) 21.6 12.6 9.6 41.7% 55.6%

SD (min) 18.8 7.6 5.4

Hospital B

History: 2005-2007, cases used for scheduling 2008 (n= 8,794)

Method

1 2 3 Effect

Method Standard Regres. 3-par. (1)-(2) (1)-(3)

Total hours of over-reserving 1,867 1,314 747 29.6% 60.0%

# cases over-reserving 5,031 5,631 4,294 -11.9% 14.6%

Average over-reserving/case (min) 22.3 14.0 10.4 37.2% 53.4%

SD (min) 21.8 8.3 7.1

Total hours of under-reserving 1,874 949 924

# cases under-reserving 3,713 3,163 4,078 14.8% -9.8%

Average under-reserving/case (min) 30.3 18.0 13.6 40.6% 55.1%

SD (min) 26.7 10.1 8.2 62.2% 69.3%

Over-reserving: Scheduled time - actual time > 0 (hrs)

Under-reserving: Scheduled time - actual time < 0 (hrs)
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OR Inefficiency
In hospital A 12,138 cases were scheduled. The mean over-utilized OR time (minutes) per 
OR per day for the standard method is 23.4 (22.7 - 24.0), for the biased corrected mean 
time 16.6 (16.1 – 17.2) and the  three-lognormal 6.6 (6.2 – 6.9). For hospital B 8,794 cases 
were scheduled. The mean over-utilized OR time per OR per day for the standard method 
is 30.6 (29.6 – 31.5), for the bias- corrected mean time 22.2 (21.4 – 22.9) and for the three-
lognormal model 10.6 (10.1 – 11.2).

Discussion
Modeling the distribution of OR cases is one of the key steps in a planning process. In our 
study the focus is more on decision making before the day of surgery. In other studies 
12,16,25. the focus is toward decisions on the day of surgery. These do not involve average 
OR times, but rather lower prediction bounds, upper prediction bounds, and especially 
times remaining in cases. Both focuses are helpful in effectively schedule and efficiently 
use expensive surgical resources. We find that the percentage of cases fitting the normal, 
two- and three-parameter lognormal models is higher for surgical time than for total 
procedure time (the opposite is true for Strum 11). The evidence supports the idea that type 
of surgery is the most important single source of variability amongst surgeries 7. Using the 
bisection method and applying the three-parameter lognormal model fits procedure time 
and surgical time better than the two-parameter lognormal model without shift parameter. 
This can be explained by the fact that the two-parameter lognormal model is a limitation of 
the three-parameter lognormal model. When segmenting to the factor surgeon, the fits are 
even higher for the two- and three-parameter lognormal models.  

 One could ask why the fits are better with CPT-anesthesia-surgeon segmentations.  
As an a priori hypothesis, Strum et al. suggest that this may be due to surgeon work rates 
7.  If Strum et al. are correct, then segmentation into surgeon-specific groups should result 
in more homogeneous work rates and thus a better fit to the lognormal. Another reason is 
that due to further segmentation, the number of available cases reduces and because of 
this reduction of cases the p-values will increase. This could also explain why the lognormal 
model fits for the CPT-anesthesia-surgeon combinations are higher. We confirm as in other 
studies that small groups have a better fit than the medium and large groups. This lack of 
discrimination relates to the design of the statistical tests.  D’Agostino, Shapiro, and others 
29,31,32,33,34,35,36,37 discuss the fact that goodness-of-fit tests become more discriminating as the 
sample sizes increase.  Conversely, it may be obvious that samples with n < 10 for example 
may indiscriminately fit almost any model. 
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 If few data are available, the use of prior information given by the surgeon  may 
lead to a better estimation of the case duration. Because the posterior distribution contains 
all the information we need to make statistical decisions, we can use it for predicting case 
durations and case scheduling. The uncertainty of the posterior data is less than when using 
only the data without prior information. On the other hand, if the amount of historical data 
for a specific procedure increases, the usefulness of the prior information will decrease. 
This is because with an increasing number of observations, the sample mean will determine 
the outcome. Our approach differs in some respects from the classical one as discussed 12.  
This is caused by the fact that we have prior data that are quite informative and that can be 
translated in terms of a log-normal prior distribution. In the classical approach, the prior on 
the two parameters μ and σ2  consists of three parts:

- For given σ, the (conditional) prior for μ is normal. The prior for σ is inverted   
 gamma.
- The (unconditional, marginal) prior for μ is a t-distribution 
- The (unconditional, marginal) posterior for μ is (another) t-distribution 

 Our prior information is not directly related to mean and variance, but can be 
translated to mean and variance of the normal distribution (of the log-times). So, we combine 
a normal prior with a normal distribution of the observed data. However, in applying the 
calculation rules to get the posterior, we employ the classical framework. So, this is not 
fully consistent. However, the central formulas (nr 2, 4) have a direct intuitively appealing 
interpretation that applies also in our framework: we take a weighted average of the prior 
and data information, and the weights are inversely proportional to the uncertainty involved 
in both types of information: proportional to t = 1/s2 = 1/(prior variance) and to n = 1/(1/n) 
= 1/(data variance).  If we wish to keep closer to the classical set-up, we need to estimate 
the parameters  and  of the prior (inverted Gamma) distribution of the standard deviation. 
These two parameters can be estimated by considering all other types of operation and 
modeling the resulting set of (inverted) sample variances for all these types of operations as 
in  Dexter 13. The (marginal) posterior of the mean (of the log-times) then becomes t instead 
of normal. 

 Further our  results for CPTs with few data may potentially be useful if the data 
from the two hospitals were compared to findings in another study 12. The latter paper did 
not find the Bayes method to have important value for the mean. The overall effect for every 
case including those with multiple CPT would be needed.  Finally we find that compared 
to the standard way of case scheduling using the mean of the three-parameter lognormal 
distribution for case scheduling reduces the mean over-reserving OR time per case up 
to 53.1% and the under-reserving OR time up to with 55.6%. Using the three parameter 
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lognormal model for case scheduling causes a lower mean over-utilized OR time up to 20.0 
(19.7-20.3) minutes per OR per day as compared to the standard method and 11.6 (11.3-
12.0) minutes per OR per day as compared to the bias-corrected scheduled OR time.

Limitations
The prior information could be misleading when the prior variance is too small, since 
specialists may underestimate the variance. Surgeon case durations for specific procedures 
may change progressively, for example as a result of subtle changes in the demographics 
of a patient population 15. We asked specialties if they were aware of these changes. No 
specialty recognized that these changes had occurred in the past four years. We assumed 
that the specialists do not remember the previous operation times so we treated all realized 
times (past and current) as containing similar information. In practice, surgeons may or may 
not actually remember historical case durations. 

 Although  the studied procedures have a relatively low occurrence and are 
performed by different surgeons, we believe that  the effect of the memory of an individual 
surgeon on the results may exist but will be very small. In the simulation for case duration 
prediction and efficiency gains we omitted procedures not fitting the three-parameter 
lognormal mode and procedures with a case frequency less than ten. 

 Because of this the real efficiency gains may be over-estimated. Although in the 
hospitals under study 86% of all cases consist of 1-CPT code, we cannot make general 
conclusions or statements regarding the impact of improving case duration prediction on 
the efficiency of use of OR time, but only as related to the cases under study.

Conclusion
OR case scheduling can be improved by employing the three-parameter lognormal model 
with surgeon effects and by using surgeon’s prior guesses for rarely observed CPTs. As 
compared to standard case scheduling practices and the biased corrected method using the 
three-lognormal model for case scheduling both significantly reduce the mean under- and 
over-estimated OR time per case as well over-utilized OR time.
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Abstract
Accurate prediction of medical operation times is of crucial importance for cost efficient 
operation room planning in hospitals. This paper investigates the possible dependence of 
procedure times on surgeon factors like age, experience, gender, and team composition. The 
effect of these factors is estimated for over 30 different types of medical operations in two 
hospitals, by means of ANOVA models for logarithmic case durations. The estimation data 
set contains about 30,000 observations from 2005 till 2008. The relevance of surgeon factors 
depends on the type of operation. The factors found most often to be significant are team 
composition, experience, and daytime. Contrary to widespread opinions among surgeons, 
gender has nearly never a significant effect. By incorporating surgeon factors, the accuracy 
of out-of-sample prediction of case durations of about 1,250 surgical operations in 2009 is 
improved by up to more than 15 percent as compared to current planning procedures. 
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Introduction
Operating rooms (ORs) are among the most expensive surgical resources in hospitals 1. In 
an era of cost-constrained health care, efficiency increases if a larger number of surgical 
operations can be performed within the available OR time 2. The OR management of medical 
institutions needs to balance the costs of reserving too much time, with resulting idle time 
of the OR, against the costs of reserving too little time. In the last case, the OR schedule must 
be modified, resulting in an increased demand for anesthesiologists, nurses, and support 
staff. Therefore, accurate prediction of case durations helps in effective OR scheduling, it 
reduces waiting times for patients and idle times of medical and other staff, and thereby 
it improves the quality of health care delivered in other services throughout the hospital.

 Surgical procedure times are inherently unpredictable, and the amount of uncertainty 
varies greatly among different types of operations. Hospitals employ standard classifications 
of operations, in terms of so-called current procedure terminologies (CPTs). The type of 
anesthesia also affects case durations, as shown in Strum et al. 3,4 and Dexter et al. 5. 

 The purpose of this paper is to identify factors affecting case durations and to 
exploit these factors to improve case duration predictions. The empirical analysis is based 
on extensive data bases of surgical operations in two teaching hospitals in The Netherlands.  
The OR management in these two hospitals often receives arguments brought forward by 
surgeons, anesthetists, and OR staff, as to why surgical cases should be planned shorter 
or longer than usual due to a range of factors. The factors mentioned most frequently to 
slow down procedure times are the following: composition of the surgical team (presence 
of residents, that is, physicians receiving specialized clinical training), lack of experience 
(low recent work rate for this CPT), gender (female surgeons would be more precise and 
more careful, and hence slower), age (younger surgeons are less experienced), and time 
of the day (fatigue in the afternoon). Some of these factors have been analyzed before for 
hospitals in the US, for instance, in Strum et al. (3). As labor regulations and working habits 
are quite different in Europe, it is of interest to study the effect of these factors within an 
European setting.

 The main results are the following. For several CPTs, some of the factors contribute 
significantly (at the 1% significance level) to operation times. This holds true most notably 
for relatively complex surgical operations, for instance, those involving endoscopic and 
laparoscopic procedures. Team composition, work rate, and daytime are the most commonly 
relevant factors. Age matters only for two CPTs, and gender for none of the CPTs (and at the 
5% significance level only for a single CPT, cataract in hospital A, where female surgeons work 
faster than their male colleagues). The practical relevance of these factors is demonstrated 
by improved out-of-sample prediction of case durations for 2009. As compared to current 
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OR planning procedures, which are based on the last ten cases of each CPT, the accuracy 
is improved by 10-15%. Even if the more advanced three-parameter lognormal model for 
case durations is taken as benchmark, incorporation of significant surgeon factors leads to 
improvements of the same order of magnitude. 

The paper has the following structure. First we  present, next the statistical model for 
case durations is discussed. Finally the results in terms of relevant factors and the gains in 
predictive accuracy are described .

Data 

Surgical procedure times
The data are obtained from surgical databases of two large teaching hospitals in The 
Netherlands, covering about 100,000 operations in the period from January 2005 till August 
2009. The data from 2005 till 2008 are used in estimation, leaving out the data of 2009 for 
predictive evaluation purposes. The two hospitals, that will be labeled as A and B, differ in 
several aspects, such as covered specializations, organizational structure, OR protocols, OR 
logistics, and intensity of teaching. Therefore, the two hospitals will be analyzed separately, 
but with similar methods. For each operation, the database contains information on the 
type of operation (the CPT-anesthesia combination), on the procedure and surgical times, 
and on several surgeon factors (as will be discussed in the next subsection). Case durations 
depend on the type of anesthetic used 3,5 distinguishing three types of anesthesia, that is, 
general, local, and regional. The procedure time is defined as the time passing from entry 
into the operating suite until leaving the OR, This includes the surgical time, that is, the time 
passing from incision to closure of the wound. The attention will be focused on procedure 
times, as these are the relevant durations for OR planning. These times will also be denoted 
as surgical procedure times, indicating that these times include the surgical operation itself 
as well as the required OR procedures preceding and following the operation.

 For the period 2005 till 2008, the database of hospital A contains over 44,000 cases 
for nearly 1,200 CPT-anesthesia combinations, with total OR time of about 50,000 hours. For 
various reasons, the actually employed dataset is much smaller and contains 17,516 cases 
for 29 CPT-anesthesia combinations and a total OR time of about 20,000 hours. The main 
reason for this data reduction is that CPTs are excluded if they occur relatively infrequently 
or if they are always performed under similar circumstances. More precisely, in order to be 
included in the analysis, a CPT-anesthesia combination should exhibit sufficient variation in 
surgeon factors to allow for an analysis of the effect of these factors. Therefore, for every 
CPT-anesthesia combination, the imposed minimal requirements are at least 150 cases 
in total and at least 25 cases for every surgeon involved. Further, about 15% of the cases 
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consist of composite operations involving multiple CPTs. These operations are excluded to 
avoid possible confounding factors, following Strum et al. (5). Composite operations do not 
only occur rather infrequently in a fixed composition, but other factors such as the order 
of the operations may also affect the composite case durations. Minor other reasons for 
exclusion are operations with incomplete data (less than 1%), and special operations like 
donor procedures and operations not started or not completed (less than 0.1%). 

 A similar data selection strategy is followed for hospital B. This database contains 
about 42,000 cases for about 1,000 CPT-anesthesia combinations, with total OR time of 
about 45,000 hours. The actually employed dataset, after applying the selection strategy 
discussed before, contains 12,030 cases for 25 CPT-anesthesia combinations and a total OR 
time of about 16,000 hours. The total number of included CPT-anesthesia combinations in 
hospitals A and B is 32, with 22 common ones for hospitals A and B, 7 for hospital A alone, 
and 3 for hospital B alone. Table 1 shows the included CPTs and contains information on the 
procedure times. The last four columns show the total number of surgeons and residents 
involved in each CPT, as well as the number of cases performed in the morning and in the 
afternoon.

TABLE 1A. DATA OF HOSPITAL A (2005-2008)

Cases Mean Median SD Min Max
Sur-

geons Res.
Cases 
AM

Cases 
PM

Ablatio mamma 152 85.0 73.0 18,5 12 198 5 7 79 73

Acetabuloplastic 675 91.0 83.0 13.7 26 166 5 5 286 389

Appendectomy, open 462 73.4 63.0 23.5 32 240 7 15 201 261

Arcomion resection 774 69.0 62.0 12.8 19 199 5 0 388 386

Arthr knee surgery 722 42.6 40.0 15.1 18 163 5 0 293 429

Arthr. nettoyage knee 417 40.0 35.0 10.6 20 87 5 0 183 234

Arthr. tot/part. menisc 1,248 40.9 35.0 12.1 15 147 5 0 608 640

Bi/trimalleolar fracture 189 88.0 91.0 11.2 7 132 6 6 77 112

Cataract 3,219 27.9 35.0 8.2 12 86 3 0 1537 1,682

Diagn. D & C Hyster. 426 44.4 40.0 21.1 3 108 5 0 198 228

End. appendectomy 154 97.8 88.0 20.6 48 172 7 6 59 95

End. tot. prostatec. 294 236.7 189.0 39.0 55 383 3 3 150 144

Femur fracture 342 67.0 64.0 9.2 18 99 7 12 186 156

Genisis total knee 952 72.9 66.0 31.4 11 131 5 0 514 438

Hemicolectomy 152 182.0 188.0 17.3 83 426 5 5 67 85

Hernia inguinalis 764 70.6 62.0 19.8 31 155 7 13 340 424

HNP lumbale 613 73.5 64.0 20.4 40 219 3 0 251 362

Ileus surgery 167 99.0 94.0 14.7 43 177 4 3 109 58

Laminectomy lumbale 340 87.3 76.0 24 40 222 2 0 171 169

Laparoscopic chol. 800 123.2 103.0 34.6 53 340 4 14 443 357
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Lap. sterilisation 182 61.0 48.0 15.9 5 94 5 5 71 111

Mammared. both 431 102.3 89.0 34.1 55 227 4 0 198 233

Man. placenta rem. 281 40.0 45.0 22.0 12 236 6 4 108 173

Scopic dec. shoulder 401 45.2 40.0 9.3 11 37 5 0 179 222

Sectio caesarea 961 60.2 54.0 13.7 26 171 6 7 393 568

Total hip arthroplasty 1,221 97.6 84.0 24.6 15 332 5 0 77 644

Trans. Res. prostate 533 69.4 64.0 23.1 5 121 4 0 278 255

Ureterorenoscopy 212 78.2 71.0 35.0 20 221 3 0 89 123

Uterus extirpation 432 98.0 91.0 19.3 12 154 5 2 191 241

Total 17,516 30 19 8,223 9,293

TABLE 1B. DATA OF HOSPITAL B (2005-2008)

CPT Cases Mean Median SD Min Max
Sur-

geons Res.
Cases 
AM

Cases 
PM

Ablatio mamma 687 82.0 78.0 21.0 13 201 8 6 358 329

Acetabluloplastic 804 97.0 89.0 16.9 38 169 5 5 194 610

Appendectomy, open 547 91.0 80.0 20.6 4 171 8 13 202 345

Arcomion resection 678 64.0 60.0 15.3 13 187 7 4 498 180

Arthr. knee surgery 200 39.5 35.0 17.9 18 4 5 0 103 97

Arthr. nettoyage knee 214 37.0 35.0 11.7 35 17 5 0 120 94

Arthr. tot/part. menis 300 46.8 43.0 15.1 23 103 3 0 161 139

Bi/trimall. fracture 156 98.0 88.0 13.2 6 210 7 6 90 66

Cataract 1,541 26.1 25.0 10.1 32 70 4 0 639 902

Cholestectomy open 1,110 87.0 81.0 15.3 6 198 7 6 698 412

Colon resection 430 169.0 150.0 14.3 10 201 4 2 199 231

Diagn. D & C Hystero. 688 47.4 44.0 18.4 5 101 4 0 310 378

End. appendectomy 269 88.7 70 17.2 15 163 6 5 127 142

End. total prostatec. 301 243.0 171.0 31.3 9 375 3 0 125 176

Femur fracture 298 108.2 95.0 31.7 8 222 5 0 129 169

Hernia inguinalis 268 75.4 71.0 21.7 4 124 7 16 151 117

Ileus surgery 151 108.0 100.0 17.1 11 191 4 8 67 84

Laminect. lumbale 294 85.5 80.0 18.8 20 125 2 7 139 155

Lap. cholestecomy 305 119.7 104.0 25.2 20 218 4 6 128 177

Mammareduc. Both 564 114.1 100.0 14.4 12 227 4 0 291 273

Man. placenta rem. 405 50.6 45.0 26.4 9 117 6 4 233 172

Scopic dec. shoulder 401 45.2 40.0 9.3 11 137 5 0 179 222

Small bowel resection 684 101.0 89.0 21.1 16 242 5 3 385 299

Trans. Resec. prostate 414 64.1 61.0 24.8 14 162 3 0 221 193

Uterus extirpation 321 101.8 96.0 22.6 19 172 5 0 140 181

Total 12,030 25 12 5,884 6,146
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Surgical factors
The literature review of Dexter et al. 5 identifies 48 papers reporting significant factors 
affecting the perioperative time, that is, the total time required for a patient’s surgical 
procedure, including ward admission, anesthesia, surgery, and recovery. There are multiple 
reports of the effects on OR times of operative procedures, perioperative team composition 
including primary surgeon, and type of anesthetic, in that sequence of importance. Strum 
et al. 3,4 mention the work rate of the surgeon as the most important source of variability 
in surgical procedure times, with type of anesthesia, age, gender, and American Society 
of Anesthesiologists risk class as secondary sources of variability. The age of the surgeon 
is mentioned in Van Houdenhoven 6.  As described in the Introduction, several of these 
surgeon factors were also brought forward by surgeons, anesthetists, and OR managers in 
hospitals A and B. In total, the following five factors will be taken into account.

Gender
A popular belief is that female surgeons are more precise and more careful in performing 
operations, resulting in longer case durations. The gender of the surgeon is indicated by the 
dummy variable ‘Female’ (with value 1 for females and 0 for males). For the CPTs of Table 1, 
the total numbers of female and male surgeons in hospital A are respectively 7 and 23, and 
in hospital B these numbers are respectively 7 and 18. 

Age
In general, older surgeons are more experienced and they may therefore work more 
efficiently. This effect is mentioned, for instance, in Van Houdenhoven (6). It could also be 
that surgeons work fastest in the middle period of their career, as older surgeons may become 
tired more quickly. However, because of the limited number of surgeons, a distinction in 
two age categories is preferred. The age of surgeons who are active in hospitals A and B 
ranges between 30 and 60 years. The two age groups are indicated by the dummy variable 
‘Age’, with value 1 if 45 or above and 0 if younger than 45. For the CPTs of Table 1, the total 
numbers of surgeons above and below 45 years of age are respectively 14 and 16 in hospital 
A, and in hospital B these numbers are respectively 13 and 12. For a team of surgeons 
performing an operation, the age is defined as the age of the oldest surgeon in the team.

