Responsible research data management (RDM)

General skills courses
Students shaking hands in front of het 'Depot'.


Increasingly, researchers are expected to make their research data available, in such a way that it is “as open as possible and as closed as necessary”. Additionally, having a data management plan is required by many stakeholders like funding agencies, ethical review boards, or journals.

But what does this mean, and how can you put this into practice? What are the practical consequences of research data management (RDM) and how do you handle personal/sensitive data and take care of long-term preservation, access, and reuse of your data? These and related questions about RDM are the topic of this workshop.

We will discuss best practices for documenting, organizing, sharing, and archiving your research data, including personal data and working in international collaboration settings. You will practice with writing a README and learn how to write or improve the data management plans for your own research projects.

Effectively managing data can help to optimise research outputs, increase the impact of your research, and support open scientific inquiry. After completing this workshop, PhD candidates will be better equipped to manage their data throughout the entire research data lifecycle, from the stage of project planning to the end.

Workshop information

ECTS: 1.5
Number of sessions: 2
Hours per session: 4 hours (session 1), 3 hours (session 2)

Key Facts & Figures

Instruction language
Mode of instruction

What will you achieve?

  • After completion of this workshop, you will be able to identify legal and privacy issues to be addressed in your research and data management plans.
  • After completion of this workshop, you will be able to apply best practices to document, organize, share, and archive your research data.
  • After completion of this workshop, you will be able to explain the FAIR principles and the importance of metadata for research.
  • After completion of this workshop, you will be able to complete data management plans for your research.
  • After completion of this workshop, you will be able to find available information and support for research data management.

Start dates

Session 1
October 31 (Tuesday) 2023
Mandeville building (campus map), room T19-01

Session 2
November 7 (Tuesday) 2023
Mandeville building (campus map), room T19-01

Please note:
In the academic year 2023-2024, the RDM course will take place in this setting for the last time in October/November 2023. 
As of 2024, RDM will be integrated into the course 'Open science and research transparency'.

Entry level

Besides having some prior experience with research data (could also be in the Bachelor/Master phase), there are no specific entry requirements for this course. For PhD candidates, we recommend that you follow this course in the first year of their project, if possible. This will help implement the best practices in RDM from the start of your project and to avoid overlap with other RDM trainings that you might follow during your PhD.

How to prepare

Before the first session:

1. Read the following article: Briney, K., Coates, H., & Goben, A. (2020). Foundational Practices of Research Data Management. Research Ideas and Outcomes, 6, e56508. (Open Access)

2. Suggested reading for researchers working with qualitative data: DuBois, J. M., Strait, M., & Walsh, H. (2018). Is it time to share qualitative research data?. Qualitative Psychology, 5(3), 380. (Open Access)

Before the second session (can already be done before the first session, if you like):

3. Try to reflect on possible research data management, privacy, and legal issues that you might encounter in your PhD research projects (or which you already encountered). Having examined potential issues before the second session will help you make the most out of this session and to implement the best practices being taught

4. Take the short training module on Privacy in Research:


  • Portrait of Eduard Klapwijk
    Eduard Klapwijk is a Research Data Steward at Erasmus University as well as a postdoc in the university’s SYNC lab. He advises and supports researchers on how to organise their research data effectively in accordance with international standards and develops and implements research data management guidelines with the aim to make research more open and reproducible. His main focus as a postdoc at Erasmus University is to determine the optimal sample size in developmental studies for a range of fMRI tasks.
  • Portrait of Joanna Mania
    Joanna Mania works as a Data Steward at ERS. With a research background in communication science, art, and technology, she feels at home at ESHCC and ESPhil, where she is seconded to. Her focus lies in promoting FAIR practices in the domain of SSH. She advises on research data strategies and offers customized advice on data documentation, shareability, and preservation. She also contributes to EUR-wide projects to improve RDM infrastructure.


Telephone: +31 (0)10 4082607 (Graduate School).

Facts & Figures

  • free for PhD candidates of the Graduate School
  • €450,- for non-members
  • Consult our enrolment policy for more information.
Not applicable
Offered by
Erasmus Graduate School of Social Sciences and the Humanities
Course type
Instruction language
Mode of instruction

Compare @count study programme

  • @title

    • Duration: @duration
Compare study programmes