Workrate
For a given CPT and surgeon, the work rate is related to the number of similar operations 
that this surgeon has performed in the recent past. A higher work rate means that the 
surgeon is more experienced in this kind of operation and that case durations may become 
shorter 5. Again, because of the limited number of surgeons, a distinction in two classes of 
work rate is preferred. The work rate is defined to be high if the surgeon performed a similar 
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CPT at most three weeks ago, and it is defined to be low if this was more than three weeks 
ago. This rate is indicated by the dummy variable ‘Work rate’, with value 1 for a high rate and 
0 for a low rate. For the CPTs of Table 1, the percentage of operations with a high work rate 
is 81 for hospital A and 84 for hospital B. For a team of surgeons performing an operation, 
the work rate is defined as work rate of the leading surgeon of the team.

Team
For all procedures of Table 1, the OR surgeon team always consists of a surgeon who is 
assisted by at least one other surgeon or a resident. Residents are surgeons who receive 
specialized clinical training in the hospital. It is common belief that the presence of a resident 
has an increasing effect on case durations, because the resident receives on the job training 
during the operation. The team composition is indicated by the dummy variable ‘Team’, 
with value 1 if the team consists of surgeons only and 0 if a resident is part of the team.

Daytime
Some people work better in the morning, others in the afternoon, in the evening, or at night. 
A recent study 7 shows differences in brain excitability, that is, people who say that they feel 
best during a certain part of the day tend to have a brain that is most easily excitable during 
that part of the day. As an operation is a team effort of the involved surgeons and assisting 
staff, it is not easy to combine the daytime effect for each individual in a joint team effect. 
Still, it is of interest to know whether the time of the day has an effect on case durations. 
The time of an operation is indicated by the dummy variable ‘Daytime”, with value 1 for 
the afternoon (operations starting at 12.00 PM or later) and 0 for the morning (operations 
starting before 12.00 PM). It might be that case durations are longer in the evening and at 
night, due to less availability of surgeons and staff. However, such operations are very rare 
in the two hospitals under consideration, and there is insufficient information to test for 
separate evening and night effects. Therefore, operations taking place during the evening or 
at night are excluded due to insufficient data. 

Model for surgical procedure durations

Distribution of case durations
The literature on surgical procedure times deals nearly exclusively with the situation in the 
US. Early results report a lognormal distribution for OR waiting times 8 and a normal 9 or 
lognormal 10 distribution for OR case durations. Insight in the distribution of case durations 
has advanced markedly in the past decade 11,12,13,14. The empirical study of Strum et al. 
12 indicates a lognormal distribution of surgical procedure times. Strum et al. 11 consider 
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composite operations consisting of two different surgical procedures and conclude that 
the lognormal distribution fits such case durations better than the normal distribution.  
As surgical procedures require a positive start-up time, the shifted lognormal distribution 
(also called the three-parameter lognormal, written as 3-logN) is explained in Strum et al. 
13 and a modified approach is applied in Stepaniak et al. 14.  For the far majority of CPTs, 
this distribution provides a better fit than the normal and lognormal distributions. Let the 
procedure time (in minutes) of a given CPT be denoted by T, then the 3-logN distribution for 
can be written as

deviation of 0.287. The prior mean of the operation time is  147 minutes, and the prior 
variance is 1.847. The prior standard deviation is  43 minutes. We take the value of m = 

4.947 as the prior mean xs* and the value of 1/s2 = 1/0.2872 = 12.14 as τ.  The resulting 
weight is w = 0.574, and the posterior mean (equation 4, Methods)  is equal to 5.162. 

The prior variance s2 is  0.0824, and the data variance is  0.1459. Weighing these two 

values as was done for the mean (equation 4, Methods)  gives a value of 0.109 for  σ*2. 
Combining these results, we get  the posterior for the operation times which is lognormal 
distributed with mean μ*= 5.162, and variance σ*2= 0.109. The mean of the operation times 
is then 184 minutes. Note that the prior mean was 147 minutes, and the data mean time 
was 249 minutes. The posterior mean of 184 lies closer to the prior mean than to the data 
mean. This is because the prior distribution has a relatively small standard deviation (43 
minutes) as compared to that of the data (90 minutes) and because the number of data 
points (9) is small.  If we wish to determine, for instance, a 95% upper bound for the 
operation time, then this is done by estimating the 95% bound for the log-times. In our 
example, the log-time has normal posterior with μ* = 5.162 and variance σ*2 = 0.109, so that 
σ* = 0.330. Then the 95% upper bound for the log-time is μ* + 1.645 σ* = 5.705. The bound 
for the time itself is then  exp(5.705) = 300 minutes. 

Bld 48 bovenaan 

This is caused by the fact that we have prior data that are quite informative and that 
can be translated in terms of a log-normal prior distribution. In the classical approach, the 
prior on the two parameters μ and σ2  consists of three parts: 

- For given σ, the (conditional) prior for μ is normal. The prior for σ is inverted gamma. 
- The (unconditional, marginal) prior for μ is a t-distribution  
- The (unconditional, marginal) posterior for μ is (another) t-distribution  
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 log −  =   + , ~0,  

Here α > 0 is the shift parameter, and ε denotes an unobserved random error term causing 

unpredictable variation. Stated otherwise, after shifting by α, the logarithmic procedure 
times are normally distributed with mean β and standard deviation σ. The procedure time is 

always larger than α, and the median is equal to α + exp(β) .The effect of surgeon factors on 

case durations is modeled by replacing β in the above model by parameters depending on 
the factors, similar to what is done in analysis of variance (ANOVA) models. If all five factors 
discussed are included, the model becomes: 

Here α > 0 is the shift parameter, and ε denotes an unobserved random error term causing 
unpredictable variation. Stated otherwise, after shifting by α, the logarithmic procedure 
times are normally distributed with mean β and standard deviation σ. The procedure time is 
always larger than α, and the median is equal to α + exp(β) .The effect of surgeon factors on 
case durations is modeled by replacing β in the above model by parameters depending on 
the factors, similar to what is done in analysis of variance (ANOVA) models. If all five factors 
discussed are included, the model becomes:log −  =   + , ~0,   =   +  +  +  +  +  

 We call this the ANOVA model. This model is estimated for each CPT and each 
hospital separately, allowing for different surgeon factor effects according to the hospital 
and the type of surgical procedure. Although it may be possible to cluster some of the CPTs 
in Table 1 in groups with identical parameters, this will not be pursued here, because the OR 
planning system is based on individual CPTs.  For a given CPT and hospital, the error terms 
associated with all corresponding case durations in the database are assumed to be 
independent and identically distributed. The various hypotheses on surgeon factors 
discussed previously can be expressed in terms of the following hypotheses on the 
parameters of the above model:  > 0,    < 0,    < 0,   < 0 

 Further, it is expected that surgeon factors become more important as the 
complexity of surgical procedures increases. A procedure is complex if it requires highly 
trained OR staff performing very specific operational procedures and if the risk of 
perioperative complications is larger than what is usual for routine procedures.  
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Three prediction methods are compared. The first is the method that is currently employed 
in the OR management of both hospitals. The predicted time is simply the average of the ten 
most recent durations of this CPT. The second method predicts the procedure time to be the 

median of the 3-logN distribution (without factors), that is α + exp(β). The third method 

predicts the case duration to be equal to the median of the ANOVA model, that is,  α + 

exp(β0 + Σj βjFj) including only those factors Fj for which the estimate of βj is significant (at 

the 1% level). Predicted case durations are compared with the actual procedure times, and 
the accuracy is evaluated in terms of absolute prediction errors (in minutes). The significance 
of the difference in mean absolute errors of two methods is tested by the paired t- test.  
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Estimation and prediction
For each CPT of Table 1, the ANOVA model for procedure times is estimated for both hospitals 
separately, using data from the period 2005-2008. Factors that do not vary are removed 
from the model. For instance, if all surgeons for a CPT are male, then the effect of gender 
cannot be estimated for this CPT. To start, all factors that do vary for the CPT are included 
in the model. Next, backward elimination is used for stepwise removal of insignificant 
factors. In the end, if all remaining factors are significant, each of the other factors is tested 
once more for significance when added to the other factors. In addition, the significance of 
interaction effects between the factors is tested (as none of these interactions is significant, 
these results will not be reported). All tests employ the same significance level, which is 
10%, 5%, or 1%. 

 To evaluate the practical relevance of the identified significant surgeon factors, the 
models that are estimated with data for 2005-2008 are used to predict the case durations 
in the period from January till August 2009. The prediction model is kept fixed, even though 
the parameters could be re-estimated after each relevant CPT operation in 2009. This choice 
conforms to practical planning constraints, which demand that models are kept fixed, for 
instance, for periods of twelve months. The forecast study is restricted to the CPTs for which 
at least one factor is significant at the 1% significance level. 

 Three prediction methods are compared. The first is the method that is currently 
employed in the OR management of both hospitals. The predicted time is simply the average 
of the ten most recent durations of this CPT. The second method predicts the procedure 
time to be the median of the 3-logN distribution (without factors), that is α + exp(β). The 
third method predicts the case duration to be equal to the median of the ANOVA model, 
that is,

  + exp ( +  ∑    
  

 including only those factors Fj for which the estimate of βj is significant (at the 1% 
level). Predicted case durations are compared with the actual procedure times, and the 
accuracy is evaluated in terms of absolute prediction errors (in minutes). The significance of 
the difference in mean absolute errors of two methods is tested by the paired t- test. 

Results
Surgeon factors 
For each hospital and CPT, the significant surgeon factors are obtained by the backward 
selection strategy described in Section 3.2. The results are summarized in Table 2, which 
shows how often each factor is found to be significant for significance levels of 10%, 5%, and 
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1%. For instance, in hospital A, the effect of the factor ‘Gender’ can be analyzed for 22 CPTs, 
as for the other 7 CPTs the gender does not vary among the surgeons. The gender effect is 
significant (and negative) for 3 CPTs at the 10% level (with a median effect of -1.8%), for 1 
CPT at the 5% level (with a median effect of -8.2%), and never at the 1% level. In hospital B, 
gender is never found to be significant, not even at the 10% level. This means that there is 
no support whatsoever for the commonly expressed opinion that female surgeons would 
work slower. The gender effect is very weak, and at most it indicates faster work of female 
surgeons.

 Age effects are found to be often significant at the 5% level, mostly with faster 
work of older surgeons, but the effect is significant at the 1% level only for two CPTs (with a 
time reduction of about 10% for older surgeons). Work rate effects are significant in several 
cases, with varying sign at levels of 10% and 5%, but with a consistent time saving effect at 
the 1% level (of about 5%) for high work rates. The team composition is significant in many 
cases, and in the far majority of cases the presence of a resident in the team causes longer 
procedure times (of about 15%, at the 1% level). Daytime effects are significant in many 
cases, mostly with slower work in the afternoon.

TABLE 2.  SURGEON FACTOR EFFECTS (NUMBER OF CPTS WITH POSITIVE AND NEGATIVE EFFECT, AND 
MEDIAN PERCENTAGE EFFECT ON PROCEDURE TIME)

Coding 
(1/0)

CPTs 
nr

p < 0.1 p < 0.05 p < 0.01

Hospital A + - Median + - Median + - Median

Gender 1= Female 22 0 3 -1.8 0 1 -8.2 0 0 -

Age 1 = Older 29 3 15 -3.9 2 11 -4.1 0 1 -8.7

Work rate 1 = High 23 5 4 3.5 3 4 -2.9 0 4 -5.3

Team 1=No res. 15 0 11 -10.6 0 9 -13.7 0 7 -15.3

Daytime 1 = PM 29 16 6 3.0 12 2 4.7 1 1 -0.5

Hospital B

Gender 1= Female 18 0 0 - 0 0 - 0 0 -

Age 1 = Older 25 6 15 -4.3 3 14 -5.7 0 1 -9.9

Work rate 1 = High 17 1 4 -2.1 0 2 -7.3 0 2 -7.3

Team 1=No res. 14 2 6 -7.3 1 5 -13.2 0 4 -14.1

Daytime 1 = PM 25 17 3 3.9 14 2 5.5 3 0 7.5

Table 3 shows the estimated surgeon factor effects for each CPT separately, 29 for hospital A 
and 25 for hospital B. The effects are shown only if they are significant at the 10% level. The 
number of significant factors varies among CPTs. For each of the 22 CPTs that are performed 
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at both hospitals, the sign and size of the effects are often quite the same in both hospitals, 
even though the effects of some factors cannot be estimated at both hospitals, that is, if 
the factor does not vary for the CPT under consideration. For instance, for the CPT ablatio 
mamma, the age affect in hospitals A and B is respectively -1.9% and -3.5%, the team effect 
is -12.9% and -12.5%, the daytime effect is 8.6% and 7.4%, and the work rate effect is 
significant only for hospital A (at the 5% level) and not for hospital B (at the 10% level). 

 Age and Daytime are the factors found most often to be significant. Work rate and 
team composition are also significant in many cases, and the largest percentage effects are 
found for these two factors. Gender is nearly never of any importance. The only significant 
gender effect at the 5% level is for cataract in hospital A, where female surgeons work 8% 
faster than male surgeons. The CPTs that have at least two significant factors at the 1% level 
correspond to relatively complicated surgical procedures requiring special skills: ablatio 
mamma, open appendectomy, endoscopic appendectomy, endoscopic total prostatectomy, 
laparoscopic cholestectomy, and laparoscopic sterilization. For many of these complicated 
procedures, the work rate and team composition effects on procedure times are considerable, 
up to 20%. As compared to less demanding CPTs, complex procedures require more time 
both for on the job training of residents and for activating specialized skills if the surgeon did 
not practice these skills within the preceding three weeks.
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TABLE 3A. PERCENTAGE EFFECT OF SIGNIFICANT SURGEON FACTORS ON PROCEDURE TIME 
HOSPITAL A

(shown only if significant at 10%; * and ** denote significance at 5% and at 1%)

CPT Nr cases Gender Age Work rate Team Daytime

(1= Female) (1 = Older) (1 = Higher) (1 = No res) (1 = PM)

Ablatio mamma 152 - -1.9 9.2* -12.9** 8.6 **

Acetabuloplastic 675 - -3.2* - - -7.0*

Appendectomy, open 462 -0.7 -8.7 ** - -10.6** 2.5*

Arcomion resection 774 - -4.1* - - 5.0*

Arthr knee surgery 722 - -2.9* - - 1.0

Arthr. nettoyage knee 417 - -4.1* - - -3.1

Arthr. tot/part. menisc 1,248 - - - - 6.2*

Bi/trimalleolar fracture 189 - - - -8.6 4.1*

Cataract 3,219 -8.2* - - - -

Diagn. D & C Hyster. 426 - -2.5 - - -0.4

End. appendectomy 154 - -3.9* -7.3** -13.7** 8.1*

End. tot. prostatec. 294 - - -8.9** -20.3** 8.5*

Femur fracture 342 - - 6.1* -4.1 3.4

Genisis total knee 952 - - - - 3.6

Hemicolectomy 152 - 3.1 - -4.3* 2.5*

Hernia inguinalis 764 - -6.2* - -3.8* 2.4

HNP lumbale 613 - -2* - - 4.4*

Ileus surgery 167 - - 6.3 - 1.7*

Laminectomy lumbale 340 - - 3.5 - 6.8*

Laparoscopic chol. 800 - -7.6* -3.2** -19.2** -3.3

Lap. sterilisation 182 -1.8 -8.5* -2.9** -15.3** -

Mammared. both 431 - -3.8 - -16.8** -5.3

Man. placenta rem. 281 - - - - 5.4*

Scopic dec. shoulder 401 - 5.4* - - -

Sectio caesarea 961 - 4.3* - - -

Total hip arthroplasty 1,221 - -2.4* - - -

Trans. Res. prostate 533 - - 4.1* - -9.6**

Ureterorenoscopy 212 - - - - -

Uterus extirpation 432 - -9.2 - - -
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TABLE 3B. PERCENTAGE EFFECT OF SIGNIFICANT SURGEON FACTORS ON PROCEDURE TIME 
HOSPITAL B

(shown only if significant at 10%; * and ** denote significance at 5% and at 1%)

CPT Nr Cases Gender Age Work rate Team Daytime

(1= Female) (1 = Older) (1 = Higher) (1 = No res) (1 = PM)

Ablatio mamma 687 - -3.5* - -12.5** 7.4*

Acetabluloplastic 804 - -5.4* - - 4.0*

Appendectomy, open 547 - 0.6 - - 2.6**

Arcomion resection 678 - -8.6* - - 6.0*

Arthr. knee surgery 200 - -6.5* - - -

Arthr. nettoyage knee 214 - -8.7* - - 7.1*

Arthr. tot/part. menis 300 - - - - 1.3

Bi/trimall. fracture 156 - -5.8* - 1.2* -

Cataract 1,541 - 6.5* - - 5.5*

Cholestectomy open 1,110 - 7.6* - -14.3** -6.4*

Colon resection 430 - 4.8 - -15.3** 3.8

Diagn. D & C Hystero. 688 - -8.5* - - -4.6

End. appendectomy 269 - 5.6* -5.8** 2.2 8.2**

End. total prostatec. 301 - -9.0* -8.7** - 8.3*

Femur fracture 298 - -4.1* - - -

Hernia inguinalis 268 - - - - 2.2

Ileus surgery 151 - 2.1 -2.1 - 2.7

Laminect. lumbale 294 - -4.3* -1.9 - -

Lap. cholestecomy 305 - -9.9** - -13.8** 7.5**

Mammareduc. Both 564 - -5.7* - - 2.7*

Man. placenta rem. 405 - - - -2.1 3.5*

Scopic dec. shoulder 401 - - - - -4.2*

Small bowel resection 684 - -7.8* - -1.9* 6.7*

Trans. Resec. prostate 414 - -4.0* 2.7 - 4.8*

Uterus extirpation 321 - -1.1 - - -

Summarizing, the largest effects are obtained for work rate and team composition for 
complicated CPTs. In most cases (and at the 1% level always), procedure times are relatively 
shorter for older surgeons, for a high work rate, and for teams without resident. Gender 
has hardly any effect. In most cases, procedure times are shorter in the morning than in the 
afternoon, but for some CPTs this effect is reversed. 
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 The mixed daytime effect can be due to the fact that this effect is measured jointly 
for the full OR team involved in the operation and without information on the time preference 
of the members of the team. A small-scale study was performed to investigate this further. 
Ten surgeons of hospital A and also ten surgeons of hospital B were asked whether they 
have any preference for performing operations in the morning or in the afternoon. Of these 
20 surgeons, 9 prefer the morning, 10 the afternoon, and one surgeon has no preference. 
In total, the 19 surgeons with a preference are active in 64 CPTs. For each surgeon and CPT, 
the average case duration in the morning is compared with that in the afternoon. Of the 
64 surgeon-CPT combinations, the fastest work was delivered in 48 cases in the preferred 
daytime and in 16 cases in the non-preferred daytime. This effect of preferred daytime 
on case durations is significant (the p-value according to the binomial distribution with a 
success probability of 50% is smaller than 0.01%). For hospital A (B), the fastest work was 
delivered in 23 (25) cases in the preferred daytime and in 7 (9) cases in the non-preferred 
daytime, corresponding to a p-value for the absence of daytime effects of less than 1% in 
both cases. As daytime preferences are not known for many of the surgeons involved in the 
CPTs of Table 1, this factor could not be incorporated in the analysis of surgeon factor effects 
in Tables 2 and 3. However, the small-scale study indicates that it may help to incorporate 
surgeon preferences in OR planning.

Prediction
In order to evaluate the practical usefulness of surgeon factors in predicting case durations, 
the attention is restricted to CPTs for which at least one surgeon factor is significant at the 
1% level. This holds true for eight CPTs in hospital A and seven CPTs in hospital B, five of 
which occur at both hospitals. The ANOVA models, estimated with the data of 2005-2008 
and with the estimated factor effects of Table 3 that are significant at the 1% level, are 
used to predict the procedure times for the period from January till August 2009. The total 
number of predicted case durations is 683 for hospital A and 575 for hospital B.

 Table 4 summarizes the results of three prediction methods, that is, the current 
method (average of last ten cases), the three-parameter lognormal model without factors 
(3-logN), and the ANOVA model. The table shows the mean and standard deviation of the 
absolute prediction errors, that is, the differences between the predicted time and the actual 
case duration. The differences in mean absolute prediction errors of the three methods are 
evaluated both in absolute terms (in minutes) and in relative terms (as percentage of the 
median procedure time for each CPT over the prediction period). 

 As an illustration, Figure 1 shows the absolute prediction errors and the differences 
of these errors of the three prediction methods for the 71 endoscopic appendectomy 
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operations that took place in hospital A between January and August 2009. The current 
method predicts the procedure time as the average of the last ten case durations of this 
CPT, and this estimate is updated after each operation in 2009. The 3-logN predictions 
are obtained from the ANOVA model without factors, estimated with data from 2005 till 
2008 and with fixed parameters for 2009. Finally, the ANOVA predictions are also obtained 
from a model estimated with data from 2005 till 2008 and with fixed parameters for 2009. 
This model includes factors only if they are significant at the 1% level. Table 3 shows that 
the included factors are work rate (with coefficient -0.073) and team composition (with 
coefficient -0.137). Figure 1 shows that the smallest prediction errors are obtained for 
ANOVA, and that 3-logN is second-best. The predictions of ANOVA are better than the 
current method in 67 out of 71 cases, and they are better than 3-logN in 53 out of 71 cases. 
The differences in absolute forecast errors of the three methods are all significant (at the 5% 
level) when tested by the paired T-test.

FIGURE 1. HISTOGRAMS OF ABSOLUTE FORECAST ERRORS(TOP) AND DIFFERENCES IN ABSOLUTE FORE-
CAST ERRORS (BOTTOM) FOR 71 PREOCEDURE TIMES OF ENDOSCOPIC APPENDECTOMy
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 Table 4 shows that, in all of the considered 15 CPTs in hospitals A and B, the 3-logN 
predictions are more accurate than the currently employed method. The same holds true 
for the ANOVA predictions, except for transurethral resection of the prostate in hospital A. 
As compared to the current method, the forecast improvements of 3-logN are up to 10%, 
and those of ANOVA are up to 18%. The ANOVA predictions are better than the 3-logN 
predictions in the far majority of cases (11 out of 15), with gains of up to 15%. For three CPTs 
in hospital B, 3-logN is slightly better than ANOVA (up to 2%), and for one CPT in hospital A, 
3-logN is 6% better than ANOVA. The paired t-test finds that, for hospital A, ANOVA improves 
significantly on 3-logN (at the 5% level) for 7 out of 8 CPTs, and the reverse holds true for the 
remaining CPT. For hospital B, ANOVA is significantly better than 3-logN for 4 out of 7 CPTs, 
and the difference is not significant for the other 3 CPTs.

 When averaged over the eight considered CPTs in hospital A, the gain in prediction 
accuracy is 5 minutes (5%) for 3-logN as compared to the current method, 10 minutes (11%) 
for ANOVA as compared to the current method, and 5 minutes (7%) for ANOVA as compared 
to 3-logN. For hospital B, the prediction gains are 4 minutes (4%) for 3-logN as compared to 
the current method, 8 minutes (8%) for ANOVA as compared to the current method, and 
4 minutes (4%) for ANOVA as compared to 3-logN. On average, the standard deviation of 
the prediction errors is smallest for ANOVA (3.7 minutes in hospital A and 4.1 minutes in 
hospital B), as compared to 3-logN (4.7 in A and 4.5 in B) and the current method (5.9 in A 
and 5.2 in B). Although these differences are not large, reduction of uncertainty is important 
in OR planning. It is a nice finding that the improved prediction accuracy of ANOVA, which 
is based on more elaborate models involving surgeon factors, is combined with reduced 
forecast uncertainty. Stated otherwise, the smaller prediction bias of ANOVA comes without 
any cost of increased variance.
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Conclusion
Depending on the type of operation (CPT) and on the hospital, procedure times may depend 
on several surgeon factors. In particular, for complex operations, factors like relevant work 
rate experience of the surgeon and composition of the surgical team may have large effects. 
The effect of team composition goes up to 20%, and when combined with work rate, the 
total effect goes up to 30%. Other relevant factors are age of the surgeon and time of the 
day. Gender has nearly never any effect, and the only effect that is significant (at the 5% 
level) is found for cataract, where female surgeons work 8% faster than male surgeons. A 
predictive out-of-sample analysis for case durations in 2009 shows that surgeon factors help 
in predicting case durations. 

 As compared to the methodology currently employed in both hospitals, mean 
absolute prediction errors are reduced by up to 18 minutes and up to 18% of the median 
procedure time.  The most significant gains are obtained for relatively complex CPTs, 
especially those involving endoscopic and laparoscopic procedures. As the complexity of 
surgical procedures shows an ever increasing trend, surgeon factors may become even more 
important in the future. 

 The practical implementation of (ANOVA or other) prediction models is done best 
after consultation of surgeons, OR management, and other staff involved in the operation 
room activities. As hospitals differ widely in aspects like surgical experience with different 
specializations, organizational structure, OR protocols and OR logistics, the effect of surgeon 
factors will differ among hospitals. Therefore, it may be best to estimate separate models 
for each hospital. The results of this paper show several differences between the two 
considered hospitals, although the type of effect is quite the same in many cases, especially 
for complex procedures. 

 The achieved improved forecast accuracy can be of great help for operation room 
planning. Reduction of case duration uncertainty will have positive benefits in terms of 
patient health care and human resource planning in hospitals. 
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Abstract
If variation in procedure times could be controlled or better predicted, the cost of surgeries 
could be reduced through improved scheduling of surgical resources. This study on the 
impact of similar consecutive cases on the turnover-, surgical-, and procedure time tests 
the perception that repeating the same manual tasks reduces the duration of these tasks. 
We hypothesize that when a fixed  team works on similar consecutive cases the result will 
be shorter turnover and procedure duration as well as less variation as compared to the 
situation without a fixed team. To test our hypothesis, two procedures were selected and 
divided across a control group and a study group.
 
 Patients were assigned at randomly to the study or control group. For the inguinal 
hernia repair we find a significant lower preparation time and 10 minutes less procedure 
time in the study group,  as compared to the control group. Variation in the study group 
is lower as compared to the control group. For the laparoscopic cholecystectomy only 
preparation time is significantly lower in the study group as compared to the control group. 

 For both procedures there is a significant decrease in turnover time. Scheduling 
similar consecutive cases and performing with a fixed team results in lower turnover times 
and preparation times for the studied cases. The procedure time of  the inguinal hernia 
repair decreases significantly and has practical scheduling implications. For more complex 
surgery like the laparoscopic cholecystectomy there is no effect on procedure time.
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Introduction
When looking at an OR in an era of cost-constrained health care, it is of economic importance 
for medical institutions to effectively schedule expensive surgical resources and to use the 
efficiently. Variation and thus uncertainty in procedure times complicates surgical scheduling 
and reduces  operational efficiency. If variation in procedure times could be controlled or 
better predicted, the cost of surgeries could be reduced through improved scheduling of 
surgical resources. 

 OR schedules depend crucially on estimated case durations, and statistical models 
may help to improve these estimates to support management in the cost-efficient use 
of expensive surgical resources 1,2. Therefore we need to model and thus predict surgical 
procedure times more accurately. More accurate predictions of case durations ultimately 
helps to achieve meaningful, sustainable service quality improvement in the OR and, as a 
consequence in the delivery system through: 

- decrease of unused costly OR capacity/equipment which can be used for new 
patients

- decrease of the number of cancellations of scheduled surgeries

 The standard personnel for an OR includes a surgeon (with or without an assisting 
surgical resident) and a surgical nurse, an anesthesiologist, a nurse circulator, and a nurse 
providing anesthesia. In general teaching hospitals it is common that during the course of a 
day personnel is switched across  various ORs. Because the personnel switches across ORs 
the switch may also be across type of procedure and OR team. 

 Although every staff member prepares daily for the procedures they are assigned 
for, some staff members noticed that they needed adaptation/ familiarization time when 
starting as a team at the beginning of the surgical procedure or during it. This formed an 
obstacle team members to attaining a smooth work-flow.  Some studies 3,4,5,6,7,8,9,10,11 focus 
on working with teams or redesigning processes in the OR.  For instance: Operating room 
turnover time  and daily caseload can be improved by analyzing the routine tasks of the 
operating team and minimizing inefficiencies. 

 A coordinated multidisciplinary process redesign can significantly reduce operating 
room turnover time 3. Results demonstrate that a coordinated multidisciplinary process 
redesign can significantly reduces room turnover time as well as anesthesia induction 
and emergence time 4.  Recent publications have focused on increased operating room 
throughput without increasing total OR time. Reorganizing the perioperative work process 
for total joint replacements sustainably increased OR throughput 6. Studies in both operations 
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management and health care have found that performance on a procedure improves with 
increased experience 12. 

 The implication of the so-called “learning curve” or experience curve is that “practice 
makes perfect” and organizations “learn by doing” 13. yet, some studies show homogeneous 
learning curves across sites 14 and others show heterogeneity across sites 15,16,17,18. These 
varying results may be due to differences in the extent of social and organizational changes 
provoked by a new technology or practice, which give rise to differences in user acceptance 
and behavior 19,20

 Much of the world’s OR capacity uses consistent teams throughout the day.  We 
took advantage of a unique feature of our OR organization to estimate how much time 
could be saved in a simple and a complex procedure by establishing consistent teams 
where previously none had existed. We constructed a study of batch processing of similar 
procedures in the OR using a fixed OR team. A batch of procedures consist of the same 
procedures which are performed during the day by the same fixed OR team in the same 
operating room.  We hypothesize that this concept reduces the adaptation / familiarization 
time for a specific procedure and hence the OR time. 

Material and methods

Selection procedures
We defined the following inclusion criteria for the selected procedures: (1) the procedure 
is not yet part of an OR program with consecutive similar operating procedures, (2) the 
procedure is done by a surgical resident and an experienced surgeon, (3) one procedure 
must be relatively low in complexity of performance, the other relatively high in complexity 
(as defined by the surgeons/anesthesiologists)

Based on the inclusion criteria we limited the study to two procedures: (1) Inguinal hernia 
repair (according to the Lichtenstein technique), under spinal anesthesia, (2) laparoscopic 
cholecystectomy, under general anesthesia

Study design on study days
This design for the study group is based upon three central factors: (1) a similar type of 
procedure for all involved patients groups, (2) a fixed OR team on the day of surgery and 
(3) a well-defined routine protocol for all members of the operative team. This protocol is 
explicitly discussed within the OR team at the beginning of the day 
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 To test our hypothesis we make a distinction between control days and study days. 
The control days are the data flow of patients during the study period without applying the 
consecutive concept.  The study days are on Fridays in the odd weeks. Then two laparoscopic 
cholecystectomies are performed and four inguinal hernia repairs. The spinal anesthesia for 
the inguinal hernia repair is given in the holding.  In our hospital, a standard type of mesh is 
used in inguinal hernia repair. This mesh is fetched by the operative nurse prior to the first 
operation that takes place in that particular OR

 Before staring the study, within the team we considered to performing at least 
three laparoscopic cholecystectomies on every study day by the same fixed team. Based on 
the available data we knew that every laparoscopic cholecystectomy takes about two hours 
meaning that the same OR team has to be in the OR for at least 6 hours (with turnover time 
approximately 7 hours).  Consequently team members noted that there were possible  extra 
risks involved when performing this program of three surgeries for instance fatigue in team 
members. Because we want to perform a study with no compromise at all on the quality of 
care for our patients we decided to perform two laparoscopic cholecystectomies rather than 
three or more. 

 On study days the OR team members may not switch between ORs but must work 
in their assigned OR. For instance prior to the study and on control days, nurses/doctors 
could be substituted during the course of the operative day in between the various ORs. 
Essentially, there was not strict team cohesiveness or team order.  At the beginning of every 
study day, the team is formed and stays together for the scheduled procedures. On every 
study day for every selected procedure, the team composition is different. Ten minutes 
before the first case of the day starts, the OR team comes together and reviews the coming 
day and defines explicitly the roles of each individual team member.  When the operating 
room is ready, the surgeon and nurse transport the patient into the operating room. The 
anesthesiologist provides the patient anesthesia. In the next step, the actual operation, all 
members of the team are present. 

 At the end of the operation, a nurse and the anesthetist transport the patient to 
the recovery room. The surgeon fills in a form containing qualitative questions about the 
procedure. This form gives information about whether the procedure has been performed 
uneventfully (Figure 1).
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Date of surgery

Patient number

Has the medical procedure been performed as was expected 
prior to the procedure?

yES / NO
If NO, specify

Where there other problems than medical which may have 
complicated the execution of the medical procedure

yES / NO
If yES, specify

FIGURE 1. QUESTIONAIRE STUDy

After filling in the form, the surgeon goes to the preoperative area to welcome the next 
patient. At the end of the day, the forms are collected by an OR nurse and handed over 
to the researchers. At the end of the study days, we asked surgeons and nurses how they 
experienced working within a fixed team on similar cases during the day.

Study design on control days
On control days (every Friday) in the even weeks, the normal historical flow of patients  
occurred. Here, different OR teams performed two consecutive scheduled laparoscopic 
cholecystectomies under general anesthesia and two inguinal hernia repairs. The above 
mentioned three factors were not explicitly followed. On non-study days  the  members 
of the team perform common procedures for general surgery for example, Femur fracture, 
Patella fracture,  Appendectomy (open and endoscopic), Circumcision, Acetabulum, 
Lumpectomy Mamma, Mastectomy, Recto-sigmoidresection (Hartmann Procedure, open), 
Sigmoid resection. 

Scheduling patients
When patients have to undergo a surgical procedure like the inguinal hernia repair or a 
cholecystectomy, they are scheduled on regular OR days that suit the patient on a first come 
first served basis. This might be a Friday. If it is a Friday in the odd weeks than the patient is 
assigned to the study group. If it is a Friday in the even weeks than the patient is assigned 
to the control group. The resulting OR schedule is  made by a staff member responsible for 
that job and who has no part or interest in the study. A day before surgery members of the 
OR team are selected randomly and assigned to a control group or study group. 

Start –end study period
The study started June 6th 2008 and ended April 22th 2009

Statistical Considerations
Because of indications of log normality of surgical and procedure times 2,21,22,23 the recorded 
times are transformed to their natural logarithm. Consequently any calculations with case 
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durations should be done with the log transformed OR time. For every group for every 
included procedure we calculate the mean times, standard deviation, 95% confidence 
intervals for the mean of the lognormal times, 5% lower and 95% upper Bayesian prediction 
bounds. 

 Confidence intervals were calculated to test if they are sufficiently narrow as to be 
managerially meaningful.  We use a modified version of the Cox method 24,25 to calculate 
the 95%-confidence interval for the mean: For sample data with mean Ȳ and variance S2 the 
confidence level is calculated:
 

Statistical Considerations 
Because  of  indications  of  log  normality  of  surgical  and  procedure  times  2,21,22,23  the 
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In our study we focus on four time intervals: 

- preparation time: time between anesthesia‐ready time and procedure start time 
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Statistical Considerations 
Because  of  indications  of  log  normality  of  surgical  and  procedure  times  2,21,22,23  the 

recorded  times  are  transformed  to  their natural  logarithm. Consequently  any  calculations 
with case durations should be done with the  log transformed OR time. For every group for 
every included procedure we calculate the mean times, standard deviation, 95% confidence 
intervals for the mean of the lognormal times, 5% lower and 95% upper Bayesian prediction 
bounds.  

Confidence  intervals were  calculated  to  test  if  they  are  sufficiently narrow  as  to be 
managerially meaningful.  We use a modified version of the Cox method 24,25 to calculate the 
95%‐confidence  interval  for  the mean:  For  sample data with mean Ȳ  and  variance  S2  the 
confidence level is calculated:  
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In our study we focus on four time intervals:
- preparation time: time between anesthesia-ready time and procedure start time
- surgical time: time between start incision and closing wound
- procedure time: time between patient entering and leaving the OR
- turnover time: time interval between previous patient leaving the OR and the                             

following patient entering it.

 Differences in mean OR time, surgical time and turnover time between the control 
group and study group are investigated with an independent samples T-test. We use Levene’s 
test to test the null hypothesis that the population variance of the study group is equal to 
the control group. For Levene’s test at p < 0.05, we accept the hypothesis that the two 
populations have unequal variances.  For the T-test, at a p-value < 0.05, we conclude that 
there is a statistically significant difference in mean times between control group and the 
study group.  The clinicians (W. Vrijland M.D., M de Quelerij M.D.) were explicitly excluded 
from participating in the practical part of the study. To prevent any possibility of conflict 
of interest they were not part of any OR team. The clinicians declared before the study 
that their one and only interest in the study was to contribute to science, whatever the 
outcome of the study. Statistical work was performed by Stepaniak and Heij. The results of 
this statistical work were presented to the clinicians.
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Results
The first step in evaluating the results is to compare the three measured time intervals 
between the historical data (2005-May 2008) , the study group and the control group. There 
were no statistically significant differences between the time intervals measured for the 
historical data  and control group for both procedures. In Table 1 we present the results of 
the questionnaire.

Inguinal hernia repair (according to the Lichtenstein technique), under spinal anesthesia 
The results are presented in Table 2. For the hernia repair we have 68 patients on 17 study  
days (4 hernias per day on 1 OR, consecutively performed by the same team) and  68 
patients on 17 control OR days (4 hernias per control day, in 2 ORs, per OR 2 consecutively 
performed NOT by the same team and 4 different teams). The number of different teams 

TABLE 1. RESULTS QUESTIONNAIRE

Hernia Inguinalis Lap. Cholestectomy

Performed as was expected 
prior

No = 0, yes = 68 No = 2, yes =24 
Extra surgery needed

Any problems (other than 
medical

No = 67, yes =1
Software data management 
system delayed start up  (5 min)

No = 26, yes =0

Total 68/68 Total 26/26

on control days are 68.  Equal variances are not assumed for preparation time, surgery time 
and for procedure time (p < 0.001). The T-test results are on equal means of logtimes for 
preparation time (15.2 min- 6.8 min, p < 0.001) surgery time (51.2 min - 48.0 min, p = 0.051), 
procedure time (71.2 min -59.8 min, p < 0.001).

 Figure 2 shows a graph representing the preparation time of the 200 hernias before 
starting the study and the 68 during the study.   The 95% confidence interval for the  mean of 
procedure time in the study group is [56-64 minutes] versus [66-77 minutes] in the control 
group. For preparation time these intervals are respectively [6-7 minutes] in the study group 
and [14-17 minutes] in the control group.  The mean turnover time for the study group is 7.6 
(7.4 -7.8) minutes and for the control group 9.3 (9.1-9.5). Equal variances are not assumed 
(p = 0.007), T-test for difference in mean turn over time results in a p value of 0.001 .
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FIGURE 2. PREPARATION TIME OF 200 HERNIA INGUINIALIS PRIOR TO STARTING THE STUDy AND 68 
DURING THE STUDy

Laparoscopic cholecystectomy, under general anesthesia
For the cholecystectomy we had 26 patients on 13 study days (2 consecutively performed by 
the same team) and 26 patients on 13 study days (in 1 OR , two consecutively laparoscopic 
cholecystectomy NOT performed by the same team). The number of different teams on 
control days are 26. In two cases on study days extra surgery had to be done: a Hernia 
Umbilicalis and a Naevus stomach (Table 1). These cases were included in the analyses since 
doing something unexpected differently in the OR is a reflection of reality. Comparing the 
study group and the control group equal variances may not be assumed for surgery time (p 
= 0.012) and for procedure time (p = 0.022). 

The T-test results are on equal means of the log times for surgery time (82.8 min-88.1 min, 
p = 0.741) and procedure time (123.0 min - 117.7 min, p = 0.645). The assumption of equal 
variances is not rejected for preparation time (p = 0.925). The T-test shows a significant 
difference in preparation time (25.5 min - 22.2 min, p = 0.003).  The mean turnover time 
for the study group is 11.3 (11.0 min - 11.5 min) minutes, for the control group the mean 
turnover time is 13.6 (13.3 min - 14.0 min) minutes. The difference in mean turn over time 
is significant. The assumption of equal variances is rejected (p = 0.016).

 

FIGURE 2. PREPARATION TIME OF 200 HERNIA INGUINIALIS PRIOR TO STARTING THE STUDY AND 68 DURING 
THE STUDY 
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TABLE 2. RESULTS OF THE STUDy AND CONTROL GROUPS

Lap. cholestectomy Mean SD Mean SD Lower Upper 5% Lower 95% Upper

time (ln) (ln) 5% CI 95% CI Prediction Prediction

Procedure time bound Bound

control (n=26) 4.79 0.21 123.0 26.1 113 134 79 183

study (n=26) 4.76 0.13 117.7 15.4 111 125 88 154

historical data (736) 4.77 0.24 121.4 29.6 119 124 74 189

Surgical time  

control (n=26) 4.43 0.31 88.1 28.0 77 100 45 156

study (n=26) 4.40 0.18 82.8 15.0 77 90 57 117

historical data (736) 4.43 0.37 89.9 34.4 87 93 41 173

Preparation time  

control (n=26) 3.23 0.13 25.5 3.3 24 27 19 33

study (n=26) 3.09 0.14 22.2 3.1 21 24 17 29

historical data (736) 3.12 0.13 22.8 3.0 22 23 18 29

Hernia Inguinalis

Procedure time

control (n=68) 4.22 0.30 71.2 21.8 66 77 38 123

study (n=68) 4.06 0.25 59.8 15.2 56 64 35 95

historical data (n=704) 4.22 0.28 70.8 20.2 69 72 39 118

Surgical time  

control (n=68) 3.87 0.36 51.2 19.0 47 57 24 98

study (n=68) 3.81 0.35 48.0 17.3 44 53 23 90

historical data (n=704) 3.89 0.36 52.2 19.4 51 54 24 99

Preparation time  

control (n=68) 2.66 0.35 15.2 5.5 14 17 7 29

study (n=68) 1.90 0.21 6.8 1.5 6 7 4 10

historical data (n=704) 2.62 0.36 14.7 5.5 14 15 7 28

Historical data: 
2005-May 2008

Discussion
This study on the impact of similar consecutive cases on the turnover-, surgical-, and 
procedure time confirms the perception that repeating the same manual tasks may reduce 
the duration of these tasks. These results are well known for manufacturing processes and 
they form the basement of the lean manufacturing system. Based on our findings we affirm 
that organizations “learn by doing” 13,14. By maintaining a fixed team for similar consecutive 
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cases throughout the entire day we find a significant reduction in preparation time and 
turnover time for both studied procedures. Teams prepared the procedures in a more 
structured fashion in the study group. This explains the shorter preparation time in the 
study group as compared to the control group. Surgery time was not significantly different in 
the study group as compared to the control group. Surgeons do not work “faster or slower” 
when working on consecutive similar cases and surgeons do not compromise on quality of 
care to increase speed.

For the inguinal hernia repair we see a significantly shorter preparation,- and 
procedure times in the study group as compared to the control group. Also, the variation in 
the study group of the three time intervals is significant lower as compared to the control 
group. The average decrease of the procedure time in the study group (10 minutes per 
procedure) as compared to the control group has practical implications for planning purposes. 
A reason for the decreased operative time (because of the decrease in preparation time) 
may be the effect of the roles of each individual team member being explicitly defined 
before the start of the day. In the study group a significantly lower mean preparation time is 
found for the laparoscopic cholecystectomy. The mean procedure time for the laparoscopic 
cholecystectomy is not significantly lower in the study group. A possible technical explanation 
for the fact that no difference is found in the mean procedure time between the control 
group and study group is that in both study group and control group patients were included 
who experienced a cholecystis or an obstruction necessitating an endoscopic retrograde 
cholangiopancreatography. Both problems may involve a technically demanding operation 
that may require more dissection time.

Based on the results we may conclude that the consecutive concept helps to 
decrease the preparation time. Further, we assume that using consecutive planning with a 
fixed team has more effect on case durations of relatively less medically complex procedures 
than on more complex ones. The latter hypothesis should be further investigated in future 
studies.  We asked surgeons and nurses on study days to describe their experiences during 
the study. In general they all experienced team spirit among the team and a smooth work-
flow on study days when performing the inguinalis hernia repair procedure. The opposite is 
true for cholecystectomy. One explanation for this difference in experience is the duration 
and complexity of the cholecystectomy as compared to the hernia inguinalis. Team members 
identified some benefits of working a large part of the day together: because there is an 
extended briefing at the beginning of the day everybody in the team is made explicitly 
aware of their role. This effect of consecutive similar case planning on team spirit may be 
one of the factors causing reduced overall handling times in the OR.
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Conclusion
Scheduling similar consecutive cases and performing with a fixed team results in lower 
turnover times and preparation times for the studied cases. The surgical time of the inguinal 
hernia repair decreases significantly and has practical scheduling implications. For more 
complex surgery like the laparoscopic cholecystectomy, there is no effect on surgery time.
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Abstract

Background
The Operating Room Coordinator (ORC) is responsible for filling gaps in every operating 
room schedule. We have observed differences among the personalities of the four ORCs 
with regard to their willingness to accept taking on more risk concerning their daily planning. 
The hypothesis to be tested is that the relationship between the personality of each of the 
four ORCs and the risk an ORC is willing to take of cases running late affects OR efficiency.  

Methods
In order to judge the personality of an ORC in relation to risk-taking in planning schedules, 
we apply the Zuckerman-Kuhlman Personality Questionnaire (ZKPQ) in our study.  Seven 
anesthetists were asked to score every ORC on willingness to take risks in planning. To 
analyze which risk attitude creates more OR efficiency, the daily prognosis of the ORC 
compared with the actual OR program outcome was registered during a five-month period 
in 2006 and 2007. We analyze whether in the opinion of hospital management the costs of 
reserving too much OR time balances out with the costs of reserving too little OR time, and 
whether this result is consistent with the assignment of the management tasks of the ORC.

Results
Seven anesthetists classified the four ORCs into the risk-averse group (n=2) and the non risk-
averse group (n=2). The ZKPQ results for risk-seeking indicate that there is a difference in 
risk appreciation between the different ORCs. The main finding in our study is that the non 
risk-averse ORC plans in more cases to fill the gaps in the OR program than the risk-averse 
ORC does. The number of extra cases performed by the non risk-averse ORC as compared 
to a risk-averse ORC is 188 in 2006 and 174 in 2007.  The average end-of-program-time per 
OR/day for the non risk-averse ORC is 34 minutes (± 19 min, p = 0.0085) later than for the 
risk-averse ORC. We find that this hospital on average reserves more OR time for procedures 
than is actually required. The non risk-averse ORC takes more advantage of that extra OR 
time than the risk-averse ORC does by realizing extra cases during office hours. The success 
of the non risk-averse ORC can be linked to the fact that there is usually time available due 
to this over-reserving.

Conclusion
The conclusion of this study is that a non risk-averse ORC creates significantly less unused 
OR capacity without a great chance of running ORs after regular working hours or canceling 
elective cases scheduled for operation compared to a risk-averse ORC.
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Introduction
Changes in the financing of the Dutch healthcare system have forced health organizations to 
focus more on the efficiency of their logistic processes. The operational risk of ORs is mainly 
related to elective surgical cases being completed outside regular working hours. A possible 
consequence of this extension past regular hours is that surgeons anticipate the availability 
of this extra OR time in their future planning. Having to work frequently beyond regularly 
scheduled hours can lead to both overtime costs and intangible costs, the latter resulting 
from dissatisfaction and reduced motivation on the part of the staff. Having to work overtime 
frequently in the ORs is one of the primary reasons 1 that nurses terminate their employment. 
Identified scheduling conflicts are a major cause of nursing staff turnover 2. 

 The OR is also an important financial production unit. The hospital management 
determines the OR capacity and assigns capacity to the different medical specialties.  
Increases in the efficiency of use of the ORs results in more production and therefore more 
revenue for the hospital.  The Operating Room Coordinator (ORC) is a nurse anesthetist, 
selected for this specific job in this specific hospital. In our hospital there are four ORCs. 
Their responsibilities include rearranging case and staff assignments, as some OR cases 
take more or less time than originally planned, and unplanned acute patients require 
surgery. Their jobs involve frequent communication with the various stakeholders such as 
anesthetists, surgeons, and other OR staff. The responsibilities of the ORC in our study relate 
to the regularly scheduled work hours of 8 am to 4 pm. 

 Given the fixed OR capacity between 8 am and 4 pm, the ORC is assigned by 
hospital management to maximize OR efficiency by filling the gaps with as many cases as 
possible (planned and unplanned) under the constraint that ORs should close on average no 
later than 4 pm.  Minimization of operating room inefficiency balances the additional costs 
of cases running late (i.e. overtime has to be paid out and staff morale dwindles) against the 
opportunity costs of paying idle staff. From an economic point of view, an ORC is constantly 
weighing the maximization of OR efficiency against minimizing reduced staff morale. As 
more cases are performed within the maximum margins of the available OR time without 
overstepping those boundaries frequently, maximum efficiency will eventually increase, and 
therefore also the contribution margin for the hospital. Every extra case performed in the 
OR provides a certain amount of Contribution Margin that goes toward the covering of fixed 
costs. The Total Contribution Margin (TCM) is Total Revenue (TR) minus Total Variable Cost 
(TVC): TCM = TR − TVC. 

 It is interesting to reveal how the ORC balances OR idle time with exceeding the 
scheduled time, given these constraints. One of the characteristics of the Dutch healthcare 
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system is its strong supply-side controls (hospital, government). Since 2005, there has been 
a rapid transition to a demand-driven (patient) model, resulting in an increased competition 
among the hospitals.  Additionally, the Dutch social system is founded on balancing work and 
private time, all in favor of private time. Today, on average, the ORs are open for business 
from 8 am to 4 pm. Because of the impending transition to a demand-driven model, this 
will lead to a need for hospital management to make different choices (i.e. opening hours). 
Longer opening hours will not decrease the need for an existing ORC since this very same 
ORC will have the task of filling gaps and maximizing OR efficiency.

 We have observed differences between the personalities of the four ORCs, related 
to their willingness to take on more risk in their daily planning, resulting in a risk of cases 
running late. This was our motivation for analyzing the effect of the personality and risk 
aversity of an ORC on OR efficiency. The hypothesis to be tested was that the relationship 
between the personality of the ORC and the risk the ORC is willing to accept of cases running 
late affects OR efficiency.  Specifically, we hypothesize that a risk-averse ORC causes more 
inefficiency for the OR.

Material and methods
A decision maker is said to be risk-averse if he prefers less risk to more risk, all else being 
equal. In the OR, a risk-averse decision maker will want all the ORs to be finished before 
4 pm without any chance of running late. The opposite of risk aversion is risk-seeking. A 
risk-seeking decision maker will prefer more risk to less risk, and accepts the possibility of 
running late, all else being equal. There are numerous contributions to the conceptualization 
of subjective orientation toward risk 3,4,5. Some studies analyze the interaction between 
personality feature variables which are not risk attitudes. These variables have been linked 
to decision-making on risky courses of action 6, impulsiveness 7 and decision-making style 8. 

 Zuckerman 9,10 developed the Zuckerman-Kuhlman Personality Questionnaire 
(ZKPQ) to assess personality along five dimensions. The results of the ZKPQ have been 
replicated across several studies. These results have shown for example that risk-taking is 
related to scores on the ZKPQ impulsive sensation seeking scale 9. Zuckerman 6, 10,11 defines 
sensation seeking as a need for new and complex experiences and a willingness to take risk 
for one’s own account. He has found that high sensation seekers tend to anticipate lower 
risk than low sensation seekers do, even for new activities. This finding indicates that a high 
sensation seeker is more likely to look for opportunities that provide the chance to take a 
risk, and that the will to take risks seems less threatening to this specific type of individual. 
 To assess personality versus risk-taking relationship of an ORC, we apply the ZKPQ 
in our study. The personal files of the ORCs indicated that their personalities were assessed 
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by the ZKPQ test along five dimensions: Impulsive sensation seeking, neuroticism-anxiety, 
aggression-hostility, activity and sociability. This test was a standard procedure during 
the selection process of the ORCs. We used the scores of the impulsive sensation seeking 
dimension and used the explanatory table (Zuckerman) to rate the ORCs. In our study we 
grouped ZKPQ scores on impulsive sensation seeking as follows: the scores of very low and 
low were considered to be risk-averse, the average scores were considered risk-neutral, and 
the high and very high scores were considered to be non risk-averse. 

 Prior to the start of the study, seven anesthetists where asked to score every ORC 
on their risk appreciation. This risk appreciation could be: non risk-averse, risk-averse or risk-
neutral. In 2006, prior to the start of the study, the ORCs were informed about this study 
whereas in 2007 they were not.  In order to analyze which risk attitude creates maximum 
OR efficiency, the ORC’s expectations with regard to how the OK program would materialize 
was registered during a five-month period in 2006 and 2007. This expectation, or prognosis, 
is proposed by the ORC and he informs the anesthetist on duty of this. When making the 
prognosis, the following aspects are estimated and noted by the ORC:

•	 which OR(s)  need(s) time after business hours;
•	 which OR(s) are on schedule;
•	 the amount of available OR capacity for emergency surgery during the period  from 

2 pm until 4 pm. This capacity is designated for patients already on the waiting list 
and for emergency patients outside or inside the hospital who may possibly need 
emergency/acute surgery. 

•	 the number of the planned elective patients that are to be rejected.

If at 4 pm, all the above-mentioned aspects have been accurately estimated, we say that 
the ORC’s prognosis has materialized. In all other cases, the prognosis has not materialized. 
During the study period, we measured : 

•	 Whether the prognosis of the ORC made at 2 pm coincides with the actual situation 
at 4 pm (% of all prognoses made).

•	 Accurate prognosis made at 2 pm that specific ORs would need extra time after 
regular working hours (% of all prognoses made).

•	 The average end time of all ORs. 
•	 The average end time of all ORs after 4 pm.
•	 The average number of ORs in progress after 4 pm.
•	 The number of unnecessary rejections of planned elective patients.

We test for significance in the average end of program time among individual ORCs, and 
within the groups having a factorial ANOVA (significance level 0.05). The correlation between 
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cases is considered to be independent but interchangeable between ORs.
 As in Tessler 12, we analyze whether, in our hospital, limited hours serve to 
restrain the budget. This will help us to understand whether it is cost-effective for the OR 
management to proceed with a surgical case rather than to postpone it.  Olivares 13 makes 
an estimation of cost parameters based on observed system behavior and assumed rational 
behavior in reserving OR time for an individual cardiac procedure. Based on Olivares’ 
analysis, we analyze whether in the opinion of hospital management the costs of over-
reserving a procedure are lower or higher than the costs of under-reserving a procedure, 
and whether this result is consistent with the assignment of the management tasks of the 
ORC.  This result gives us insight into whether Olivares’ analyses can be generalized to more 
than one procedure.

 In this study no bias is present from seasonal influences or from various new 
specialized procedures. This study focuses on one of the many issues related to imperfect 
utilization of ORs.  We quantify them and measure the effect of management decisions 
aimed at reducing imperfection.  Due to fixed OR capacity in our hospital, the short-term 
objective in maximizing OR efficiency is to reduce under-utilized OR time 14. This is because 
there are regular cancellations of patients due to medical reasons in the 24-hour period 
prior to OR.

 In order to calculate the inefficiency related to the level of risk aversity, we use 
the following definition 15. Operating room inefficiency is the sum of under-utilized OR time 
and over-utilized OR time, multiplied by the relative costs of overtime. Under-utilized time 
is hours of staffed operating time at straight time wages, but not used for surgery, set-up 
or clean-up of the OR. Over-utilized time is hours after operating room time, staffed at 
overtime. After finishing the first study, the ORC was asked to continue to register their 
prognosis of the progress of the OR program at 2 pm and actual outcome at 4 pm. The 
following data were excluded in order to compare the results: unexpected complications 
during an elective case after 2 pm (2006 n=2, resp. 2007 n=1), disruption of the elective 
program due to a patient who was brought in with an aneurysm (2007, n=1). Data were 
summarized using mean ± SD.

Results
The seven anesthetists, anonymously and independently of each other, classified two 
ORCs in the category of risk-averse, and two in the category of non risk-averse (n=2). Risk 
indifference was not scored. The results of the ZKPQ are shown in Table 1. 
The expectations of the anesthetists as well as the results of the ZKPQ tests all indicate in 
the same direction, i.e. that there is a difference in risk appreciation between the ORCs. 
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Table 2 shows the quantitative results of the two groups.

TABLE 1.ZUCKERMAN-KUHLMAN PERSONALITy QUESTIONNAIRE
Scores of the Impulsive Sensation Seeking Dimension ZKPQ score per ORC

ORC ZKPQ score

#1 81%

#2 92%

#3 25%

#4 32%

Explanation (11)
0 - 27%  Very low impulsive sensation seeking
28 - 41%  Low impulsive sensation seeking
42 - 70%  Average impulsive sensation seeking
71 – 84% High impulsive sensation seeking
85 -100% Very high impulsive sensation seeking

TABLE 2. MAIN RESULTS PER TyPE ORC PER STUDy PERIOD

Non risk-averse Risk-averse

2006 2007 2006 2007

Working days 98 102 98 102

Prognosis of the ORC made at 2 pm  
matches the actual outcome at 4 pm (% of 
all prognoses made) 86% 88% 44% 53%
Accurate  prognosis made at 2 pm that 
specific ORs will require extra time after 
regular working hours (% of all prognoses 
made)

86% 82% 18% 26%

Average end time of all ORs 3.53PM
(SD =8min)

3.46 PM 
(SD=10min)

3.13 PM
(SD=15min)

3.19 PM
(SD=12min)

Average end time of  all ORs still running 
after 4 pm

4.20PM
(SD=18min)

4.18PM
(SD=14min)

4.16PM
(SD=17min)

4.19PM
(SD=17min)

Average number of ORs in progress after 
4 pm 13.8% 11.3% 8.8% 11.3%
Number of unnecessary rejections of 
planned elective patients (period of 5 
months)

2 3 7 6

Non risk-averse group: In 87% of the cases, actual outcome at 4 pm matches the prognosis 
given at 2 pm over the two periods.  In 84% of the cases, the expectation that the ORs would 
finish after working hours matched actual outcome. On average, the end time of the ORs 
is 3:50 pm (± 12 min). The average end times of ORs after 4:00 pm are 4:19  pm (± 17min). 
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The average percentage of ORs in progress after 4:00 pm is 12.6% (2.5%). The number of 
unnecessarily rejected planned elective patients in the study period of 5 months is 2 in 2006 
and 3 in 2007.

 Risk-averse group: In 22% of the cases, actual outcome matches the prognosis over 
the two periods. In 48% of the cases, the expectation that the ORs would finish after working 
hours matched actual outcome. On average, the end time of the ORs is at 3:16 pm (± 18 
min). The average end time of elective ORs after 4:00 pm is 4:17 (± 17 min). The average 
percentage of ORs in progress after 4:00 pm is 10.1% (3.1%). The number of unnecessarily 
rejected planned elective patients in the study period of 5 months is 7 in 2006 and 6 in 2005. 
The difference in end time between the two ORC groups (risk-averse and non risk-averse) is 
34 minutes (± 19 min) per OR per day (p = 0.0085).

 Within these groups, we encountered some differences: The average time between 
the two risk-averse ORCs does not differ significantly (p = 0.291). The average end time of 
the two non risk-averse ORCs is significant (p=0.034). The comparison of the ZKPQ results 
between the ORCs within the non risk-averse group does not lead to any explanations for 
these differences. We can only conclude that within the risk-averse group, the two are each 
others’ equivalent. Within the non risk-averse group, one ORC shows significantly better 
results than the other.

 The number of extra cases performed by the non risk-averse ORC compared to a risk-
averse ORC is 188 in 2006 and 174 in 2007. We can calculate the extra contribution margin 
for the hospital if for example in 2007 174 more Total Hip Replacements were performed 
(the patients for this surgery were actually available on a waiting list). The estimated Total 
Revenue (TR) for 174 cases is $2.1 mln. The estimated Total Variable Cost (TVC) is $ 0.9 mln.  
This results in an extra contribution margin of $1,2 mln/year. The contribution margin ratio 
is equal to (2.1 – 0.9) / 2.1) x 100% = 57%. 

 We analyzed ex-post how many cases the risk-averse group and non risk-averse 
group could have been planned in the time period from 2:00 pm-4:00 pm. For this analysis, 
we specifically used either the average time or the median of the case duration, whichever 
value was greater. For the risk-averse group, the numbers were 133 (2006) and 127 (2007). 
For the non risk-averse group, the results were 12 and 15. As mentioned before, these cases 
were actually available for filling gaps in the programs. The distribution of working days per 
ORC (Table 3) is uniformly distributed. 



The Effect of the OR Coordinators Risk Appreciation on Operating Room Efficiency

97

TABLE 3. DISTRIBUTION OF WORKING DAyS OF OPERATING ROOM COORDINATORS

 Non risk-averse ORC Risk-averse ORC

 #1 #2 #3 #4

2006

Mon 9 10 10 10

Tue 10 10 10 10

Wed 10 10 9 10

Thurs 10 10 10 10

Fri 10 9 10 9

total 49 49 49 49

2007

Mon 10 10 10 11

Tue 10 11 10 10

Wed 10 10 10 10

Thurs 10 10 11 10

Fri 10 11 10 10

total 50 52 51 51

TOTAL 99 101 100 100

The OR schedule is shown in Table 4. 

TABLE 4. OR SCHEDULE

DAy/OR 1 2 3 4 5 6 7 8

Mon Orto Orto Neuro Gen Sur Plast Gyn Gen Sur ENT

Tue Orto Orto ENT Gen Sur Gen Sur Gyn Gen Sur Eye

Wed Orto Orto Gen Sur Jaw Plast Uro Gen Sur Gen Sur

Thurs Orto Orto Gen Sur Gen Sur Plast Neuro Uro Eye

Fri Orto Orto Gen Sur Gen Sur Plast GyN Gen Sur Gen Sur

We analyzed the demand for OR time during the historical period in time, and the study 
period. In the period 2005-2007, we looked at the average planned OR time and compared 
this with the average planned OR time during the study period.  The average planned OR 
time is the sum of the planned OR time of all cases for a specific OR, including a standard 
turnover time of 11 minutes between cases divided by the number of days. There were no 
significant differences in the planned end time of the various OR suites (Table 5). 
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TABLE 5. AVERAGE PLANNED END TIME OR ROOMS

OR # Historical Study period

1 3:25 pm (21min) 3:21 pm (23min)

2 3:22 pm (32min) 3:19 pm (29min)

3 3:35 pm (29min) 3:28 pm (26min)

4 3:35 pm (18min) 3:29 pm (20min)

5 3:21 pm (27min) 3:22 pm (25min)

6 3:47 pm (17min) 3:45 pm (19min)

7 3:59 pm (14min) 3:58 pm (15min)

8 3:17 pm (34min) 3:19 pm (36min)

Furthermore, we studied the sample variance among OR-day combinations. For the study 
period we used Levene’s test of homogeneity of variances. With p = 0.903 (2007) and p = 
0.189 (2006), we can conclude that in both study periods we can accept the null hypotheses 
of equal variances. We performed the one-way ANOVA to compare means of case duration 
of the four ORCs.  With a p value of 0.603, we accept the null hypotheses of equal means for 
the case duration for the four ORCs.

 Finally, we conducted the factorial analysis with procedure time as dependent 
variable, and ‘specialty’ and ‘day’ as fixed factors. 

 Because we have a fixed OR schedule, we see that ‘day’ and ‘specialty’, and their 
interaction with each other are significant (p < 0.001).  We also affirm in our study that a risk-
averse person orders less than the normative benchmark and that a risk-seeking decision 
maker orders more than that very same normative benchmark (16). 

 We calculated the mean inefficiency per OR per day by considering each OR-day 
to be independent of all others. The relative cost of overtime in our study is 1.50.  The cost 
per hour of over-utilized OR time includes: indirect costs, intangible costs, and retention 
and recruitment costs incurred on a long-term basis from staff working late. The mean 
inefficiency per OR per day for the risk-averse ORC is 0.87 (+/- 0.29), n=1,600. For the non 
risk-averse ORC, the mean inefficiency per OR per day is 0.46 (+/- 0.20), n= 1,600. This means 
that the non risk-averse ORC causes a lower OR inefficiency.

 In 65.9% of all cases, the procedure was completed in as much time or less time 
than had been reserved by the OR. In 34.1% of all cases, more time was needed than was 
reserved. Comparing these results leads to the conclusion that case durations are over-
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estimated.  The over-reserving leads to idle time.  The non risk-averse ORC takes more 
advantage of this over-reserving than the risk-averse ORC does, by realizing extra cases 
during hours. The OR management assumes that from the cost perspective it is better to 
finish ORs during regular hours. Therefore we performed Tesslers’ study 12 in our hospital 
(Table 6) to verify this assumption. As concluded by Tessler, we confirm that it is cost-effective 
to proceed with a surgery case after regular working hours rather than to postpone the case. 
This outcome helps OR management to improve the OR efficiency further.

TABLE 6. ZERO TOLERANCE FOR OVERTIME INCREASES SURGICAL PER CASE COSTS
Assumptions as in Tessler (13), calculated for our hospital

Average hourly wages (incl benefits)                       Labor costs/hr/$  

Post Anesthesia Care Unit Nurse  35.02   

Operating  Room Nurse   40.85   

Surgical Ward Nurse   29.18   

Nurse anesthetist   43.00   

Administration   35.02   

-Public Relations, Purchasing     

-Telecommunications, Garbage Disposal    

-Accounting, Human Resources     

Laundry/Housekeeping   17.51   

Maintenance   19.84   

Security    23.34   

Pharmacy    37.35   

Radiology    32.68   

Laboratory   32.68   

Central Supply Room   15.17   

Physiotherapy   36.77   

OR labour costs hourly   450   

Marginal Tax Rates      

Marginal tax rates for individuals were derived from the Ministry of Finance

The marginal tax rate varies between 15.75% and 52% depending on gross

annual income      

Income  Tax Rate     

0 -  $ 26,844 15.75%     

$ 26,844 - $ 48,239 23.50%     

$ 48,239 - $ 82,249 42.0%     

$ 82,249 and higher 52.0%     
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COSTS CALCULATED IN THE SOCIETy PAyS MODEL (AFTER TAX VALUES)

US dollars       

   Proceed with case Postpone case

OR Labour costs      

1.5 hr standard cost 377.58    

1.5 hr overtime cost 566.37    

3 hr standard cost   755.16  

Nurse anesthetist costs     

1.5 hr standard cost 38.06    

1.5 hr overtime cost 57.08    

3 hr standard cost   76.11  

OR supplies costs  292.95  292.95  

Anesthesia supplies costs 39.00  39.00  

Professional fees  310.25  310.25  

Hospital costs per surgical bed/day     

 Labour  219.55  439.10  

 Supplies  17.06  34.12  

Hospital costs per patient bed/day     

 Administrative 8.75  17.51  

 Technical      

 Laundry/ Housekeeping 2.92  5.84  

 Maintenance 1.65  3.31  

 Security  4.67  9.34  

 Pharmacy  9.71  19.42  

 Radiology  19.61  39.22  

 Laboratory 14.71  29.41  

 Central Supply Room 5.31  10.62  

 Physiotherapy 5.15  10.29  

Post Anesthesia Care Unit     

 Labour  109.25  218.49  

 Supplies  7.34  14.68  

Lost income for one day (after tax)   0.00  

Professional fees saved   310.25  

TOTAL   2106.96  2635.06  
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COSTS CALCULATED IN THE PATIENT PAyS MODEL

US dollars       

   Proceed with case Postpone case

OR Labour costs      

3 hr standard cost 1348.50  1348.50  

Nurse anesthetist costs     

3 hr standard cost 199.95  199.95  

OR supplies costs  292.95  292.95  

Anesthesia supplies costs 39.00  39.00  

Professional fees  646.35  646.35  

Hospital costs per surgical bed/day     

 Labour  399.18  798.36  

 Supplies  17.06  34.12  

Hospital costs per patient bed/day     

 Administrative 13.89  13.89  

 Technical    0.00  

 Laundry/ Housekeeping 4.49  4.49  

 Maintenance 2.71  2.71  

 Security  7.07  7.07  

 Pharmacy 16.46  16.46  

 Radiology 33.23  33.23  

 Laboratory 24.51  24.51  

 Central Supply Room 7.93  7.93  

 Physiotherapy 8.58  8.58  

Post Anesthesia Care Unit   0.00  

 Labour  182.08  182.08  

 Supplies  7.34  7.34  

Lost income for one day (after tax)   0.00  

TOTAL   3251.28  3667.52  
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COSTS CALCULATED IN THE HOSPITAL PAyS MODEL

US dollars       

   Proceed with case Postpone case

OR Labour costs      

1.5 hr standard cost 674.25    

1.5 hr overtime cost 1011.38    

3 hr standard cost   1348.50  

Nurse anesthetist costs     

1.5 hr standard cost 69.19    

1.5 hr overtime cost 181.77    

3 hr standard cost   199.95  

OR supplies costs  292.95  292.95  

Anesthesia supplies costs 39.00  39.00  

Hospital costs per surgical bed/day     

 Labour  510.58  1021.15  

 Supplies  17.06  17.06  

Hospital costs per patient bed/day     

 Administrative 13.89  27.79  

 Technical      

 Laundry/ Housekeeping 4.49  8.98  

 Maintenance 2.71  5.42  

 Security  7.07  14.15  

 Pharmacy 16.46  32.92  

 Radiology 33.23  66.47  

 Laboratory 24.51  49.02  

 Central Supply Room 7.93  15.85  

 Physiotherapy 8.58  17.16  

Post Anesthesia Care Unit     

 Labour  182.08  364.16  

 Supplies  7.34  7.34  

TOTAL   3104.47  3527.87  
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Discussion
In recent years, market forces have made their entry into the healthcare system in the 
Netherlands. As a result, the government and insurance companies wish increasingly to 
scrutinize the added value of care processes. Dealing with efficiency plays an important 
role in this. The more efficiently the processes can be organized, the more efficiently the 
various resources can be used. Many extensive studies on OR efficiency 17,18,19,20,21,22. can 
be found in the literature. All these studies contribute to optimalizing the use of scarce 
and costly operating rooms, especially in the more so-called private labeled hospitals in a 
competitive environment. Up till now, the effect of the type of risk appreciation of an ORC 
in relation to the OR efficiency has not been described in any literature. The results of our 
study are in compliance with the findings in the literature we used: a high sensation seeker 
is likely to look for opportunities that provide the chance to take a risk, and this risk will 
seem less threatening to this kind of individual. Though there is a lot of evidence to support 
the link between personality and risk-taking, the literature shows that the exact nature is 
still unclear. The next step is to find out what happens in the mind of a risk-taker that is 
significantly different from what occurs in the mind of a non risk-taker.

 Based on Olivares’ preliminary analyses, we have to conclude that in the opinion 
of our hospital management, the cost of over-reserving a procedure is 48% lower than the 
cost of under-reserving. From that perspective we could conclude that frequently, the OR 
management prefers to reserve more time than actually needed, hence the  conclusion that 
our hospital often prefers to be finished earlier rather than late. From an economic point of 
view, this is irrational behavior because the opportunity costs of idle OR time are considered 
to be lower than for utilized OR time. Hence, the conclusion of Olivares based on specific 
cardiac surgery cases cannot be generalized to a situation in which there is a heterogeneous 
mix of different operations and patients. When we mathematically conclude that an OR 
over-reserves, this fact does not mean that the OR management frequently prefers to 
reserve more time than actually needed. The fact is that for whatever reason, on average, 
this hospital over-reserves. On average, properly scheduled operating rooms will finish early 
two-thirds of the time and late one-third of the time 23. In our hospital, that proportion is in 
accordance with these results.  

 Although the data from this study are statistically strong, there are some specific 
potential drawbacks that can be specified. The first factor is that the study population (4 
ORCs) is relatively small. Despite being able to attain statistically significant data, it will be 
important to follow the trends as ORCs in the operating room system are introduced. The 
second factor is our decision to choose one axis: sensation seeking. But there are other 
axes, such as neuroticism-anxiety, aggression-hostility, activity and sociability that can be 
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either important, necessary, or completely determinative for an ORC’s success in planning 
the schedule. This has to be analyzed in future studies with a larger population of ORCs.

 The third factor is the number of operating rooms. In our study we observed eight 
operating rooms. The effect of the difference on OR efficiency may be influenced by the 
number of ORs. Since two additional new operating rooms have been built, we recommend 
performing this study with ten ORs rather than eight, to examine the effect of a bigger 
span of control for the ORC on the OR efficiency. The ORC works in an environment of over-
reserving. Hence the question arises whether the ORC will also be successful in the case of 
under-reserving.  Risk aversity is a typically human attitude toward risk. In the case of under-
reserving, the non risk-averse person will always explore the extremes of all the possibilities 
available. In such cases, this trait can lead to dissatisfaction among the OR staff, because the 
chance of having to work overtime structurally increases in combination with the risk that 
planned cases will be canceled. This effect leads to material and immaterial damage for both 
patients and hospital. In such a case it is quite easy to imagine that a risk-averse ORC will be 
more successful in his tasks at hand. This should be studied further in another setting.

 One could take the point of view that even with accurate planning or deliberate 
over-booking, it would be best to have the non risk-averse ORC employed, because over-
utilized time can be justified due to the fact that more cases will get done. The hospital then 
simply must take the strategic steps to bring the case volume up to the planned capacity 
of the OR suite, by adding rooms, expanding hours, etc.  However, in the short term, a non 
risk-averse ORC who schedules cases into an already overbooked OR will create significant 
animosity among the staff.

Conclusion
The conclusion of this study is that a non risk-averse ORC creates significantly less unused 
OR capacity without a great chance of running ORs after regular working hours or canceling 
elective cases. Added to this, a non risk-averse ORC is cost-effective. This means that when 
recruiting an ORC, the risk-averse type must be one of the selection criteria. These findings 
will help management to further optimize OR efficiency and the results can be used in 
further research into a decision-support system to provide recommendations.
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Abstract
In its influential ‘Crossing the quality chasm’, the Institute of Medicine 1 identifies six quality 
dimensions of health care, among which are efficiency and timeliness. The six dimensions 
together, make quality improvement a complex matter, as interventions which yield 
improvement regarding one dimension may have a negative effect regarding another: the 
quality dimensions form conflicting objectives. In this research we simultaneously address 
efficiency and timeliness of care in the operating theatre. 

We formally model the real time surgery scheduling to minimize a weighted sum of 
cancellation of scheduled cases, overtime cost, moving scheduled cases from the day to the 
service operating room and scheduling emergency/acute cases after an imposed time limit. 
Stepaniak et al. 2 show how risks attitudes of OR planners influence the quality of scheduling. 
We formally model heuristics which are based on different risk attitudes and analyze their 
mutual performance. More generally, we analyze Monte Carlo based optimization methods 
and use recent actual data from the St. Franciscus Gasthuis, Rotterdam, The Netherlands.
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Introduction
Operating theatres daily present dynamic situations which result from unanticipated 
developments of scheduled cases, arrival of emergency cases, and the scheduling decisions 
taken during the day by the operating room coordinator (ORC). The task of the ORC is to 
ensure that operating rooms (ORs) finish on time and that all scheduled cases as well as the 
emergency cases are completed. At the end of the dynamic days however, ORs often finish 
late and scheduled cases have experienced delays or been canceled. 

Delays or cancelation add to the patient’s inherent anxiety associated with surgery 
and engenders anger and frustration. They have been shown to be an important determinant 
of patient dissatisfaction across the continuum of preoperative-operative-postoperative 
care 3. Delays in scheduled surgical cases affect patient satisfaction even more than the 
intraoperative anesthesia experience 4. The delays and cancelations may have a significant 
impact on quality of care for other cases as well. They generate time pressure and overtime 
work, which is known to be one of the primary reasons 5 for churn of OR nurses. Likewise, 
identified scheduling conflicts are a major cause of nursing staff turnover 6.

The obvious solution to reduce the daily number of scheduled cases may indeed 
serve to reduce the operational difficulties encountered, but reduces productivity in the 
long run. As a result, waiting times increase and hospitals loose revenue. The ability of an 
ORC to handle the dynamic developments that occur during an OR day is therefore crucial 
to keep help care accessible and affordable, without endangering employee satisfaction, 
and putting customer satisfaction and quality of care at stake. To this purpose, the ORC may 
decide to rearrange case and staff assignments when cases take more or less time than 
planned, and/or emergency cases arrive.  The results of Chapter 2 and 3 provide the ORC 
with more reliable estimates of the duration of surgical cases. Chapter 4 addresses how the 
risk attitude of an ORC affects the quality of the scheduling decision making. It measured 
risk attitude of an ORC using the sensation seeking dimension of the Zuckerman-Kuhlman 
Personality Questionnaire (ZKPQ). 

Chapter 5 reveals that a risk-seeking ORC cancels fewer cases with lower OR 
inefficiency as compared with the non risk seeking ORC.  In this research we formalize risk 
attitudes in heuristics developed to solve the real time scheduling problems ORCs face 
during the day. We formulate the optimization problem from a quality perspective, where 
we focus on effectiveness and timeliness of the surgery services. The heuristics consider 
a variety of scenarios for how the day might develop and select a decision based on the 
outcomes in the various scenarios. Risk attitudes are modeled by assigning weights to the 
scenarios. Risk averseness is modeled by assigning much weight to bad case scenarios, and 
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risk seeking behavior is modeled by assigning much weight to favorable case scenarios. We 
evaluate the heuristics using data from the year 2009 of the St. Franciscus Gasthuis (SFG) in 
Rotterdam and use Monte Carlo optimization. The simulation environment we build to that 
purpose allows us to simulate and analyze the effects of different risk attitudes of ORCs on 
e.g. the number of rejected patients, overtime costs, OR inefficiency.

We now briefly review previous work on closely related problems. Dexter 7 uses 
computer-based, hypothetical OR suites, to test different OR scheduling strategies to 
develop an OR scheduling strategy aimed at maximizing OR utilization. OR utilization 
depends greatly on and increases as, the average length of time patients wait for surgery 
increases. Charnetski 8 uses simulation to study the problem of assigning time blocks to 
surgeons on a first-come, first-served basis when the goal is to balance the waiting cost of 
the surgeon and the idle cost of the facilities and operation room personnel. 

The proposed heuristic recognizes that different types of procedures have different 
service time distributions and sets case allowances based on the mean and the standard 
deviation of the individual procedure times. Murray ‘s 9 challenge was to design a schedule 
that would use every surgical bed in the hospital seven days a week and not use one bed 
more or less. Developing such a schedule would require relating OR procedures to bed use. 
Dexter 10 uses computer simulation to evaluate ten scheduling algorithms described in the 
management sciences literature to determine their relative performance at scheduling as 
many hours of add-on elective cases as possible into open OR time. 

The reader may note that the aforementioned references aim to optimize resource 
use, rather than quality of care. Before considering solution techniques, and testing them in 
a simulation environment, we therefore proceed with a formal problem analysis in the next 
section. The position we take is that resource utilization is not a goal in itself, and less so for 
the real time scheduling decisions made by an ORC. The ORC starts with a given schedule 
and deals with the turn of events as it materializes while performing scheduled cases and 
emergency cases as they newly arrive. The ORC may cancel scheduled cases, or defer them 
to the service OR. All other cases have to be performed, potentially yielding overtime work. 
The task of the ORC is therefore to balance the costs of working overtime with the effects 
cancelations have on patient satisfaction and patient health. 

Problem definition
Formally, the scheduling problem an ORC faces during a day at the OR is known as a parallel 
machine scheduling problem. More specifically, the problem is a stochastic scheduling 
problem, as the arrival process of emergency cases is a stochastic process and the durations 
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of the cases are stochastic variables. The distributions of the stochastic variables are however 
assumed to be a priori known 11. Closely related stochastic parallel machines scheduling 
problems have been widely studied in the context of manufacturing and computer-
communication systems 12,13,14,15,16,17.

The field of stochastic scheduling is motivated by the design and operational problems 
arising in systems where service resources must be allocated over time to cases with 
random features vying for their attention 18. Obviously, operating rooms and their crews can 
be considered as such service resources. The daily task of each operating room and the crew 
working in the room is to process a list of scheduled cases. Moreover, some of the rooms 
and crews can be assigned emergency cases which arrive as the day proceeds. It is common 
to distinguish two types of emergency cases: acute and emergency. Acute cases must be 
scheduled without further delay, typically within 30 minutes. Emergency cases be scheduled 
on the day of arrival, typically within four hours. Thus we have a scheduling problem with a 
stochastic arrival process, stochastic case durations, and parallel machines. 

In the SFG one operating room and crew typically remain in operation at the end of the 
day and during the following night to service newly arriving emergency cases. This service 
capacity is oftentimes also used to process a number of cases which have been eliminated 
from the daily programme, or have arrived during the day and have not been processed yet. 
Thus, in the problem under consideration, the input consists of:

•	 A set O of n operating rooms 
•	 A set of case types CT.  Each case type t ∈ CT has a stochastic duration d(t).
•	 A set of emergency case types EC, EC ⊆ CT For each emergency case type t ∈ EC, the 

arrival process is denoted by A(t). 
•	 Sets SC and EC of scheduled and emergency cases, respectively. We let C ≡ SC U EC 

denote the total set of cases. Notice that the emergency cases of EC are not part of 
the problem initial input, they are implicitly defined by the arrival processes A(t).  

•	 Linearly ordered subsets  {S1, S2,..Sn} that form a partition of SC. For i = 1..n linearly 
ordered subset Si corresponds to the list   {C1, C2,..  Cm}   of scheduled cases which 
are planned to be processed in order in operating room i.

•	 A subset   OE ⊆ O to which emergency cases can be assigned. An emergency case ej   
scheduled in room i ∈ OE can be scheduled between any two subsequent cases of 
Si.

•	 Opening time span T during which all ORs are opened. We assume they open at 
time 0, meaning that they are opened until time T.

•	 Service operating room SO ∈ O which serves as the service operating room. 
•	 Service opening time span N, which is the time span during which cases that are 
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not served during the day can be scheduled in the service operating room SO. We 
assume it lasts from time T till time T+N, implying that a case running in SO before 
T can continue after T without incurring overtime.

Postponing the definition of the objective function, we define by Real Time Surgical 
Scheduling (RTSS), the problem of scheduling all cases so as to minimize total costs. The 
classical objective functions of parallel machine scheduling problems are makespan 
minimization and minimization of the sum of the completion times. Neither of these apply to 
the problem at hand, as will be shown in the analysis below. The problem at hand is related 
to scheduling problems in which the objective is a weighted functioned of the makespan 
and penalties for rejected cases. Such scheduling problems with rejection have been studied 
by various authors 19,20,21,22,23. The prime objective we state for operating room scheduling 
is to minimize the loss of quality incurred by canceling cases. Obviously, cancelation is not 
equally harmful or undesirable for each of the cases. Cancelations is not only undesirable 
from a patient perspective, it is also undesirable from a hospital perspective, as cancelation 
means lost revenue (at least for the day of cancelation). 

Moreover, if the patient remains in the hospital until surgery takes place, cancelation 
induces hospital costs without extra revenues (e.g. when revenue is Diagnoses Related 
Group based). As there are no realistic data available to express the patient and provider 
effects on canceling a case, we assume that they depend on the surgery type. For all 
practical purposes, we therefore assume in the remainder that they are proportional to 
the expected duration of the surgery, with parameter α. (The analysis or solution methods 
however, do not rely on this assumption.) For any solution to the RTSS, let CC the set of 
canceled cases, and let Ci be the completion time of room i, that is the time at which the last 
case assigned to room i is finished. Notice that we only know set  of canceled cases after all 
cancelation decisions have been made, i.e. at the end of the day.  As already explained in the 
introduction, prohibiting cancelations, especially when there are relatively many emergency 
cases, and/or many cases which take longer than expected, is not desirable. Overtime is 
costly, and high work pressure and frequent overtime lead to loss of quality of care and 
employee dissatisfaction. Hence the sum of the overtime is also considered in our objective, 
with a penalty of β per time unit.

As operating room SO stays open after a working day ORCs may decide that cases 
which cause overtime are not canceled but referred to SO be processed after time T and 
before time T +N. Although doing so will typically not lead to problems it is considered to 
be undesirable, if only because it may cause delays for surgery to emergency cases which 
newly arrive. Thus, we penalize reassigning cases to SO to be processed between T and T+ 
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N with penalty γ. Let us denote by CN cases assigned to be executed in SO between T and 
T +N.  As is common in practice a time limit is imposed during emergency and acute cases 
should be executed after arrival (240 minutes for emergency cases and 30 minutes for acute 
cases.  If emergency and acute cases are executed later than these time limits then they are 
penalized. Let us denote by EA set emergency and acute cases not executed within time 
limits with penalty δ: ej = 1, if not executed within time limits
Then we consider in the remainder the following objective function:

limits with penalty δ: ej = 1, if not executed within time limits 

Then we consider in the remainder the following objective function: 

:   {   +   max0,  −  +    +    ∈ ∈.. ∈  
} 

For the ORC, the stochasticy plays a role during the decision making process, as For the ORC, the stochasticy plays a role during the decision making process, 
as emergency cases arrive, and durations of cases become known only after scheduling 
decisions have been made, yet additional decision making is required. Such scheduling 
problems have become known as online decision making meaning that at a point in the time 
axe we cannot see future cases, whereas we only know the cases before or at this point of 
time. Simultaneously decisions have to be made real time at the same point of time about 
future cases. The designation “on-line, real-time” means that in the OR decision making 
is needed to respond to stimuli (arrival of emergency cases, expected duration of cases) 
at numerous ORs. Hence, we can define RTSS can be characterized as a on-line, real-time 
problem.

While making decisions in real-time, it is useful to evaluate the expected value of 
the objective function as it is influenced by the scheduling decisions. The first component is 
easy to evaluate as a scheduling only change it when the decision is to cancel a scheduled 
case. The change then equals γ times the expected duration of the canceled case.  The effect 
scheduling decisions, e.g. canceling a case, or inserting an emergency case, have on expected 
overtime is however harder to assess. Let (i) denote the expected overtime of room i and let,  
EC(i) = Σ c ∈ Sj E(d(t)) that is the sum of the expected durations of the cases j scheduled in room 
i. Then, contrary to EC(i) = Σ c ∈ Sj E(d(t)) ,   E(i) ≠max (0, EC(i)), i.e. the expected overtime is not 
equal to the expected surplus duration over the opening time span T. 

Indeed one easily envisions examples where the expected completion time  EC (i) 
< T while there is a positive probability that Ci > T. Thus, in order to evaluate the effect of 
scheduling decisions on the objective function, it is required to know the joint distribution 
function of all C ∈Si. As we have shown in Chapters 3 and 4 that three-parameter lognormal 
distributions better approximate durations than alternatives studied in the literature, 
we proceed by exploring the joint distribution function of a sum of independent three-
parameter lognormally distributed variables.   
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The probability density function of the three-parameter lognormal distribution is 
as follows:
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Here θ is the shift parameter (the case where θ = 0, is called the two-parameter lognormal 

model). 

By the central limit theorem the distribution of the sum of independent lognormal 
distributed random variables tends to a normal distributions as n tends to infinity. As the 
number of cases per operating room seldom exceeds ten, the central limit theorem does not 
apply. However, a closed-form expression does not exist for the sum distribution and it is 
difficult to numerically calculate the distribution.  

The closed form distribution has been approached by other methods. Fenton 24 
approximated the distribution by a lognormal distribution which has the same moments as 

Here θ is the shift parameter (the case where θ = 0, is called the two-parameter lognormal 
model).

By the central limit theorem the distribution of the sum of independent lognormal 
distributed random variables tends to a normal distributions as n tends to infinity. As the 
number of cases per operating room seldom exceeds ten, the central limit theorem does 
not apply. However, a closed-form expression does not exist for the sum distribution and it 
is difficult to numerically calculate the distribution. 

The closed form distribution has been approached by other methods. Fenton 24 
approximated the distribution by a lognormal distribution which has the same moments as 
the exact sum distribution. Barakat 25 used the inverse Fourier transform of the characteristic 
function. Analytical work on statistical properties is reported in 26,27,28,29,30,31,32. Jingxian 27 uses 
the moment generating function as a tool in the approximation and does so without the 
extremely precise numerical computations at a large number of points that were required 
by the other  proposed methods in the literature. The methods by Schwartz-yeh 28, and 
Beaulieu-Xie 29 approximate the lognormal sum by a single lognormal random variable, 
and provide different recipes for determining the parameters of the lognormal probability 
density function. The methods by Slimane 30 and Schleher 31 instead compute a compound 
distribution or specify it implicitly. Beaulieu et al.  32 have studied in detail the accuracy of 
several of the above methods, and show that each method has its own advantages and 
disadvantages; none is unquestionably better than the others. 

We conclude for the moment that it is not known how to analytically determine 
the sum distribution of lognormal cases durations and hence expected overtime. More 
informally this means that risks of overtime are hard to assess for ORCs. As the RTSS not 
only has stochasticity in the case durations but also in the arrival processes of emergency 
cases, our solution methods and overtime estimates rely on Monte Carlo simulation, rather 
than on analytical approximations.

Having specified the input and the objective function, we now turn to the 
constraints of the problem, thus defining the solution space available to the ORC. First of 
all, we assume that the assignment of scheduled cases is given, as is the linear order of 



Quality improvement: balancing the risks of overtime and cancellation of scheduled cases

115

the cases per operating room. Thus the order of the cases cannot be modified, except for 
the insertion of emergency cases. Emergency cases can only be scheduled in dedicated 
operating rooms, which typically have slack time to accommodate emergency cases. Cases 
that have already started cannot be interrupted (preempted) for emergency cases. Further, 
emergency cases cannot be canceled. When a case for operating room i is canceled, it is the 
last scheduled case in the linear order of cases assigned to room i.  As an alternative to being 
cancelled, the last scheduled case can be referred to operating room NO to be scheduled 
between T and T+N. Cancelation and referral decisions cannot be undone. The ORC does 
not have information on regarding future arrivals of emergencies or durations of cases other 
than the information described in the problem input.

Solution Methods
To start the analysis of RTSS and subsequently derive solution methods, let us first consider 
the offline deterministic version of the problem i.e. the version in which all durations and all 
emergency cases are known a priori. The problem is therefore to select an operating room 
for each of the emergency cases, and to choose scheduled cases to delay to the night shift 
or to cancel. If there is only one operating room to which all emergency cases are assigned, 
this problem reduces to deciding which of the scheduled cases are delayed and which ones 
are canceled. This problem can be seen to be Non-deterministic Polynomial time Complete 
(NP-complete). Intuitively, it means that a solution to any search problem can be found and 
verified in polynomial time by a special (and quite unrealistic) sort of algorithm, called a 
non-deterministic algorithm. Such an algorithm has the power of guessing correctly at every 
step.

Suppose that there is only one operating room available during the daytime and 
that T =N. Furthermore, let the set of cases consist entirely of emergency cases, i.e. C = EC 
and assume that all these cases arrive at the beginning of the day. Finally, assume that these 
cases are all of the type that needs to be scheduled on the day of arrival and that the sum of 
the durations of the cases is T +N = 2T. We let  γ = 0. Then there exists a solution of cost 0 if 
and only if EC can be partitioned into two subsets of cases, where the sum of the durations 
of the cases of either of these subsets equals T. Thus, this special case of RTSS is equivalent 
to the partitioning problem which is NP-Complete.

If there are two or more operation rooms to which emergency cases can be 
assigned, RTSS can easily be shown to be strongly NP-Complete,  as it then contains 3 
partitioning as a special case. Thus we conclude that RTSS is already hard to solve without 
considering the stochasticity, or the fact that it is an online problem. At present, it cannot be 
ruled out that the offline version of RTSS is intractable as it is not known how to express the 
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joint distribution function of the sum of three-parameter lognormally distributed random 
variables. For this reason, worst case analysis and analysis of the RTSS with stochastic 
durations are highly non-obvious.

We conclude that for all practical purposes, the solution of RTSS will rely on heuristic 
approaches. To the best of our knowledge, no practical applications are known where RTSS 
is solved using scheduling software. ORCs make scheduling decisions, based on real-time 
information on the execution of the scheduled cases and emergency cases.  ORCs typically 
work without formal rules and/or procedures, and the quality of the scheduling decisions 
therefore depends on the attitudes, estimations, and problem solving skills of the ORCs. In 
Chapter 5, we measure risk attitudes of ORCs using the sensation seeking dimension of the 
Zuckerman-Kuhlman Personality Questionnaire (ZKPQ) , and subsequently show that risk 
seeking ORCs are better schedulers than risk averse ORCs. We now propose a formalization 
of these risk attitudes in the context of RTSS, and analyze heuristics in which risk attitude is 
modeled by means of a parameter.

We consider heuristics which produce scheduling decisions during the day, at 
predefined moments.  These moments will be called time instants. Thus, at time instant t, a 
heuristic uses all information about the turn of events until t – including scheduling decisions 
already made, as well as information regarding scheduled and expected cases which are not 
completed at time t, including their expected durations. The heuristics we propose consider 
all feasible decisions that take effect at t, and choose one based on risk attitude. 

To evaluate a feasible decision in our heuristic approach, we sample a fixed number 
of scenarios, each of which completely specifies all arrivals of emergency cases after t, and 
the durations of all cases to be completed after t according to the scheduling decisions 
made. We define the cost of a scenario by the cost of the optimal solution for the offline 
problem instance of RTSS as specified by a scenario. Since we want to evaluate a feasible 
solution at time instant t, we in fact consider the conditional cost of a scenario, i.e.,  the 
cost of an optimal solution for the scenario, under the condition that the decision under 
consideration is indeed taken at time t. We subsequently define risk attitude on the basis 
of the scenarios that are taken into account when evaluating decisions. Risk averse ORCs 
are modeled by considering only a subset of scenarios with high conditional cost  for the 
decision under consideration, whereas risk seeking ORCs are modeled by considering only 
a subset of scenarios that have low conditional cost for the decision under consideration. In 
the end, both types of ORCs choose that decision that they evaluate as best.
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To formalize this idea, consider the outcomes of a decision for a set of  M scenarios. 
To evaluate the decision, a family of functions is used. Each of these functions sorts the costs 
under the different scenarios and then takes the average of a subset of these sorted costs. 
Family members differs in the subset that is used and different subsets represent different 
risk attitudes. The subsets depend on parameters φ ∈ [0,1], ω ∈ (0,1) as follows. Let x be the 
vector of sorted outcomes with xi an element of this vector. We assume x1 is the smallest 
cost (best case) and xm is the largest cost (worst case). 

For given φ and ω we define a function fφ,ω (x) on the vector of sorted outcomes as follows:
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which corresponds to the average of the middle ωM elements of vector x. 

We can view these cases in a more practical, human way: 

• A person with φ = 0, would  be the ultimate optimist (risk seeking), who only takes 

the best possible outcomes into account and does not care about any scenario that 
would result in a worse outcome. 

• A person with φ = 1 would be the ultimate pessimist or risk-averse person, whose 

decisions are guided by worst things that may possibly happen 

• A person with φ = 0.5 bases his or her decision on the more usual outcomes, ignoring 

the real extreme cases (good or bad) cases. 

This is illustrated in the figure below, where we assume ω = 0.3 and M = 15. Note that 

the three person types all take the average of ωM = 5 observations1. However, the non risk-

averse ORC averages the six best outcomes while the risk-averse person averages the six 
worst outcomes. The average person takes some observations in between while ignoring the 
extreme outcomes on both sides. 

 

 

 

FIGURE 1. Averaging outcomes 

The calculation of the cost of a scenario requires the determination of the optimal 
schedule for the corresponding deterministic offline instance. As the number of emergency 
cases is typically small, as is the number of ORs accepting emergency cases, the instances in 
our simulation model allow us to find this optimal solution quickly by enumeration.  

                                                             
1In the preceding text, we have assumed that all values are integral. In our implementation we first calculate β*M and round this 
down; also, the limits for the summation are rounded down 
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the best possible outcomes into account and does not care about any scenario that 
would result in a worse outcome.

•	 A person with φ = 1 would be the ultimate pessimist or risk-averse person, whose 
decisions are guided by worst things that may possibly happen

•	 A person with φ = 0.5 bases his or her decision on the more usual outcomes, 
ignoring the real extreme cases (good or bad) cases.

This is illustrated in the figure below, where we assume ω = 0.3 and M = 15. Note that 
the three person types all take the average of ωM = 5 observations1. However, the non risk-
averse ORC averages the six best outcomes while the risk-averse person averages the six 
worst outcomes. The average person takes some observations in between while ignoring 
the extreme outcomes on both sides.

FIGURE 1. Averaging outcomes

The calculation of the cost of a scenario requires the determination of the optimal 
schedule for the corresponding deterministic offline instance. As the number of emergency 
cases is typically small, as is the number of ORs accepting emergency cases, the instances in 
our simulation model allow us to find this optimal solution quickly by enumeration. 

Simulation model

General description
We simulate the execution and modification of the OR planning at SFG. By execution, we 
mean the starting and ending of cases while by modification, we mean adaptation of the 
schedule in response to newly available information and in view of the predefined objective 
function. Decisions about modifications are made with the heuristic described before. First, 
we will outline the general structure of our simulation and describe the most important 
concepts. Then we will turn to the process of making decisions and changing the schedule. 

1 In the preceding text, we have assumed that all values are integral. In our implementation we first calculate β*M 
and round this down; also, the limits for the summation are rounded down
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Next, we will perform a sensitivity analysis of the most important parameters using test 
data from the SFG. Finally, we use the simulation environment to evaluate the impact of the 
“personality of the ORC”.

Description of the model
We simulate separate, independent working days using discrete event simulation: the 
system is modeled by means of a chronologically ordered discrete set of events. As these 
events are processed one at a time, the state of the system changes and new events may be 
generated. The simulation starts at 8:00 AM and ends when all regular ORs have completed 
their final case. Because we compare the simulation results with real life day per day data 
from the SFG, we have chosen not to consider interdependencies between working days, 
e.g. by rescheduling canceled cases  the next day. The simulation is based on a 3-month 
period in the year 2009.  Total number of surgical cases in this period amounts to 3,027 
of which 301 emergency cases and 39 acute cases. The number of ORs is ten. For every 
surgical case we know the scheduled and actual case duration, scheduled and actual start- 
and end time, whether the case is elective, urgent or acute and the scheduled and actual 
operating room where the case is performed. The numbers of ORs and durations of workday 
are  optimal for what we are  scheduling. Holidays and weekends are excluded from the 
data. Based on the data, all relevant events on the days of surgery and the adjustments can 
be simulated and the outcomes can be compared to the historical outcomes.

For each treatment, we have estimated the parameters of the lognormal distribution 
that can be used to estimate the case duration. All electives cases were known at 8 AM, the 
beginning of the working day. For emergency arrivals, we do not exactly know the time at 
which they arrived. We will assume the following about their arrival:

•	 Around 50% of the emergency cases arrive between the end of the previous day 
and 08.00 AM (SFG, 2010). These emergency cases are considered at the start of 
the  day. The remaining emergency cases arrive at a random time between 8 AM 
and 4 PM (see below for details).

•	 The simulation uses historical urgent and acute cases.
•	 Urgent and acute cases have to be started within 240 and 30 minutes after arrival, 

respectively.  
•	 The subset OE of operating rooms to which emergency cases can be assigned may 

vary per day.
•	 The number and hours of emergency cases were built into the staffing planned. 

To generate random urgent and acute case arrivals between 08.00 and 16.00 for the 
scenarios, we have collected data about the arrivals of emergency cases in 2008. We assume 

x1 xM

Risk-loving

Average

Risk-averse
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that the time of day arrivals occur according to a non-homogeneous Poisson process with 
a piecewise constant arrival rate. The arrival rates are estimated using the mean number 
of arrivals per 30 minutes time interval. For each random arrival, we sample a random 
emergency case from the historical dataset. The state of the system at a certain time of the 
day consists of the status of the planning: the starting and ending times of all cases that 
have been completed, the starting times and expected duration of the cases that are being 
performed at that moment, the ordered lists of cases scheduled for future execution in each 
of the rooms, the list of cases  that will be performed in the service OR and finally the list of 
cases that have been canceled and the cases that have not yet been assigned to any room.

In each room, we start the first case at 8:00 AM. When a case starts, the corresponding 
‘finish event’ is generated using the historic duration of the case (so that we can compare our 
outcomes with historic data). Of course place heuristics don’t use this generated duration, 
but work with the parameters of the distribution of the duration of cases of that type. After 
a case has finished, 9 minutes are scheduled for cleaning time. After cleaning, the next case 
assigned to the room starts  as soon as possible (if there is one). Cases cannot start more 
than 60 minutes earlier than scheduled.  

Decision making
For reasons of computation times, we have limited the frequency by which rescheduling 
is considered. A first rescheduling occurrence is at 8 AM when the newly arrived cases are 
considered, possibly leading to modifications of the original schedule. During the day we 
consider rescheduling whenever a case finishes with a ending time that differs 15 minutes 
or more from the scheduled ending time. Rescheduling is also considered when a new 
emergency case arrives, and at 16.00, the scheduled closing times of the ORs. Finally, 
rescheduling is considered at least every 60 minutes.  

Rescheduling must take the following rules into account:
- The sequence of elective cases within an operating room is fixed and cannot be 

changed during the day.
- When an emergency/acute case arrives, it is placed in the series ‘non-scheduled’. 

There is no room assigned to this specific case.
- If before 4 PM there is OR capacity available in a room then the next scheduled 

elective case or urgent/acute case is started.
- Scheduled cases can be moved from the originally assigned room to the service OR 

or can be canceled.
- Cases that are not yet assigned to any room, can be assigned to a room or to the 

service (so that they are performed after 4 PM).
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- Canceled cases or cases moved to the service OR cannot be scheduled again in the 
day schedule (before 4PM).

- Cases cannot be paused or stopped once they have started

The rescheduling heuristic uses Monte Carlo optimization as follows.  It starts by 
generating a set of scenarios. A scenario consists of a random realization for the duration 
of each of the remaining cases including a set of randomly generated emergency cases still 
to arrive. For each scenario all assignments of future arrivals to ORs are enumerated. These 
assignments decisions are complemented by optimal decisions regarding cancelation of 
elective cases and rescheduling of elective cases in the service OR.  Optimality refers is 
regarded here with respect to the aforementioned cost function which serves as objective 
function. The cost of a scenario are set to be equal to the minimum costs - over all assignments 
for the emergency cases generated in the scenario, - of the thus created optimal schedule 
per assignment. The rationale behind using the cost of minimum cost schedules for optimal 
assignments, is that this coincides with the scheduling objectives taken into account during 
the day. 

We now turn to specifying the coefficients of the objective function. As SFG aims to avoid 
cancelation of cases at all costs,  we set the corresponding parameter at plus infinity,  i.e. α = 
1,000,000. In order to find suitable values for the weights β  and γ, we have presented actual 
ORCs with several dilemmas in which there is a choice between an amount of overtime and 
another amount of service time (see appendix). Based on the choices made by the ORCs, we 
set β  = 1 and γ  = 2  i.e. one minute of overtime is twice as costly as one minute of work in 
the service room. Finally, we have set δ = 1,000,000 (plus infinity) to value late emergencies 
as the response times are legal obligations. 

Experiments and results
The simulation model described in the previous section has been implemented in Microsoft 
Visual C++ (version 9.0, 2008 Express Edition). A number of parameter values can be 
set by the user before starting the actual simulation. In this section we will describe the 
experiments that we have done and the results we have found. Unless indicated otherwise, 
we will assume the default settings of Table 1. 
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TABLE 1. DEFAULT SETTINGS

Service period From 4 PM until 8 PM

ORC policy φ = 0.5, ω = 0.4

Weights  α = 1,000,000
 β=  2 
 γ=  1 
 δ = 1,000,000

Scenarios 30

In our experiments, we have considered 30 scenarios while evaluating each possible 
decision. The choice of 30 scenarios is based on the fact that in real life a rational choice 
takes into account the cognitive limitations of both knowledge and cognitive capacity of the 
human being 34. It is interesting to find out the effects between the different risk attitudes 
when we assume that human capacity will have a hard time analyzing a large number of 
scenarios. Therefore in our comparison of simulation results with the historic outcomes, 
we will use a simulation with 50 scenarios. We now first present the results (based on 50 
scenarios) in comparison to historical data.

TABLE 2. COMPARISON BETWEEN RESULTS SIMULATOR AND HISTORICAL DATA

Non risk-averse 
policy

Mean 
policy

Risk-averse 
policy

Historical 
results

Rejected cases 24 27 30 25

Overtime (minutes) 5,238 4,060 4,745 2,291

Service time (minutes) 9,121 10,964 11,269 12,871

Value objective function 24,019,597 27,019,084 30,020,759 25,017,453

The last column gives the historical results. The three preceding columns give 
the results for various choices of the risk aversion parameter φ. The first column are the 
result for φ = 0, the most risk seeking variant. The next columns use φ = 0.5, and φ = 1, the 
most risk averse variant. The simulation results show that the process of cancelation works 
realistically. At the same time, it reveals that the preferences regarding overtime versus 
referring to service OR may work differently in practice, than stated by the ORCs in the 
presented dilemmas. In the remainder we continue nevertheless on the basis of the stated 
preferences, and further analyze the role of risk aversion and other parameter settings.
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Influence of ORC risk aversion on the planning
The modeling of risk aversion is especially interesting as it models the effect of  variations 
of risk attitude between ORCs. As was discussed in the first chapter of this thesis, the 
psychological profile of the ORC will influence the adjustments made and thus the actual 
planning performance.  Figure 2 compares the results of  a risk minded heuristic (φ = 0) 
with a risk averse heuristic (φ= 1). The risk minded heuristics results in less service time, 
less cancelations, and a better objective function value.  It does however generate more 
overtime. 

FIGURE 2. EFFECT OF NON RISK AVERSE POLICy AS COMPARED TO RISK AVERSE POLICy, BASED ON 50 
SCENARIOS

Figure 3 to 6 more generally analyze how each of the 4 objective function components 
varies in value with φ. 

FIGURE 3. RISK AVERSION VERSUS REJECTED PATIENTS

 

 

FIGURE 2. EFFECT OF NON RISK AVERSE POLICY AS COMPARED TO RISK AVERSE POLICY, BASED ON 50 SCENARIOS 

Figure 3 to 6 more generally analyze how each of the 4 objective function components varies 

in value with φ.  

 

-20%

11%

-19%

-20%

-25.0% -20.0% -15.0% -10.0% -5.0% 0.0% 5.0% 10.0% 15.0%

Goalfunction

Service time

Overtime

Rejected jobs

0
50

100
150
200
250
300
350
400

0 0.2 0.4 0.6 0.8 1

Re
je

ct
ed

 p
at

ie
nt

s

φ

 

 

FIGURE 2. EFFECT OF NON RISK AVERSE POLICY AS COMPARED TO RISK AVERSE POLICY, BASED ON 50 SCENARIOS 

Figure 3 to 6 more generally analyze how each of the 4 objective function components varies 

in value with φ.  

 

-20%

11%

-19%

-20%

-25.0% -20.0% -15.0% -10.0% -5.0% 0.0% 5.0% 10.0% 15.0%

Goalfunction

Service time

Overtime

Rejected jobs

0
50

100
150
200
250
300
350
400

0 0.2 0.4 0.6 0.8 1

Re
je

ct
ed

 p
at

ie
nt

s

φ



Chapter 6

124

FIGURE 4. RISK AVERSION AND OVERTIME

FIGURE 5. RISK AVERSION AND SERVICE TIME

FIGURE 6. RISK AVERSION AND NUMBER OF EMERGENCy CASES AFTER TIME LIMIT
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We clearly see that risk aversion leads to an increase in the number of cancelations, 
increase in service time and  decrease in overtime. A risk-averse person focuses on the 
worst scenarios (which may include a larger number of emergency case arrivals or long 
case durations). Since service time is limited, the presumption of an increased workload 
will lead to more cancellations.  The number of emergency/acute cases performed after 
240/30 minutes respectively after arrival increases slightly as risk aversion increases. In the 
following presented outcomes we find that the number of performed emergency/acute 
cases after the imposed time limit varies between 11-16 cases. Because of this relatively 
low variation these results are omitted in the following tables.

END Service time
Next we consider the effect of  postponing the end time of the service OR and analyze the 
effect on overtime, service time and rejected patients. Note that in reality the task of the 
service staff is primarily to operate urgent/acute cases in the period after 4PM till the next 
day (8AM). It is therefore undesirable to defer a set of elective cases to the service OR 
which together yield a high work load, as this effectively blocks the capacity for the primary 
purpose of treating emergency cases. As the length of the service time interval to which 
cases can be deferred increases,  there are less cancellations,  and less overtime for regular 
ORs.  (see Figures 7,8, 9).

FIGURE 7. END SERVICE TIME VERSUS REJECTED PATIENTS
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FIGURE 8. END SERVICE TIME VERSUS OVERTIME

FIGURE 9. END SERVICE TIME VERSUS SERVICE TIME

Weight factors 
We now turn to the sensitivity of the outcomes of the heuristics to the values of the objective 
function parameters (based on 30 scenarios). If we lower α, the cost of cancelation, while 
keeping all other parameters at their default values, we find the results shown in Table 3. 
We find that a cancelation cost of 1,000 suffices to ensure that overtime and service time 
are always preferred above case cancelation. As we lower α further, we see an increase of 
rejected cases and decrease in overtime and service time. 
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TABLE 3: EFFECT OF DECREASING COSTS REJECTION PATIENTS

α Rejected patients Overtime       (minutes) Service time (minutes)

1,000,000 32 4,460 10,574

100,000 38 4,590 10,347

10,000 31 4,652 10,797

1,000 31 4,652 10,797

100 77 2,810 7,010

10 350 728 1,154

Further, if we increase β, the cost of overtime, and keep all other weights at their default 
values then we see first more rejected cases. The second effect is that overtime decreases 
while service time increases.

TABLE 3: Effect of increasing costs of overtime

β Rejected cases Overtime (minutes) Service time (minutes)

1 23 7,195 5,958

2 32 4,460 10,574

3 48 4,286 12,537

4 48 3,701 13,390

5 56 3,864 13,626

10 54 3,796 15,158

20 65 4,275 15,350

50 60 4,434 15,146

100 65 4,154 16,208

Number of scenarios
Finally, we test how many scenarios should be considered by the heuristic when evaluating 
possible planning adjustments. This can be controlled in two ways: First by changing the 
fraction ω of these scenarios that will be used to calculate an average score for each action.  
Second, by changing the total number of scenario’s that should be evaluated for each 
action. First we have adjusted factor ω while keeping the number of evaluated scenarios 
constant at 30 and using a value of φ = 0.5. In Figure 10, we see an effect on the number 
of cancelations: as we consider a broader set of outcomes (up to ω = 0.7), the number of 
rejected cases decreases and then increases. Considering more information, i.e. taking more 
scenarios into account, apparently leads to better scheduling decisions.  In Figure 13 we see 
the effect of ω on the objective function. As ω increases to a value of 0.7 the value of the 
objective function first decreases and subsequently increases.
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FIGURE 10. RELATION OMEGA AND REJECTED PATIENTS

FIGURE 11. EFFECT OMEGA ON OVERTIME

FIGURE 12: EFFECT OMEGA ON SERVICE TIME
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FIGURE 13. EFFECT OF OMEGA ON  OBJECTIVE FUNCTION VALUE

Also, we have kept ω fixed while changing the total number of scenarios. We have 
done this for three types of ORCs, having values φ = {0.0, 0.5, 1.0}, (a non risk-averse, mean 
and risk-averse planner, respectively). Referring to the objective function (Figure 14) we 
see that the various risk averseness levels generate schedules with converging costs, as the 
number of scenarios considered by the heuristic increases.  In particular we notice that the 
quality of the solutions of the risk averse variant improves considerably.

FIGURE 14. EFFECT OF NUMBER SCENARIOS ON OBJECTIVE FUNCTION VALUE
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In this study we modeled the dynamics the ORC faces daily and especially how risk 
averseness influences the quality of the scheduling decisions. This study confirms earlier 
results in chapter 5 that a non risk averse ORC creates lower costs and less rejected patients 
as compared to a risk-averse ORC and an higher utilization during working days. The results 
of this study supports ORCs and management in their daily scheduling decision making 
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without the usual psychological effects in decision making involved. We may also conclude 
that the simulations results fit the historical performance quite well, but not perfectly. As the 
results of the risk minded heuristic are better than the historical results, we have indications 
that the heuristics may yield better results than presently obtained in practice. 

Further research
In view of the potential effects in quality and cost of care, risk attitudes of ORCs need 
explicit attention in operations room management. Moreover, the fact that the risk minded 
heuristics may outperform existing practice, strongly suggests to consider their potential 
in more detail and in other settings. Indeed, the fact that our study population (1 hospital, 
10 ORs, four ORCs) is relatively small is a first limitation. We strongly suggest repeating the 
study in other hospitals and further improvement of the heuristics in the process. A second 
limitation is to consider only the sensation seeking axis of psychological characteristics. 
Including the other axes, neuroticism-anxiety, aggression-hostility, activity and sociability 
can be expected to generate further valuable insight in the performance of ORCs and be 
valuable for improving scheduling heuristics. More generally, improvement of the heuristics 
is an interesting direction for further research.  This will certainly benefit from theoretical 
work on fundamental properties of the scheduling models and solution methods.
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Appendix
Questionnaire ORCs:

•	 If there are at 3.30 PM two cases to perform, of which one has a scheduled duration 
of 45 minutes and the other a scheduled duration of 60 minutes, which one (or 
both) of these cases are moved to the service OR?

•	 Would you rather start a very important case with a scheduled duration of 140 
minutes in the scheduled OR at 2.50 PM or at 4 PM in the service OR? And would 
you start the same case at 2.20 PM in the scheduled OR or at 4 PM in the service 
OR?

•	 Would you prefer to perform a case with a scheduled duration of 90 minutes in 
the service OR, or would you rather schedule this very same case in a operating 
room with only 60 minutes of capacity left? And what if only 45 minutes of capacity 
would be left?
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Introduction
When looking at an OR in an era in which both cost-containment  and quality of 

health care are considered of prime importance, hospitals have to utilize ORs effectively and 
efficiently. As an OR manager  at St. Franciscus Hospital, Rotterdam, I fully realized  what 
a valuable resource OR capacity is, particularly when subject to high demand for care. My 
experiences and impressions motivated me to start studying how to control the enormous 
variation in activities in the OR. I started by looking at the variations in case durations, 
surgical processes, and scheduling processes. As this thesis will demonstrate, a fundamental 
understanding of the variation and proper control in the operating room makes it possible 
to improve its efficiency and effectiveness, and therefore also improve the quality of care 
provided to the patients. The results of the studies described in this thesis prove that it is 
possible to run the OR more efficiently, effectively and in a more patient-centered way.

 In its influential ‘Crossing the quality chasm’, the Institute of Medicine 1 identifies 
six quality dimensions of health care, among which are efficiency, effective  and timeliness. 
The six dimensions together, make quality improvement a complex matter.  

 Donabedian’s structure-process-outcome model 2 is generally used as the basis for 
much of the work addressing quality and outcomes. Donabedian framed the concept of 
quality assurance in terms of three types of measures: structure (what do we need to have to 
be able to achieve quality), process (what do we need to do to achieve quality), and outcomes 
(what do we need to achieve).  Donabedian suggests that each dimension can be judged 
independently or in conjunction. Furthermore, he argues that the outcome will be positive if 
structure and process are adequate. 

 Surgical delay has been shown to be an important determinant of patient satisfaction 
across the continuum of preoperative-operative-postoperative care 3. Delays in scheduled 
surgical cases affect patient satisfaction even more than the intraoperative anesthesia experience 
4. Delays in surgery resulting from cancellations, bumping of cases and poor scheduling can have 
a significant impact on quality of care for scheduled cases as well 5. Delays only add to the 
patient’s inherent anxiety associated with surgery and engenders anger and frustration. The 
operating room, by its very nature, is an extremely stressful, uncertain, dynamic, and demanding 
environment where staff members need to manage multiple highly technical tasks, often 
simultaneously 6,7.  The Joint Commission on the Accreditation of Healthcare Organizations has 
identified time pressures to start or complete the procedure as one of four contributing factors 
to increased wrong site surgery 8. Similar to other professions, the undue pressures of time that 
result from falling behind create stress that can lead to cutting corners or inadvertent error. 
Relative to other hospital settings, errors in the operating room can be catastrophic (i.e. wrong 
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site surgery, retained foreign body, unchecked blood transfusions). In some cases these errors 
can result in high-profile consequences for the patient, surgeon or hospital 9. In other words, 
poor scheduling and the subsequent induced variation in processes reduces outcome. Evidence 
indicates that case scheduling in practice often is performed poorly 10,11. Additionally, methods 
which improve the reliable estimate of surgical cases naturally lead to improved timeliness, 
efficiency, and effectiveness of OR processes 12,13,14,15,16. 

 Reasoning along these lines, W. Edwards Deming concluded that the real enemy of 
quality is variation in processes. A main objective in operations management is therefore to 
identify sources of variation 17.  Though variation exists in every process and always will, 
controlling the identified variation enables to improve the health service delivery processes 18.   
This thesis presents various results regarding variation at the OR. Some of the results are of 
a descriptive nature, and provide a better understanding of the nature of the variation, thus 
facilitating better control. Other results regard OR scheduling, that is one of the processes 
by which OR managers control variation. This thesis shows how risk attitudes are related to 
effective control of variation, and present mathematical optimization models exploring these 
findings, to provide decisions support systems to optimally control variation.

Conclusions
The main findings of the thesis are the following
 In Chapter 2 the use of accurate statistical models to predict surgical and procedure 
times is studied. The study  is based on a complete set of surgical cases of two large 
European teaching hospitals in the period 2005-2008, involving 85,312 cases and 92,099 
hours in total. The conclusion of this study is that the percentage of cases fitting the normal, 
two- and three-parameter lognormal models is higher for surgical time than for total 
procedure time. The evidence supports the idea that type of surgery is the most important 
single source of variability amongst surgeries. Using the bisection method and applying 
the three-parameter lognormal model fits procedure time and surgical time better than 
the two-parameter lognormal model without shift parameter. The posterior distribution is 
suitable for predicting case durations as helpful in managing variation of cases while making 
scheduling decisions.  More specifically we find that compared to the standard way of case 
scheduling encountered in the teaching hospitals under consideration, use of the mean of 
the three-parameter lognormal distribution for case scheduling reduces the mean over-
reserving OR time per case up to 53.1% and the under-reserving OR time up to with 55.6%. 
Using the three parameter lognormal model for case scheduling causes a lower mean over-
utilized OR time up to 20.0 (19.7-20.3) minutes per OR per day as compared to the standard 
method and 11.6 (11.3-12.0) minutes per OR per day as compared to the bias-corrected 
scheduled OR time.
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 In Chapter 3 the possible dependence of procedure times on surgeon factors like 
age, experience, gender, and team composition is investigated. The effect of these factors 
is estimated for over 30 different types of medical operations in two hospitals, by means of 
ANOVA models for logarithmic case durations. Depending on the type of operation (CPT) 
and on the hospital, procedure times may depend on several surgeon factors. In particular, 
for complex operations, factors like relevant work rate experience of the surgeon and 
composition of the surgical team may have large effects.  Team composition explains up 
to 20% of variation, and when combined with work rate, even 30%. Other relevant factors 
are age of the surgeon and time of the day. Gender has nearly never any effect, and the 
only effect that is significant (at the 5% level) is found for cataract, where female surgeons 
work 8% faster than male surgeons. A predictive out-of-sample analysis for case durations 
in 2009 shows that surgeon factors help in predicting case durations. As compared to the 
methodology currently employed in both hospitals under study, mean absolute prediction 
errors are reduced by up to 18 minutes and up to 18% of the median procedure time. 

 The most significant gains are obtained for relatively complex CPTs, especially those 
involving endoscopic and laparoscopic procedures. As the complexity of surgical procedures 
shows an ever increasing trend, surgeon factors may become even more important in the 
future. The practical implementation of (ANOVA or other) prediction models is done best 
after consultation of surgeons, OR management, and other staff involved in the operation 
room activities. As hospitals differ widely in aspects like surgical experience with different 
specializations, organizational structure, OR protocols and OR logistics, the effect of surgeon 
factors will differ among hospitals.  As a more general conclusion, we also note that surgeons 
are a major source of variation, which is presently often uncontrolled, but not necessarily 
entirely uncontrollable. Standardization of skills and processes, and recruitment policies 
might aid to controlling it.

 In Chapter 4, we study  the impact of scheduling cases of a same type consecutively 
on the turnover-, surgical-and procedure time. We find that maintaining a fixed team for 
similar consecutive cases throughout the day yields a significant reduction in preparation 
time and turnover time. Teams prepared the procedures in a more structured fashion in the 
study group. This explains the shorter preparation time in the study group as compared to 
the control group. Surgery time was not significantly different in the study group as compared 
to the control group. Surgeons do not work “faster or slower” when working on consecutive 
similar cases and surgeons do not compromise on quality of care to increase speed. For the 
inguinal hernia repair we see a significantly shorter preparation,- and procedure times in the 
study group as compared to the control group. Also, the variation in the study group of the 
three time intervals is significantly lower in comparison to the control group. The average 
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procedure time is 10 minutes less which has practical implications for planning purposes. A 
reason for the decreased operative time (because of the decrease in preparation time) may 
be the effect of the roles of each individual team member being explicitly defined before the 
start of the day.

 In the study group a significantly lower mean preparation time is found for 
the laparoscopic cholecystectomy The mean procedure time for the laparoscopic 
cholecystectomy is not significantly lower in the study group. A possible technical 
explanation for the fact that no difference is found in the mean procedure time between 
the control group and study group is that in both study group and control group patients 
were included who experienced a cholecystis or an obstruction necessitating an endoscopic 
retrograde cholangiopancreatography. Both problems may involve a technically demanding 
operation that may require more dissection time. Based on the results we conclude that 
scheduling cases of a same type  decreases preparation time. We didn’t find significant 
effects on procedure time, which might be due to the fact that we considered medically 
complex procedures. Whether procedure time is reduced for less complex procedures is a 
topic worthy of future research.

 Chapter 5 focuses on the Operating Room Coordinator (ORC). The ORC is responsible 
for adjusting operating room schedules in response to the deviations from the planning that 
occur during the day. We have observed differences among the personalities of the four 
ORCs with regard to their willingness to take on more risk concerning their daily planning. 
We investigated the relationship between the risk attitude and the acceptance/cancellation 
of cases. Zuckerman developed the Zuckerman-Kuhlman Personality Questionnaire (ZKPQ) 
to assess personality along five dimensions. Zuckerman defines sensation seeking as a need 
for new and complex experiences and a willingness to take risk for one’s own account. 
He has found that high sensation seekers tend to anticipate lower risk than low sensation 
seekers do, even for new activities. 

 This finding indicates that a high sensation seeker is more likely to look for 
opportunities that provide the chance to take a risk, and that the willingness to take risks 
seems less threatening to this specific type of individual. The ZKPQ results for risk-seeking 
indicate that there is a difference in risk appreciation between the different ORCs. Risk-
averse ORCs plans in less cases than non risk-averse ORCs. The number of extra cases 
performed by the non risk-averse ORC as compared to a risk-averse ORC is 188 in 2006 and 
174 in 2007. The average end-of-program-time per OR/day for the non risk-averse ORC is 
34 minutes (± 19 min, p = 0.0085) later than for the risk-averse ORC. In our study a non risk-
averse ORC creates significantly less unused OR capacity without a great chance of running 
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ORs after regular working hours or canceling elective cases. Added to this, a non risk-averse 
ORC is cost-effective. 

 In Chapter 6 we simultaneously address efficiency and timeliness of care in 
the operating theatre.  In this study we modeled the dynamics the ORC faces daily and 
especially how risk averseness influences the quality of the scheduling decisions. This study 
confirms earlier results in chapter 5 that a non risk averse ORC creates lower costs and less 
rejected patients as compared to a risk-averse ORC and an higher utilization during working 
days. The results of this study supports ORCs and management in their daily scheduling 
decision making without the usual psychological effects in decision making involved. We 
may also conclude that the simulations results fit the historical performance quite well, but 
not perfectly. As the results of the risk minded heuristic are better than the historical results, 
we have indications that the heuristics may yield better results than presently obtained in 
practice. 

Future perspectives

Practical perspectives
The results of this study can be straightforwardly implemented  in any OR decision support 
system. Based on my experience the main condition to implement successfully is a coherent 
view of OR staff, surgeons, anesthetists towards helping patients in a timely, efficient and 
effective manner. It enables to make scheduling decisions in a patient centered manner, 
rather than to let the perspectives of OR staff, surgeons or anesthetists  et cetera prevail. 

Future research
The results presented in the thesis are significant to help reduce uncontrolled variation as 
enemy of quality 17. Based on our findings we propose the following directions for  future 
research to improve OR scheduling:

 In the simulation for case duration prediction and efficiency gains  (Chapter 2), we 
omitted cases with a frequency less than ten. As a result, the real efficiency gains may be 
over-estimated. Further study is called for regarding the estimation of low frequency cases 
and the resulting effect on scheduling decisions. In the study regarding the consecutive 
scheduling of cases of a same type, we considered relatively complex surgical procedures 
(Chapter 4). For these cases, the duration time of the procedure was not significantly effect. 
We hypothesize that the effect on case durations of relatively less complex procedures is 
significant and propose to test this hypothesis. 
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 The study which addressed the risk attitudes of ORC’s (Chapter 5) only takes the 
sensation seeking dimension out of five dimensions of ZKPQ into account. The dimensions, 
neuroticism-anxiety, aggression-hostility, activity and sociability, might significantly 
influence scheduling decision making as well. We encourage further research in this novel, 
multidisciplinary, direction.

 Although the results from the simulation (chapter 6) are strong, there are some 
potential drawbacks. The first factor is that the study population (1 hospital, 10 ORs  and four 
ORCs) is relatively small. It is therefore important to repeat this study in other hospitals and 
to further improve the methodology based on the new situations and data. When patients 
are rejected then we assume that they are not scheduled in the future.  It is interesting to 
analyze the effect on our results when rejected patients are moved to a waiting list or the 
next day. We used a relative simple questionnaire to estimate the cost coefficients. A more 
realistic approach is using actual costs and use them in the simulation model. 

Finally, our heuristics bring about a number of scheduling questions regarding 
the performance of heuristics, and performance bounds that are attainable. This strongly 
suggests more fundamental research on the complexity and nature of the real time 
scheduling problems considered in our study. More generally, improvement of the heuristics 
is an interesting direction for further research.  This will certainly benefit from theoretical 
work on fundamental properties of the scheduling models and solution methods.
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Introductie
Na een aantal jaren in het bedrijfsleven te hebben gewerkt, heb ik in 2004 mijn carrière 
voortgezet als manager van het operatiekamercomplex (OK) in het St. Franciscus Ziekenhuis, 
te Rotterdam. In het bedrijfsleven heb ik geleerd om op een efficiënte en effectieve wijze 
processen te organiseren vanuit het perspectief waarin de klant centraal staat. Met deze 
ervaring begon ik op 1 januari 2004 op de OK. Een omgeving die gekenmerkt wordt door 
veel kostbare apparatuur en verschillende hoog opgeleide professionals die klaar staan 
om patiënten te helpen. Kenmerkend voor de OK is, dat het een belangrijke schakel in de 
zorgketen is die economische toegevoegde waarde creëert voor het ziekenhuis.

 Omdat de OK een arbeidsintensieve omgeving is waar in dit geval jaarlijks 
meer dan 11.000 patiënten (2004) werden geopereerd verwachtte ik dat processen zo 
efficiënt en effectief mogelijk waren ingericht.  Hierbij ondersteund door geavanceerde 
planningssystemen met als doel patiënten tijdig en klantgericht te helpen. Mijn verwachting 
bleek niet overeen te komen met de praktijk. Hierbij een aantal voorbeelden om dit te 
illustreren. Omdat OK programma’s niet goed waren gepland, was er veelvuldig sprake van 
lege OKs. 

 Als gevolg van de minder goede planning kwam het relatief vaak voor dat 
operateurs, operatie- en anesthesie medewerkers tijdens werktijd niet aan het werk waren 
en/of na reguliere werktijd moesten doorwerken om de operaties af te maken. De realisatie 
van operatietijden week soms fors af van de oorspronkelijke planning. Omdat de planning 
niet altijd werd gehaald ging dit vaak ten koste van reeds geplande electieve patiënten.

 Het maken van een goede planning en vervolgens op het geplande tijdstip opereren 
van patiënten was bijna elke dag een uitdaging. Het resultaat van de niet optimale planning 
leidde soms tot flinke frustraties en stress bij OK personeel, operateurs, management en 
niet in de laatste plaats de patiënt omdat hij/zij van het programma werden gehaald. Als 
de OK wordt bezien in een tijd dat de kosten van de gezondheidszorg stijgen, bestuurders 
van ziekenhuizen stellen dat de patiënt centraal staat, de kwaliteit van zorg en de veiligheid 
onder een vergrootglas ligt bij de inspectie, is het niet meer dan logisch dat ziekenhuizen hun 
operatiekamers op een effectieve en efficiënte wijze moeten inrichten. Eind 2006 kwam ik 
op basis van mijn ervaringen en indrukken tot de conclusie dat de omvangrijke variaties die 
inherent zijn aan de planning van operaties beter konden worden gemanaged. Ik begon in 
2007 met het bestuderen van de variaties die gerelateerd zijn aan operatietijden, processen 
rondom een operatie en de planningsprocessen. 
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In dit proefschrift wordt aangetoond dat een beter begrip van de variatie van operatietijden 
en processen en een juiste beheersbaarheid van de variatie leidt tot een verbetering van 
de efficiëntie, effectiviteit en tijdigheid van zorg op de OK. Daarmee verbetert de kwaliteit 
van zorg aan patiënten. W. Edwards Deming heeft eerder geconcludeerd dat de echte vijand 
van kwaliteit de variatie in processen is. Een belangrijke opdracht voor management is de 
factoren die variatie veroorzaken te identificeren 1. Hoewel variatie in elk proces aanwezig is 
en zal blijven, leidt beheersing van geïdentificeerde variatie tot verbetering van de kwaliteit 
van zorgprocessen 2.

 In dit proefschrift worden verschillende resultaten gepresenteerd betreffende 
het beheersen van variatie op de OK. Sommige resultaten zijn beschrijvend van aard, 
andere bieden diepgaand inzicht in de aard van variatie en wat bijdraagt om deze variatie 
te beheersen. Andere resultaten hebben betrekking op het plannen van operaties. In dit 
proefschrift wordt aangetoond hoe verschillende soorten risicohoudingen ten opzichte van 
elkaar staan in relatie tot het op een effectieve wijze beheersen van variatie. Wiskundige 
optimalisatiemodellen worden gebruikt om deze aspecten te onderzoeken met als doel een 
beslissingsondersteunend systeem te ontwikkelen teneinde op een optimale wijze variatie 
te beheersen.

Theorie
Het Institute of Medicine (IoM) onderscheidt zes doelstellingen voor kwaliteitvolle zorg. 
Deze doelstellingen zijn3:
•	 Veilig: vermijdbare letsels minimaliseren.
•	 Effectief: zorg gebaseerd op wetenschappelijke kennis aan al wie daar baat bij heeft.
•	 Efficiënt: vermijden van verspilling (materiaal, ideeën, energie).
•	 Patiënt centraal: respectvol voor en responsief aan individuele voorkeur, nood, 

waarden.
•	 Tijdig: zonder wachttijden en schadelijke vertragingen voor patiënt en zorgverlener.
•	 Gelijkwaardig: kwaliteitsvolle zorg los van geslacht, etniciteit, locatie, sociaal-econo-

mische status.

 Donabedian4 ontwikkelde het structuur-proces-uitkomst model waarmee 
vooruitgang in kwaliteit kan worden gemeten. Structuur is gedefinieerd als wat nodig is 
om in staat te zijn kwaliteit te leveren. Proces houdt in wat we moeten doen om kwaliteit 
te bereiken en uitkomst is wat aan kwaliteit bereikt moet worden. Het onderzoek in dit 
proefschrift heeft ten aanzien van IoM betrekking op de effectiviteit, efficiëntie en tijdigheid 
van zorg. 
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 Voor wat betreft de organisatie en afstemming van aanbod en vraag zijn er verschillen 
tussen de industrie en de zorg. Vissers et al. 5 heeft voor de zorg een besturingsraamwerk 
ontwikkeld van vijf niveaus. Dit model wordt toegepast op de OK. In het onderzoek worden 
de bovenste drie niveaus als exogeen beschouwd.  Op het  vierde en vijfde niveau zijn de 
patiëntgroepen en patiënten op de OK het resultaat van een samenspel van keuzes en 
krachten in de bovenste drie niveaus van het besturingsmodel. Het management op de 
OK zal gegeven deze patiëntgroepen en patiënten de logistieke processen zodanig moeten 
inrichten dat er evenwicht wordt gevonden tussen flexibel georganiseerd zijn, zodat 
verstoringen van het proces (spoed, uitloop) kunnen worden opgevangen en de reguliere 
vraag naar zorg. Hierbij spelen planningregels een belangrijke rol.

 Personeel op de OK voert haar werkzaamheden op soms lange dagen en onder tijdsdruk 
uit. De Joint Commission on the Accreditation of Healthcare Organizations heeft na onderzoek 
vastgesteld dat de tijdsdruk om te starten of een verrichting te beëindigen één van de vier 
factoren is die bijdraagt aan een verhoogde kans op het maken van fouten 6. Vergelijkbaar met 
andere beroepen (o.a. in de luchtvaart) veroorzaken tijdsdruk en het risico niet op schema 
te lopen stress bij OK personeel , dit kan tot fouten resulteren. In sommige gevallen kunnen 
deze fouten vergaande consequenties hebben voor patiënt, chirurg of het ziekenhuis 7.  
Tijdsdruk kan ontstaan als de geplande operatietijden niet juist zijn en als de onzekerheid 
in het niet op tijd realiseren van een OK programma de overhand krijgt.  De onzekerheden 
in de OK schema’s die ontstaat als gevolg van niet juist plannen heeft dus invloed op de 
kwaliteit van zorg. Een beter begrip van de variatie kan resulteren in betere schatting van 
OK tijden. Een betere schatting draagt vervolgens bij aan een grotere kwaliteit van zorg 
in termen van veiligheid, effectiviteit, efficiëntie en tijdigheid. Omdat de OK een leading 
source is 5, heeft beheersen van variatie van OK roosters en processen als tweede positief 
effect dat het de kwaliteit in de gehele zorgketen verbeterd. Dit kan worden bereikt door het 
verbeteren van de planning en control cyclus van de OK. 
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FIGUUR 1. SyNTHESE VAN HET VIJFDE NIVEAU UIT HET LOGISTIEK FRAMEWORK 3 EN  DONABEDIAN’S MODEL 
VOOR KWALITEIT

Conclusies van het onderzoek
In het tweede hoofdstuk wordt beschreven hoe operatietijden beter kunnen worden 
geschat. Door gebruik te maken van een model dat OK-tijden beter voorspelt, is het directe 
resultaat een verbetering van de OK-efficiëntie en het op het afgesproken tijdstip opereren 
van patiënten. OK tijden worden over het algemeen gekenmerkt door een scheve verdeling 
en hebben een minimale tijd operatietijd. In hoofdstuk twee wordt aangetoond dat OK-
tijden beter worden gemodelleerd door een 3-parameter lognormale verdeling. Daartoe 
is in twee Europese ziekenhuizen retrospectief onderzoek gedaan naar alle operaties 
(n= 85.312) in de periode 2005-2008. Voor verrichtingen die niet vaak voorkomen is met 
behulp van een combinatie van historische tijden en  inschatting van operateurs gekomen 
tot een betere schatting van de OK-tijd. Tenslotte wordt aangetoond dat gebruik maken 
van deze modellen leidt tot minder over- en onderschatting van OK tijden vergeleken 
met een planning waar gebruik wordt gemaakt van het gemiddelde van de laatste tien 
waarnemingen. Tenslotte wordt aangetoond dat de OK-efficiëntie toeneemt bij gebruik van 
het 3-parameter   lognormale model.

 In het derde hoofdstuk is onderzocht of er specifieke factoren van invloed zijn 
op de variatie van OK-tijden. De onderzochte factoren zijn leeftijd, ervaring, en geslacht 
van de chirurg en teamsamenstelling. De factoren zijn geschat door gebruik te maken van 
variantie-analyse (ANOVA, ‘Analysis of Variance’) voor logaritmisch verdeelde OK-tijden. De 
praktische relevantie van de uitkomsten van de analyse is getoetst door over de periode 
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2009 de geplande en werkelijke OK-tijden met elkaar te vergelijken in 2009. In het geval van 
met name endoscopische verrichtingen blijken deze factoren significant als  de operateur 
minder dan 1 keer per 3 weken opereert. De factoren die significant van invloed zijn op OK-
tijden zijn: team samenstelling, ervaring en het moment op de dag dat een operatie wordt 
uitgevoerd. Door rekening te houden met deze  significante effecten in de planning neemt 
de out of sample voorspelling van OK tijden van 1.250 operaties in 2009 toe met meer 
dan 15% vergeleken met de huidige wijze van plannen (laatste 10 gemiddeld). De meest 
significante effecten worden behaald bij relatief complexe operaties, in het bijzonder de 
endoscopische en laparoscopische operaties. Omdat er in de trend van complexe operaties 
een toename is te zien, zal voor de voorspelbaarheid van deze operatietijden het belang van 
de onderzochte factoren toenemen.

 In het vierde hoofdstuk wordt het effect onderzocht van opereren in straatjes op de 
operatie- en wisseltijden. In deze opzet verrichten vaste OK-teams repeterend eenzelfde type 
operatie. Gekozen is voor een relatief laag complexe verrichting (Hernia Inguinalis volgens 
Lichtenstein) en een relatief hoog complexe verrichting (laparoscopisch cholestectomie). De 
veronderstelling is dat als gedurende de dag een vast OK-team in straatjesopzet dezelfde 
operatie uitvoert de operatietijd, snijtijd, voorbereidingstijd en wisseltijd minder is. 

 Het onderzoek bevestigt dat het repeteren van dezelfde taak de tijdsduur van deze 
taak reduceert. Het onderzoek toont aan dat bij de laag complexe verrichting de operatietijd 
minder is in de studiegroep dan in de controlegroep. Voor zowel de laag als hoog complexe 
verrichting is de voorbereidingstijd in de studie groep significant lager dan in de controle 
groep. Een verklaring hiervoor is dat OK-teams in een straatjesopzet meer gestructureerd 
de operatie voorbereiden. Voor beide operaties is geen verschil in snijtijd gevonden tussen 
de studie- en controlegroep. Operateurs werken niet sneller of langzamer in straatjes.
In hoofdstuk 5 wordt onderzocht wat de relatie is tussen de risico-aversiteit van een OK-
coördinator en de OK-efficiëntie. De OK-coördinator is verantwoordelijk voor het vullen van 
gaten in een operatieprogramma zodat OKs zo veel mogelijk worden benut en minimaal 
uitlopen. Dit zonder dat geplande patiënten van de OK-lijst worden gehaald. Er zijn in het 
ziekenhuis van studie vier OK coördinatoren. Tussen deze coördinatoren zijn verschillen 
waargenomen in de wijze waarop zij bereid zijn om risico te nemen om geplande operaties 
uit te laten voeren en/of extra operaties in te plannen. De getoetste hypothese is dat er 
een relatie is tussen de risico-aversiteit van een OK-coördinator en de OK-efficiëntie. Het 
onderzoek toont aan dat  een  niet risico-averse OK-coördinator een hogere OK-efficiëntie 
creëert zonder dat dit leidt tot significant meer overwerk vergeleken met een risico-averse 
OK-coördinator. Tevens zegt de niet risico-averse OK-coördinator minder electief geplande 
patiënten af. Tenslotte wordt aangetoond dat het vanuit kosten overwegingen beter is om 
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een operatie waar de kans op overwerk aanwezig door te laten gaan in plaats van af te 
zeggen.

 In hoofdstuk 6 wordt een onderzoek gepresenteerd waar de kennis uit eerdere 
hoofdstukken wordt samengevoegd. Het doel in dit hoofdstuk is om tegelijkertijd efficiëntie 
en tijdigheid van zorg in de OK te verbeteren door middel van een simulatieprogramma. 
Dit programma werkt op realtime basis en heeft een doelstellingsfunctie ingebouwd om 
de gewogen kostensom van afgezegde operaties, overwerk kosten, verschuivingen naar de 
dienst OK en het later dan afgesproken uitvoeren van spoedpatiënten te minimaliseren. 
Eerder in dit proefschrift is aangetoond dat de risicohouding van een OK-coördinator van 
invloed is op de kwaliteit van de OK-planning. Door gebruik te maken van heuristiek die 
gebaseerd is op verschillende risico houdingen kan de uitkomst van een OK-planning worden 
geanalyseerd. Hierbij wordt gebruik gemaakt van Monte Carlo optimalisatiemethoden  die 
getest worden op recente (2009) gerealiseerde operaties in het St. Franciscus Gasthuis, te 
Rotterdam. De resultaten van de simulatie tonen aan dat een niet risico-averse houding van 
de OK-coördinator leidt tot minder afzeggingen van operaties,  minder werk in de dienst OK, 
en een betere benutting overdag. De prijs van deze risico- houding is meer overwerk. 
In hoofdstuk 7 volgt de samenvatting van dit proefschrift en worden de belangrijkste 
conclusies genoemd. Tevens wordt beschreven wat aspecten zijn die in de toekomst nader 
onderzoek behoeven.
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Dankwoord

Dit proefschrift heeft mede zijn inhoud en vorm gekregen mede dankzij de steun van 
anderen die ik graag wil bedanken. 

Allereerst mijn twee promotoren Prof.dr. ir. G. de Vries en Prof.dr. J. van de Klundert.  

Beste Guus.  In ons eerste gesprek waarin ik aangaf te willen promoveren heb je veel wijze 
woorden gezegd. Zelfs na een uur op mij inpraten bleef ik vasthouden aan mijn doel om 
te promoveren. Dat ‘vasthouden’ was tijdens het traject al snel een begrip. Dank voor je 
betrokkenheid en tijd zowel op het inhoudelijke vlak als voor alle andere gesprekken die we 
hebben gevoerd. Het is een eer om je eerste promovendus te zijn. 

Beste Joris.  Jij bent onlosmakelijk verbonden aan mijn traject om te promoveren. Mede 
door  jouw bijdrage heeft dit proefschrift aan diepgang en scherpte gewonnen. No guts, no 
glory.  Dank daarvoor.

Dr. C. Heij.  Beste Christiaan, wij hebben elkaar voor het eerst ontmoet tijdens de revisie van 
het tweede artikel. Dankzij jouw scherpe opmerkingen en enthousiasme heb ik in relatief 
korte tijd flink tempo in mijn onderzoek kunnen maken. De snelheid waarmee je de stukken 
van uitgebreide, zeer bruikbaar commentaar voorzag, overtrof op een gegeven moment 
(even) de snelheid waarmee ik de zoveelste versie kon maken. Dank voor al onze gesprekken 
en de samenwerking.

Prof.dr. Albert Wagelmans. Beste Albert. Ook zonder jou had ik niet de slag kunnen maken 
om te komen tot een volwaardig proefschrift.  Dank voor je inzichten, tijd en humor.  Als je 
een aanbevelingsbrief nodig hebt, dan ben ik uiteraard bereid om deze voor je te schrijven.

Ik wil de leden van de leescommissie Prof.dr. Franklin Dexter, Prof.dr. Ger Koole, en Prof.dr. 
Albert Wagelmans bedanken voor hun tijd en betrokkenheid bij mijn promotie.  

R. van der Velden. Beste Ronald. Ik ben blij dat we samen ‘ORSim®’ hebben ontwikkeld. Ik 
schrijf ‘we’, maar de duizenden codes zijn door jou geschreven. Door snel inzicht te krijgen 
in de werkelijke OK wereld heb je een ingenieuze vertaalstag kunnen maken naar een mooi 
planningsprogramma. Om in jouw woorden te spreken: het is ‘Super de luxe’.

Dr. G.H.H. Mannaerts. Beste Guido. Jij gaf mij in 2006 het laatste duwtje om een 
promotietraject in te gaan. Dank voor je support en dat je vandaag mijn paranimf bent.
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M. de Quelerij. Beste Marcel.  Dank voor al je inspanningen, relativeringen en opmerkingen 
en ook dat je vandaag mijn paranimf bent.

M. van Stolk. Beste Margaret. Wij waren en destijds het voorbeeld van succesvol duo-
management in de zorg. Dank voor je vertrouwen en steun.

Fabbers van het SFG, in het bijzonder Marco Kuipers en Rien van den Oever. Bedankt voor 
het aanleveren van alle data op de meest onmogelijke momenten en deadlines. Marco,  
binnenkort samen de golffrequentie maar flink opvoeren!

Dr. P. Batenburg. Beste Piet. Ik wil je bedanken voor de kans die je mij hebt gegeven om op 
de OK van het SFG te werken  en van je te leren. Nu zijn we al een tijd op de goede weg in 
het mooie Catharina Ziekenhuis. 

Prof.dr. A. van Zundert. Beste André, dank dat je tijd hebt willen besteden om de vele kleine 
puntjes op de spreekwoordelijke i te zetten.

J. Maat. Beste Jeroen. Jouw kennis van Excel is ongekend. Dank voor al je hulp.

K. Jamdagni. Beste Kumar. Dank voor al je editing werk. Het is dus mogelijk om naast te 
promoveren ook verdieping te krijgen in een vreemde taal.

Naast de inhoudelijke ondersteuning wil ik mijn ‘vlieg’-vrienden bedanken voor de check 
and balances Has van Helvoort, Marco Bouman, Joop Peek en  Willem de Kleijnen. Een 
promotietraject kan worden vertaald naar een APPROACH checklist:

‘ We will be making the ILS approach to runway 24 in EHRD. Localizer frequency is 109.1 the 
course is 243°. The decision height is 251 feet, which we set in the altitude warning system. 
In case of a missed approach we will climb to 2000 feet and then proceed to  ROT. 
I fly the approach it’s my decision to Go Around or land’ 

J. Ouwehand en R. Jonkman. Beste Joke en Ronald. Dank voor het feit dat ik als manager 
met jullie heb kunnen en mogen samenwerken. Ik heb het vaker gezegd: jullie zijn de Top 
OK teamleiders van  Nederland.

Beste Art en Louise. Bedankt voor de fysieke momenten in de sportschool. De kracht 
inspanningen en gezelligheid heeft vaak tot creativiteit of oplossing van problemen geleid.

Lieve Mariëlle, bedankt voor alles en op naar de volgende vink.





Curriculum vitae

155

Curriculum vitae

Pieter Szymon Stepaniak was born on April 19th, 1967 in Breda, the Netherlands. He 
followed the MAVO (Maassluis), HAVO (one year) and VWO (Vlaardingen). In 1987 he 
entered the Erasmus University in Rotterdam studying Econometrics, Economics and 
received his master degree (MSc) in 1992 (Free doctoral exam). After serving his military 
duty he worked for ErasmusMC, PricewaterhouseCoopers and KPN. In 2004 he started as 
manager operating rooms in the St. Franciscus Hospital Rotterdam and continued (2007) his 
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